// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package packet import ( "bytes" "crypto" "crypto/dsa" "crypto/ecdsa" "crypto/elliptic" "crypto/rsa" "crypto/sha1" _ "crypto/sha256" _ "crypto/sha512" "encoding/binary" "fmt" "hash" "io" "math/big" "strconv" "time" "golang.org/x/crypto/openpgp/elgamal" "golang.org/x/crypto/openpgp/errors" ) var ( // NIST curve P-256 oidCurveP256 []byte = []byte{0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x07} // NIST curve P-384 oidCurveP384 []byte = []byte{0x2B, 0x81, 0x04, 0x00, 0x22} // NIST curve P-521 oidCurveP521 []byte = []byte{0x2B, 0x81, 0x04, 0x00, 0x23} ) const maxOIDLength = 8 // ecdsaKey stores the algorithm-specific fields for ECDSA keys. // as defined in RFC 6637, Section 9. type ecdsaKey struct { // oid contains the OID byte sequence identifying the elliptic curve used oid []byte // p contains the elliptic curve point that represents the public key p parsedMPI } // parseOID reads the OID for the curve as defined in RFC 6637, Section 9. func parseOID(r io.Reader) (oid []byte, err error) { buf := make([]byte, maxOIDLength) if _, err = readFull(r, buf[:1]); err != nil { return } oidLen := buf[0] if int(oidLen) > len(buf) { err = errors.UnsupportedError("invalid oid length: " + strconv.Itoa(int(oidLen))) return } oid = buf[:oidLen] _, err = readFull(r, oid) return } func (f *ecdsaKey) parse(r io.Reader) (err error) { if f.oid, err = parseOID(r); err != nil { return err } f.p.bytes, f.p.bitLength, err = readMPI(r) return } func (f *ecdsaKey) serialize(w io.Writer) (err error) { buf := make([]byte, maxOIDLength+1) buf[0] = byte(len(f.oid)) copy(buf[1:], f.oid) if _, err = w.Write(buf[:len(f.oid)+1]); err != nil { return } return writeMPIs(w, f.p) } func (f *ecdsaKey) newECDSA() (*ecdsa.PublicKey, error) { var c elliptic.Curve if bytes.Equal(f.oid, oidCurveP256) { c = elliptic.P256() } else if bytes.Equal(f.oid, oidCurveP384) { c = elliptic.P384() } else if bytes.Equal(f.oid, oidCurveP521) { c = elliptic.P521() } else { return nil, errors.UnsupportedError(fmt.Sprintf("unsupported oid: %x", f.oid)) } x, y := elliptic.Unmarshal(c, f.p.bytes) if x == nil { return nil, errors.UnsupportedError("failed to parse EC point") } return &ecdsa.PublicKey{Curve: c, X: x, Y: y}, nil } func (f *ecdsaKey) byteLen() int { return 1 + len(f.oid) + 2 + len(f.p.bytes) } type kdfHashFunction byte type kdfAlgorithm byte // ecdhKdf stores key derivation function parameters // used for ECDH encryption. See RFC 6637, Section 9. type ecdhKdf struct { KdfHash kdfHashFunction KdfAlgo kdfAlgorithm } func (f *ecdhKdf) parse(r io.Reader) (err error) { buf := make([]byte, 1) if _, err = readFull(r, buf); err != nil { return } kdfLen := int(buf[0]) if kdfLen < 3 { return errors.UnsupportedError("Unsupported ECDH KDF length: " + strconv.Itoa(kdfLen)) } buf = make([]byte, kdfLen) if _, err = readFull(r, buf); err != nil { return } reserved := int(buf[0]) f.KdfHash = kdfHashFunction(buf[1]) f.KdfAlgo = kdfAlgorithm(buf[2]) if reserved != 0x01 { return errors.UnsupportedError("Unsupported KDF reserved field: " + strconv.Itoa(reserved)) } return } func (f *ecdhKdf) serialize(w io.Writer) (err error) { buf := make([]byte, 4) // See RFC 6637, Section 9, Algorithm-Specific Fields for ECDH keys. buf[0] = byte(0x03) // Length of the following fields buf[1] = byte(0x01) // Reserved