// Copyright ©2013 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package mat import ( "math" "gonum.org/v1/gonum/blas" "gonum.org/v1/gonum/blas/blas64" "gonum.org/v1/gonum/lapack/lapack64" ) const ( badTriangle = "mat: invalid triangle" badCholesky = "mat: invalid Cholesky factorization" ) // Cholesky is a type for creating and using the Cholesky factorization of a // symmetric positive definite matrix. // // Cholesky methods may only be called on a value that has been successfully // initialized by a call to Factorize that has returned true. Calls to methods // of an unsuccessful Cholesky factorization will panic. type Cholesky struct { // The chol pointer must never be retained as a pointer outside the Cholesky // struct, either by returning chol outside the struct or by setting it to // a pointer coming from outside. The same prohibition applies to the data // slice within chol. chol *TriDense cond float64 } // updateCond updates the condition number of the Cholesky decomposition. If // norm > 0, then that norm is used as the norm of the original matrix A, otherwise // the norm is estimated from the decomposition. func (c *Cholesky) updateCond(norm float64) { n := c.chol.mat.N work := getFloats(3*n, false) defer putFloats(work) if norm < 0 { // This is an approximation. By the definition of a norm, // |AB| <= |A| |B|. // Since A = U^T*U, we get for the condition number κ that // κ(A) := |A| |A^-1| = |U^T*U| |A^-1| <= |U^T| |U| |A^-1|, // so this will overestimate the condition number somewhat. // The norm of the original factorized matrix cannot be stored // because of update possibilities. unorm := lapack64.Lantr(CondNorm, c.chol.mat, work) lnorm := lapack64.Lantr(CondNormTrans, c.chol.mat, work) norm = unorm * lnorm } sym := c.chol.asSymBlas() iwork := getInts(n, false) v := lapack64.Pocon(sym, norm, work, iwork) putInts(iwork) c.cond = 1 / v } // Cond returns the condition number of the factorized matrix. func (c *Cholesky) Cond() float64 { return c.cond } // Factorize calculates the Cholesky decomposition of the matrix A and returns // whether the matrix is positive definite. If Factorize returns false, the // factorization must not be used. func (c *Cholesky) Factorize(a Symmetric) (ok bool) { n := a.Symmetric() if c.chol == nil { c.chol = NewTriDense(n, Upper, nil) } else { c.chol = NewTriDense(n, Upper, use(c.chol.mat.Data, n*n)) } copySymIntoTriangle(c.chol, a) sym := c.chol.asSymBlas() work := getFloats(c.chol.mat.N, false) norm := lapack64.Lansy(CondNorm, sym, work) putFloats(work) _, ok = lapack64.Potrf(sym) if ok { c.updateCond(norm) } else { c.Reset() } return ok } // Reset resets the factorization so that it can be reused as the receiver of a // dimensionally restricted operation. func (c *Cholesky) Reset() { if c.chol != nil { c.chol.Reset() } c.cond = math.Inf(1) } // SetFromU sets the Cholesky decomposition from the given triangular matrix. // SetFromU panics if t is not upper triangular. Note that t is copied into, // not stored inside, the receiver. func (c *Cholesky) SetFromU(t *TriDense) { n, kind := t.Triangle() if kind != Upper { panic("cholesky: matrix must be upper triangular") } if c.chol == nil { c.chol = NewTriDense(n, Upper, nil) } else { c.chol = NewTriDense(n, Upper, use(c.chol.mat.Data, n*n)) } c.chol.Copy(t) c.updateCond(-1) } // Clone makes a copy of the input Cholesky into the receiver, overwriting the // previous value of the receiver. Clone does not place any restrictions on receiver // shape. Clone panics if the input Cholesky is not the result of a valid decomposition. func (c *Cholesky) Clone(chol *Cholesky) { if !chol.valid() { panic(badCholesky) } n := chol.Size() if