/* * Minio Cloud Storage, (C) 2016 Minio, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package sha256 import ( "crypto/sha256" "encoding/binary" "hash" "runtime" ) // Size - The size of a SHA256 checksum in bytes. const Size = 32 // BlockSize - The blocksize of SHA256 in bytes. const BlockSize = 64 const ( chunk = BlockSize init0 = 0x6A09E667 init1 = 0xBB67AE85 init2 = 0x3C6EF372 init3 = 0xA54FF53A init4 = 0x510E527F init5 = 0x9B05688C init6 = 0x1F83D9AB init7 = 0x5BE0CD19 ) // digest represents the partial evaluation of a checksum. type digest struct { h [8]uint32 x [chunk]byte nx int len uint64 } // Reset digest back to default func (d *digest) Reset() { d.h[0] = init0 d.h[1] = init1 d.h[2] = init2 d.h[3] = init3 d.h[4] = init4 d.h[5] = init5 d.h[6] = init6 d.h[7] = init7 d.nx = 0 d.len = 0 } type blockfuncType int const ( blockfuncGeneric blockfuncType = iota blockfuncAvx512 blockfuncType = iota blockfuncAvx2 blockfuncType = iota blockfuncAvx blockfuncType = iota blockfuncSsse blockfuncType = iota blockfuncSha blockfuncType = iota blockfuncArm blockfuncType = iota ) var blockfunc blockfuncType func block(dig *digest, p []byte) { if blockfunc == blockfuncSha { blockShaGo(dig, p) } else if blockfunc == blockfuncAvx2 { blockAvx2Go(dig, p) } else if blockfunc == blockfuncAvx { blockAvxGo(dig, p) } else if blockfunc == blockfuncSsse { blockSsseGo(dig, p) } else if blockfunc == blockfuncArm { blockArmGo(dig, p) } else if blockfunc == blockfuncGeneric { blockGeneric(dig, p) } } func init() { is386bit := runtime.GOARCH == "386" isARM := runtime.GOARCH == "arm" switch { case is386bit || isARM: blockfunc = blockfuncGeneric case sha && ssse3 && sse41: blockfunc = blockfuncSha case avx2: blockfunc = blockfuncAvx2 case avx: blockfunc = blockfuncAvx case ssse3: blockfunc = blockfuncSsse case armSha: blockfunc = blockfuncArm default: blockfunc = blockfuncGeneric } } // New returns a new hash.Hash computing the SHA256 checksum. func New() hash.Hash { if blockfunc != blockfuncGeneric { d := new(digest) d.Reset() return d } // Fallback to the standard golang implementation // if no features were found. return sha256.New() } // Sum256 - single caller sha256 helper func Sum256(data []byte) (result [Size]byte) { var d digest d.Reset() d.Write(data) result = d.checkSum() return } // Return size of checksum func (d *digest) Size() int { return Size } // Return blocksize of checksum func (d *digest) BlockSize() int { return BlockSize } // Write to digest func (d *digest) Write(p []byte) (nn int, err error) { nn = len(p) d.len += uint64(nn) if d.nx > 0 { n := copy(d.x[d.nx:], p) d.nx += n if d.nx == chunk { block(d, d.x[:]) d.nx = 0 } p = p[n:] } if len(p) >= chunk { n := len(p) &^ (chunk - 1) block(d, p[:n]) p = p[n:] } if len(p) > 0 { d.nx = copy(d.x[:], p) } return } // Return sha256 sum in bytes func (d *digest) Sum(in []byte) []byte { // Make a copy of d0 so that caller can keep writing and summing. d0 := *d hash := d0.checkSum() return append(in, hash[:]...) } // Intermediate checksum function func (d *digest) checkSum() (digest [Size]byte) { n := d.nx var k [64]byte copy(k[:], d.x[:n]) k[n] = 0x80 if n >= 56 { block(d, k[:]) // clear block buffer - go compiles this to optimal 1x xorps + 4x movups // unfortunately expressing this more succinctly results in much worse code k[0] = 0 k[1] = 0 k[2] = 0 k[3] = 0 k[4] = 0 k[5] = 0 k[6] = 0 k[7] = 0 k[8] = 0 k[9] = 0 k[10] = 0 k[11] = 0 k[12] = 0 k[13] = 0 k[14] = 0 k[15] = 0 k[16] = 0 k[17] = 0 k[18] = 0 k[19] = 0 k[20] = 0 k[21] = 0 k[22] = 0 k[23] = 0 k[24] = 0 k[25] = 0 k[26] = 0 k[27] = 0 k[28] = 0 k[29] = 0 k[30] = 0 k[31] = 0 k[32] = 0 k[33] = 0 k[34] = 0 k[35] = 0 k[36] = 0 k[37] = 0 k[38] = 0 k[39] = 0 k[40] = 0 k[41] = 0 k[42] = 0 k[43] = 0 k[44] = 0 k[45] = 0 k[46] = 0 k[47] = 0 k[48] = 0 k[49] = 0 k[50] = 0 k[51] = 0 k[52] = 0 k[53] = 0 k[54] = 0 k[55] = 0 k[56] = 0 k[57] = 0 k[58] = 0 k[59] = 0 k[60] = 0 k[61] = 0 k[62] = 0 k[63] = 0 } binary.BigEndian.PutUint64(k[56:64], uint64(d.len)<<3) block(d, k[:]) { const i = 0 binary.BigEndian.PutUint32(digest[i*4:i*4+4], d.h[i]) } { const i = 1 binary.BigEndian.PutUint32(digest[i*4:i*4+4], d.h[i]) } { const i = 2 binary.BigEndian.PutUint32(digest[i*4:i*4+4], d.h[i]) } { const i = 3 binary.BigEndian.PutUint32(digest[i*4:i*4+4], d.h[i]) } { const i = 4 binary.BigEndian.PutUint32(digest[i*4:i*4+4], d.h[i]) } { const i = 5 binary.BigEndian.PutUint32(digest[i*4:i*4+4], d.h[i]) } { const i = 6 binary.BigEndian.PutUint32(digest[i*4:i*4+4], d.h[i]) } { const i = 7 binary.BigEndian.PutUint32(digest[i*4:i*4+4], d.h[i]) } return }