for future extensions, must be 1 for now buf[2] = byte(f.KdfHash) buf[3] = byte(f.KdfAlgo) _, err = w.Write(buf[:]) return } func (f *ecdhKdf) byteLen() int { return 4 } // PublicKey represents an OpenPGP public key. See RFC 4880, section 5.5.2. type PublicKey struct { CreationTime time.Time PubKeyAlgo PublicKeyAlgorithm PublicKey interface{} // *rsa.PublicKey, *dsa.PublicKey or *ecdsa.PublicKey Fingerprint [20]byte KeyId uint64 IsSubkey bool n, e, p, q, g, y parsedMPI // RFC 6637 fields ec *ecdsaKey ecdh *ecdhKdf } // signingKey provides a convenient abstraction over signature verification // for v3 and v4 public keys. type signingKey interface { SerializeSignaturePrefix(io.Writer) serializeWithoutHeaders(io.Writer) error } func fromBig(n *big.Int) parsedMPI { return parsedMPI{ bytes: n.Bytes(), bitLength: uint16(n.BitLen()), } } // NewRSAPublicKey returns a PublicKey that wraps the given rsa.PublicKey. func NewRSAPublicKey(creationTime time.Time, pub *rsa.PublicKey) *PublicKey { pk := &PublicKey{ CreationTime: creationTime, PubKeyAlgo: PubKeyAlgoRSA, PublicKey: pub, n: fromBig(pub.N), e: fromBig(big.NewInt(int64(pub.E))), } pk.setFingerPrintAndKeyId() return pk } // NewDSAPublicKey returns a PublicKey that wraps the given dsa.PublicKey. func NewDSAPublicKey(creationTime time.Time, pub *dsa.PublicKey) *PublicKey { pk := &PublicKey{ CreationTime: creationTime, PubKeyAlgo: PubKeyAlgoDSA, PublicKey: pub, p: fromBig(pub.P), q: fromBig(pub.Q), g: fromBig(pub.G), y: fromBig(pub.Y), } pk.setFingerPrintAndKeyId() return pk } // NewElGamalPublicKey returns a PublicKey that wraps the given elgamal.PublicKey. func NewElGamalPublicKey(creationTime time.Time, pub *elgamal.PublicKey) *PublicKey { pk := &PublicKey{ CreationTime: creationTime, PubKeyAlgo: PubKeyAlgoElGamal, PublicKey: pub, p: fromBig(pub.P), g: fromBig(pub.G), y: fromBig(pub.Y), } pk.setFingerPrintAndKeyId() return pk } func NewECDSAPublicKey(creationTime time.Time, pub *ecdsa.PublicKey) *PublicKey { pk := &PublicKey{ CreationTime: creationTime, PubKeyAlgo: PubKeyAlgoECDSA, PublicKey: pub, ec: new(ecdsaKey), } switch pub.Curve { case elliptic.P256(): pk.ec.oid = oidCurveP256 case elliptic.P384(): pk.ec.oid = oidCurveP384 case elliptic.P521(): pk.ec.oid = oidCurveP521 default: panic("unknown elliptic curve") } pk.ec.p.bytes = elliptic.Marshal(pub.Curve, pub.X, pub.Y) pk.ec.p.bitLength = uint16(8 * len(pk.ec.p.bytes)) pk.setFingerPrintAndKeyId() return pk } func (pk *PublicKey) parse(r io.Reader) (err error) { // RFC 4880, section 5.5.2 var buf [6]byte _, err = readFull(r, buf[:]) if err != nil { return } if buf[0] != 4 { return errors.UnsupportedError("public key version") } pk.CreationTime = time.Unix(int64(uint32(buf[1])<<24|uint32(buf[2])<<16|uint32(buf[3])<<8|uint32(buf[4])), 0) pk.PubKeyAlgo = PublicKeyAlgorithm(buf[5]) switch pk.PubKeyAlgo { case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly: err = pk.parseRSA(r) case PubKeyAlgoDSA: err = pk.parseDSA(r) case PubKeyAlgoElGamal: err = pk.parseElGamal(r) case PubKeyAlgoECDSA: pk.ec = new(ecdsaKey) if err = pk.ec.parse(r); err != nil { return err } pk.PublicKey, err = pk.ec.newECDSA() case PubKeyAlgoECDH: pk.ec = new(ecdsaKey) if err = pk.ec.parse(r); err != nil { return } pk.ecdh = new(ecdhKdf) if err = pk.ecdh.parse(r); err != nil { return } // The ECDH key is stored