c.chol == nil { c.chol = NewTriDense(n, Upper, nil) } else { c.chol = NewTriDense(n, Upper, use(c.chol.mat.Data, n*n)) } c.chol.Copy(chol.chol) c.cond = chol.cond } // Size returns the dimension of the factorized matrix. func (c *Cholesky) Size() int { if !c.valid() { panic(badCholesky) } return c.chol.mat.N } // Det returns the determinant of the matrix that has been factorized. func (c *Cholesky) Det() float64 { if !c.valid() { panic(badCholesky) } return math.Exp(c.LogDet()) } // LogDet returns the log of the determinant of the matrix that has been factorized. func (c *Cholesky) LogDet() float64 { if !c.valid() { panic(badCholesky) } var det float64 for i := 0; i < c.chol.mat.N; i++ { det += 2 * math.Log(c.chol.mat.Data[i*c.chol.mat.Stride+i]) } return det } // Solve finds the matrix m that solves A * m = b where A is represented // by the Cholesky decomposition, placing the result in m. func (c *Cholesky) Solve(m *Dense, b Matrix) error { if !c.valid() { panic(badCholesky) } n := c.chol.mat.N bm, bn := b.Dims() if n != bm { panic(ErrShape) } m.reuseAs(bm, bn) if b != m { m.Copy(b) } blas64.Trsm(blas.Left, blas.Trans, 1, c.chol.mat, m.mat) blas64.Trsm(blas.Left, blas.NoTrans, 1, c.chol.mat, m.mat) if c.cond > ConditionTolerance { return Condition(c.cond) } return nil } // SolveChol finds the matrix m that solves A * m = B where A and B are represented // by their Cholesky decompositions a and b, placing the result in the receiver. func (a *Cholesky) SolveChol(m *Dense, b *Cholesky) error { if !a.valid() || !b.valid() { panic(badCholesky) } bn := b.chol.mat.N if a.chol.mat.N != bn { panic(ErrShape) } m.reuseAsZeroed(bn, bn) m.Copy(b.chol.T()) blas64.Trsm(blas.Left, blas.Trans, 1, a.chol.mat, m.mat) blas64.Trsm(blas.Left, blas.NoTrans, 1, a.chol.mat, m.mat) blas64.Trmm(blas.Right, blas.NoTrans, 1, b.chol.mat, m.mat) if a.cond > ConditionTolerance { return Condition(a.cond) } return nil } // SolveVec finds the vector v that solves A * v = b where A is represented // by the Cholesky decomposition, placing the result in v. func (c *Cholesky) SolveVec(v *VecDense, b Vector) error { if !c.valid() { panic(badCholesky) } n := c.chol.mat.N if br, bc := b.Dims(); br != n || bc != 1 { panic(ErrShape) } switch rv := b.(type) { default: v.reuseAs(n) return c.Solve(v.asDense(), b) case RawVectorer: bmat := rv.RawVector() if v != b { v.checkOverlap(bmat) } v.reuseAs(n) if v != b { v.CopyVec(b) } blas64.Trsv(blas.Trans, c.chol.mat, v.mat) blas64.Trsv(blas.NoTrans, c.chol.mat, v.mat) if c.cond > ConditionTolerance { return Condition(c.cond) } return nil } } // RawU returns the Triangular matrix used to store the Cholesky decomposition of // the original matrix A. The returned matrix should not be modified. If it is // modified, the decomposition is invalid and should not be used. func (c *Cholesky) RawU() Triangular { return c.chol } // UTo extracts the n×n upper triangular matrix U from a Cholesky // decomposition into dst and returns the result. If dst is nil a new // TriDense is allocated. // A = U^T * U. func (c *Cholesky) UTo(dst *TriDense) *TriDense { if !c.valid() { panic(badCholesky) } n := c.chol.mat.N if dst == nil { dst = NewTriDense(n, Upper, make([]float64, n*n)) } else { dst.reuseAs(n, Upper) } dst.Copy(c.chol) return dst } // LTo extracts the n×n lower triangular matrix L from a Cholesky // decomposition into dst and returns the result. If dst is nil a new // TriDense is allocated. // A = L * L^T. func (c *Cholesky) LTo(dst *TriDense) *TriDense { if !c.valid() { panic(badCholesky) } n := c.chol.mat.N if dst == nil { dst = NewTriDense(n, Lower, make([]float64, n*n)) } else { dst.reuseAs(n, Lower) } dst.Copy(c.chol.TTri()) return