in an ecdsa.PublicKey for convenience. pk.PublicKey, err = pk.ec.newECDSA() default: err = errors.UnsupportedError("public key type: " + strconv.Itoa(int(pk.PubKeyAlgo))) } if err != nil { return } pk.setFingerPrintAndKeyId() return } func (pk *PublicKey) setFingerPrintAndKeyId() { // RFC 4880, section 12.2 fingerPrint := sha1.New() pk.SerializeSignaturePrefix(fingerPrint) pk.serializeWithoutHeaders(fingerPrint) copy(pk.Fingerprint[:], fingerPrint.Sum(nil)) pk.KeyId = binary.BigEndian.Uint64(pk.Fingerprint[12:20]) } // parseRSA parses RSA public key material from the given Reader. See RFC 4880, // section 5.5.2. func (pk *PublicKey) parseRSA(r io.Reader) (err error) { pk.n.bytes, pk.n.bitLength, err = readMPI(r) if err != nil { return } pk.e.bytes, pk.e.bitLength, err = readMPI(r) if err != nil { return } if len(pk.e.bytes) > 3 { err = errors.UnsupportedError("large public exponent") return } rsa := &rsa.PublicKey{ N: new(big.Int).SetBytes(pk.n.bytes), E: 0, } for i := 0; i < len(pk.e.bytes); i++ { rsa.E <<= 8 rsa.E |= int(pk.e.bytes[i]) } pk.PublicKey = rsa return } // parseDSA parses DSA public key material from the given Reader. See RFC 4880, // section 5.5.2. func (pk *PublicKey) parseDSA(r io.Reader) (err error) { pk.p.bytes, pk.p.bitLength, err = readMPI(r) if err != nil { return } pk.q.bytes, pk.q.bitLength, err = readMPI(r) if err != nil { return } pk.g.bytes, pk.g.bitLength, err = readMPI(r) if err != nil { return } pk.y.bytes, pk.y.bitLength, err = readMPI(r) if err != nil { return } dsa := new(dsa.PublicKey) dsa.P = new(big.Int).SetBytes(pk.p.bytes) dsa.Q = new(big.Int).SetBytes(pk.q.bytes) dsa.G = new(big.Int).SetBytes(pk.g.bytes) dsa.Y = new(big.Int).SetBytes(pk.y.bytes) pk.PublicKey = dsa return } // parseElGamal parses ElGamal public key material from the given Reader. See // RFC 4880, section 5.5.2. func (pk *PublicKey) parseElGamal(r io.Reader) (err error) { pk.p.bytes, pk.p.bitLength, err = readMPI(r) if err != nil { return } pk.g.bytes, pk.g.bitLength, err = readMPI(r) if err != nil { return } pk.y.bytes, pk.y.bitLength, err = readMPI(r) if err != nil { return } elgamal := new(elgamal.PublicKey) elgamal.P = new(big.Int).SetBytes(pk.p.bytes) elgamal.G = new(big.Int).SetBytes(pk.g.bytes) elgamal.Y = new(big.Int).SetBytes(pk.y.bytes) pk.PublicKey = elgamal return } // SerializeSignaturePrefix writes the prefix for this public key to the given Writer. // The prefix is used when calculating a signature over this public key. See // RFC 4880, section 5.2.4. func (pk *PublicKey) SerializeSignaturePrefix(h io.Writer) { var pLength uint16 switch pk.PubKeyAlgo { case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly: pLength += 2 + uint16(len(pk.n.bytes)) pLength += 2 + uint16(len(pk.e.bytes)) case PubKeyAlgoDSA: pLength += 2 + uint16(len(pk.p.bytes)) pLength += 2 + uint16(len(pk.q.bytes)) pLength += 2 + uint16(len(pk.g.bytes)) pLength += 2 + uint16(len(pk.y.bytes)) case PubKeyAlgoElGamal: pLength += 2 + uint16(len(pk.p.bytes)) pLength += 2 + uint16(len(pk.g.bytes)) pLength += 2 + uint16(len(pk.y.bytes)) case PubKeyAlgoECDSA: pLength += uint16(pk.ec.byteLen()) case PubKeyAlgoECDH: pLength += uint16(pk.ec.byteLen()) pLength += uint16(pk.ecdh.byteLen()) default: panic("unknown public key algorithm") } pLength += 6 h.Write([]byte{0x99, byte(pLength >> 8), byte(pLength)}) return } func (pk *PublicKey) Serialize(w io.Writer) (err error) { length := 6 // 6 byte header switch pk.PubKeyAlgo { case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly: length += 2 + len(pk.n.bytes) length += 2 + len(pk.e.bytes) case PubKeyAlgoDSA: length += 2 + len(pk.p.bytes) length += 2 + len(pk.q.bytes) length += 2 + len(pk.g.bytes) length += 2 + len(pk.y.bytes) case PubKeyAlgoElGamal: length += 2 + len(pk.p.bytes) length += 2 + len(pk.g.bytes) length += 2 + len(pk.y.bytes) case PubKeyAlgoECDSA: length += pk.ec.byteLen() case PubKeyAlgoECDH: length += pk.ec.byteLen() length += pk.ecdh.byteLen() default: panic("unknown public key algorithm") } packetType := packetTypePublicKey if pk.IsSubkey { packetType = packetTypePublicSubkey } err = serializeHeader(w, packetType, length) if err != nil { return } return pk.serializeWithoutHeaders(w) } // serializeWithoutHeaders marshals the PublicKey to w in the form of an // OpenPGP public key packet, not including the packet header. func (pk *PublicKey) serializeWithoutHeaders(w io.Writer) (err error) { var buf [6]byte buf[0] = 4 t := uint32(pk.CreationTime.Unix()) buf[1] = byte(t >> 24) buf[2] = byte(t >> 16) buf[3] = byte(t >> 8) buf[4] = byte(t) buf[5] = byte(pk.PubKeyAlgo) _, err = w.Write(buf[:]) if err != nil { return } switch pk.PubKeyAlgo { case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly: return writeMPIs(w, pk.n, pk.e) case PubKeyAlgoDSA: return writeMPIs(w, pk.p, pk.q, pk.g, pk.y) case PubKeyAlgoElGamal: return writeMPIs(w, pk.p, pk.g, pk.y) case PubKeyAlgoECDSA: return pk.ec.serialize(w) case PubKeyAlgoECDH: if err = pk.ec.serialize(w); err != nil { return } return pk.ecdh.serialize(w) } return errors.InvalidArgumentError("bad public-key algorithm") } // CanSign returns true iff this public key can generate signatures func (pk *PublicKey) CanSign() bool { return pk.PubKeyAlgo != PubKeyAlgoRSAEncryptOnly && pk.PubKeyAlgo != PubKeyAlgoElGamal } // VerifySignature returns nil iff sig is a valid signature, made by this // public key, of the data hashed into signed. signed is mutated by this call. func (pk *PublicKey) VerifySignature(signed hash.Hash, sig *Signature) (err error) { if !pk.CanSign() { return errors.InvalidArgumentError("public key cannot generate signatures") } signed.Write(sig.HashSuffix) hashBytes := signed.Sum(nil) if hashBytes[0] != sig.HashTag[0] || hashBytes[1] != sig.HashTag[1] { return errors.SignatureError("hash tag doesn't match") } if pk.PubKeyAlgo != sig.PubKeyAlgo { return errors.InvalidArgumentError("public key and signature use different algorithms") } switch pk.PubKeyAlgo { case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly: rsaPublicKey, _ := pk.PublicKey.(*rsa.PublicKey) err = rsa.VerifyPKCS1v15(rsaPublicKey, sig.Hash, hashBytes, sig.RSASignature.bytes) if err != nil { return errors.SignatureError("RSA verification failure") } return nil case PubKeyAlgoDSA: dsaPublicKey, _ := pk.PublicKey.(*dsa.PublicKey) // Need to truncate hashBytes to match FIPS 186-3 section 4.6. subgroupSize := (dsaPublicKey.Q.BitLen() + 7) / 8 if len(hashBytes) > subgroupSize { hashBytes = hashBytes[:subgroupSize] } if !dsa.Verify(dsaPublicKey, hashBytes, new(big.Int).SetBytes(sig.DSASigR.bytes), new(big.Int).SetBytes(sig.DSASigS.bytes)) { return errors.SignatureError("DSA verification failure") } return nil case PubKeyAlgoECDSA: ecdsaPublicKey := pk.PublicKey.