dst } // ToSym reconstructs the original positive definite matrix given its // Cholesky decomposition into dst and returns the result. If dst is nil // a new SymDense is allocated. func (c *Cholesky) ToSym(dst *SymDense) *SymDense { if !c.valid() { panic(badCholesky) } n := c.chol.mat.N if dst == nil { dst = NewSymDense(n, make([]float64, n*n)) } else { dst.reuseAs(n) } dst.SymOuterK(1, c.chol.T()) return dst } // InverseTo computes the inverse of the matrix represented by its Cholesky // factorization and stores the result into s. If the factorized // matrix is ill-conditioned, a Condition error will be returned. // Note that matrix inversion is numerically unstable, and should generally be // avoided where possible, for example by using the Solve routines. func (c *Cholesky) InverseTo(s *SymDense) error { if !c.valid() { panic(badCholesky) } // TODO(btracey): Replace this code with a direct call to Dpotri when it // is available. s.reuseAs(c.chol.mat.N) // If: // chol(A) = U^T * U // Then: // chol(A^-1) = S * S^T // where S = U^-1 var t TriDense err := t.InverseTri(c.chol) s.SymOuterK(1, &t) return err } // Scale multiplies the original matrix A by a positive constant using // its Cholesky decomposition, storing the result in-place into the receiver. // That is, if the original Cholesky factorization is // U^T * U = A // the updated factorization is // U'^T * U' = f A = A' // Scale panics if the constant is non-positive, or if the receiver is non-zero // and is of a different Size from the input. func (c *Cholesky) Scale(f float64, orig *Cholesky) { if !orig.valid() { panic(badCholesky) } if f <= 0 { panic("cholesky: scaling by a non-positive constant") } n := orig.Size() if c.chol == nil { c.chol = NewTriDense(n, Upper, nil) } else if c.chol.mat.N != n { panic(ErrShape) } c.chol.ScaleTri(math.Sqrt(f), orig.chol) c.cond = orig.cond // Scaling by a positive constant does not change the condition number. } // ExtendVecSym computes the Cholesky decomposition of the original matrix A, // whose Cholesky decomposition is in a, extended by a the n×1 vector v according to // [A w] // [w' k] // where k = v[n-1] and w = v[:n-1]. The result is stored into the receiver. // In order for the updated matrix to be positive definite, it must be the case // that k > w' A^-1 w. If this condition does not hold then ExtendVecSym will // return false and the receiver will not be updated. // // ExtendVecSym will panic if v.Len() != a.Size()+1 or if a does not contain // a valid decomposition. func (chol *Cholesky) ExtendVecSym(a *Cholesky, v Vector) (ok bool) { n := a.Size() if v.Len() != n+1 { panic(badSliceLength) } if !a.valid() { panic(badCholesky) } // The algorithm is commented here, but see also // https://math.stackexchange.com/questions/955874/cholesky-factor-when-adding-a-row-and-column-to-already-factorized-matrix // We have A and want to compute the Cholesky of // [A w] // [w' k] // We want // [U c] // [0 d] // to be the updated Cholesky, and so it must be that // [A w] = [U' 0] [U c] // [w' k] [c' d] [0 d] // Thus, we need // 1) A = U'U (true by the original decomposition being valid), // 2) U' * c = w => c = U'^-1 w // 3) c'*c + d'*d = k => d = sqrt(k-c'*c) // First, compute c = U'^-1 a // TODO(btracey): Replace this with CopyVec when issue 167 is fixed. w := NewVecDense(n, nil) for i := 0; i < n; i++ { w.SetVec(i, v.At(i, 0)) } k := v.At(n, 0) c := NewVecDense(n, nil) c.SolveVec(a.chol.T(), w) dot := Dot(c, c) if dot >= k { return false } d := math.Sqrt(k - dot) newU := NewTriDense(n+1, Upper, nil) newU.Copy(a.chol) for i := 0; i < n; i++ { newU.SetTri(i, n, c.At(i, 0)) } newU.SetTri(n, n, d) chol.chol = newU