(*ecdsa.PublicKey) if !ecdsa.Verify(ecdsaPublicKey, hashBytes, new(big.Int).SetBytes(sig.ECDSASigR.bytes), new(big.Int).SetBytes(sig.ECDSASigS.bytes)) { return errors.SignatureError("ECDSA verification failure") } return nil default: return errors.SignatureError("Unsupported public key algorithm used in signature") } } // VerifySignatureV3 returns nil iff sig is a valid signature, made by this // public key, of the data hashed into signed. signed is mutated by this call. func (pk *PublicKey) VerifySignatureV3(signed hash.Hash, sig *SignatureV3) (err error) { if !pk.CanSign() { return errors.InvalidArgumentError("public key cannot generate signatures") } suffix := make([]byte, 5) suffix[0] = byte(sig.SigType) binary.BigEndian.PutUint32(suffix[1:], uint32(sig.CreationTime.Unix())) signed.Write(suffix) hashBytes := signed.Sum(nil) if hashBytes[0] != sig.HashTag[0] || hashBytes[1] != sig.HashTag[1] { return errors.SignatureError("hash tag doesn't match") } if pk.PubKeyAlgo != sig.PubKeyAlgo { return errors.InvalidArgumentError("public key and signature use different algorithms") } switch pk.PubKeyAlgo { case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly: rsaPublicKey := pk.PublicKey.(*rsa.PublicKey) if err = rsa.VerifyPKCS1v15(rsaPublicKey, sig.Hash, hashBytes, sig.RSASignature.bytes); err != nil { return errors.SignatureError("RSA verification failure") } return case PubKeyAlgoDSA: dsaPublicKey := pk.PublicKey.(*dsa.PublicKey) // Need to truncate hashBytes to match FIPS 186-3 section 4.6. subgroupSize := (dsaPublicKey.Q.BitLen() + 7) / 8 if len(hashBytes) > subgroupSize { hashBytes = hashBytes[:subgroupSize] } if !dsa.Verify(dsaPublicKey, hashBytes, new(big.Int).SetBytes(sig.DSASigR.bytes), new(big.Int).SetBytes(sig.DSASigS.bytes)) { return errors.SignatureError("DSA verification failure") } return nil default: panic("shouldn't happen") } } // keySignatureHash returns a Hash of the message that needs to be signed for // pk to assert a subkey relationship to signed. func keySignatureHash(pk, signed signingKey, hashFunc crypto.Hash) (h hash.Hash, err error) { if !hashFunc.Available() { return nil, errors.UnsupportedError("hash function") } h = hashFunc.New() // RFC 4880, section 5.2.4 pk.SerializeSignaturePrefix(h) pk.serializeWithoutHeaders(h) signed.SerializeSignaturePrefix(h) signed.serializeWithoutHeaders(h) return } // VerifyKeySignature returns nil iff sig is a valid signature, made by this // public key, of signed. func (pk *PublicKey) VerifyKeySignature(signed *PublicKey, sig *Signature) error { h, err := keySignatureHash(pk, signed, sig.Hash) if err != nil { return err } if err = pk.VerifySignature(h, sig); err != nil { return err } if sig.FlagSign { // Signing subkeys must be cross-signed. See // https://www.gnupg.org/faq/subkey-cross-certify.html. if sig.EmbeddedSignature == nil { return errors.StructuralError("signing subkey is missing cross-signature") } // Verify the cross-signature. This is calculated over the same // data as the main signature, so we cannot just recursively // call signed.VerifyKeySignature(...) if h, err = keySignatureHash(pk, signed, sig.EmbeddedSignature.Hash); err != nil { return errors.StructuralError("error while hashing for cross-signature: " + err.Error()) } if err := signed.VerifySignature(h, sig.EmbeddedSignature); err != nil { return errors.StructuralError("error while verifying cross-signature: " + err.Error()) } } return nil } func keyRevocationHash(pk signingKey, hashFunc crypto.Hash) (h hash.Hash, err error) { if !hashFunc.Available() { return nil, errors.UnsupportedError("hash function") } h = hashFunc.New() // RFC 4880, section 5.2.4 pk.SerializeSignaturePrefix(h) pk.serializeWithoutHeaders(h) return } // VerifyRevocationSignature returns nil iff sig is a valid signature, made by this // public key. func (pk *PublicKey) VerifyRevocationSignature(sig *Signature) (err error) { h, err := keyRevocationHash(pk, sig.Hash) if err != nil { return err } return pk.VerifySignature(h, sig) } // userIdSignatureHash returns a Hash of the message that needs to be signed // to assert that pk is a valid key for id. func userIdSignatureHash(id string, pk *PublicKey, hashFunc crypto.Hash) (h hash.Hash, err error) { if !hashFunc.Available() { return nil, errors.UnsupportedError("hash function") } h = hashFunc.New() // RFC 4880, section 5.2.4 pk.SerializeSignaturePrefix(h) pk.serializeWithoutHeaders(h) var buf [5]byte buf[0] = 0xb4 buf[1] = byte(len(id) >> 24) buf[2] = byte(len(id) >> 16) buf[3] = byte(len(id) >> 8) buf[4] = byte(len(id)) h.Write(buf[:]) h.Write([]byte(id)) return } // VerifyUserIdSignature returns nil iff sig is a valid signature, made by this // public key, that id is the identity of pub. func (pk *PublicKey) VerifyUserIdSignature(id string, pub *PublicKey, sig *Signature) (err error) { h, err := userIdSignatureHash(id, pub, sig.Hash) if err != nil { return err } return pk.VerifySignature(h, sig) } // VerifyUserIdSignatureV3 returns nil iff sig is a valid signature, made by this // public key, that id is the identity of pub. func (pk *PublicKey) VerifyUserIdSignatureV3(id string, pub *PublicKey, sig *SignatureV3) (err error) { h, err := userIdSignatureV3Hash(id, pub, sig.Hash) if err != nil { return err } return pk.VerifySignatureV3(h, sig) } // KeyIdString returns the public key's fingerprint in capital hex // (e.g. "6C7EE1B8621CC013"). func (pk *PublicKey) KeyIdString() string { return fmt.Sprintf("%X", pk.Fingerprint[12:20]) } // KeyIdShortString returns the short form of public key's fingerprint // in capital hex, as shown by gpg --list-keys (e.g. "621CC013"). func (pk *PublicKey) KeyIdShortString() string { return fmt.Sprintf("%X", pk.Fingerprint[16:20]) } // A parsedMPI is used to store the contents of a big integer, along with the // bit length that was specified in the original input. This allows the MPI to // be reserialized exactly. type parsedMPI struct { bytes []byte bitLength uint16 } // writeMPIs is a utility function for serializing several big integers to the // given Writer. func writeMPIs(w io.Writer, mpis ...parsedMPI) (err error) { for _, mpi := range mpis { err = writeMPI(w, mpi.bitLength, mpi.bytes) if err != nil { return } } return } // BitLength returns the bit length for the given public key. func (pk *PublicKey) BitLength() (bitLength uint16, err error) { switch pk.PubKeyAlgo { case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly: bitLength = pk.n.bitLength case PubKeyAlgoDSA: bitLength = pk.p.bitLength case PubKeyAlgoElGamal: bitLength = pk.p.bitLength default: err = errors.InvalidArgumentError("bad public-key algorithm") } return }