chol.updateCond(-1) return true } // SymRankOne performs a rank-1 update of the original matrix A and refactorizes // its Cholesky factorization, storing the result into the receiver. That is, if // in the original Cholesky factorization // U^T * U = A, // in the updated factorization // U'^T * U' = A + alpha * x * x^T = A'. // // Note that when alpha is negative, the updating problem may be ill-conditioned // and the results may be inaccurate, or the updated matrix A' may not be // positive definite and not have a Cholesky factorization. SymRankOne returns // whether the updated matrix A' is positive definite. // // SymRankOne updates a Cholesky factorization in O(n²) time. The Cholesky // factorization computation from scratch is O(n³). func (c *Cholesky) SymRankOne(orig *Cholesky, alpha float64, x Vector) (ok bool) { if !orig.valid() { panic(badCholesky) } n := orig.Size() if r, c := x.Dims(); r != n || c != 1 { panic(ErrShape) } if orig != c { if c.chol == nil { c.chol = NewTriDense(n, Upper, nil) } else if c.chol.mat.N != n { panic(ErrShape) } c.chol.Copy(orig.chol) } if alpha == 0 { return true } // Algorithms for updating and downdating the Cholesky factorization are // described, for example, in // - J. J. Dongarra, J. R. Bunch, C. B. Moler, G. W. Stewart: LINPACK // Users' Guide. SIAM (1979), pages 10.10--10.14 // or // - P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders: Methods for // modifying matrix factorizations. Mathematics of Computation 28(126) // (1974), Method C3 on page 521 // // The implementation is based on LINPACK code // http://www.netlib.org/linpack/dchud.f // http://www.netlib.org/linpack/dchdd.f // and // https://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=2&t=2646 // // According to http://icl.cs.utk.edu/lapack-forum/archives/lapack/msg00301.html // LINPACK is released under BSD license. // // See also: // - M. A. Saunders: Large-scale Linear Programming Using the Cholesky // Factorization. Technical Report Stanford University (1972) // http://i.stanford.edu/pub/cstr/reports/cs/tr/72/252/CS-TR-72-252.pdf // - Matthias Seeger: Low rank updates for the Cholesky decomposition. // EPFL Technical Report 161468 (2004) // http://infoscience.epfl.ch/record/161468 work := getFloats(n, false) defer putFloats(work) var xmat blas64.Vector if rv, ok := x.(RawVectorer); ok { xmat = rv.RawVector() } else { var tmp *VecDense tmp.CopyVec(x) xmat = tmp.RawVector() } blas64.Copy(n, xmat, blas64.Vector{1, work}) if alpha > 0 { // Compute rank-1 update. if alpha != 1 { blas64.Scal(n, math.Sqrt(alpha), blas64.Vector{1, work}) } umat := c.chol.mat stride := umat.Stride for i := 0; i < n; i++ { // Compute parameters of the Givens matrix that zeroes // the i-th element of x. c, s, r, _ := blas64.Rotg(umat.Data[i*stride+i], work[i]) if r < 0 { // Multiply by -1 to have positive diagonal // elemnts. r *= -1 c *= -1 s *= -1 } umat.Data[i*stride+i] = r if i < n-1 { // Multiply the extended factorization matrix by // the Givens matrix from the left. Only // the i-th row and x are modified. blas64.Rot(n-i-1, blas64.Vector{1, umat.Data[i*stride+i+1 : i*stride+n]}, blas64.Vector{1, work[i+1 : n]}, c, s) } } c.updateCond(-1) return true } // Compute rank-1 downdate. alpha = math.Sqrt(-alpha) if alpha != 1 { blas64.Scal(n, alpha, blas64.Vector{1, work}) } // Solve U^T * p = x storing the result into work. ok = lapack64.Trtrs(blas.Trans, c.chol.RawTriangular(), blas64.General{ Rows: n, Cols: 1, Stride: 1, Data: work, }) if !ok { // The original matrix is singular. Should not happen, because // the factorization is valid. panic(badCholesky) } norm := blas64.Nrm2(n, blas64.Vector{1, work}) if norm >= 1 { // The updated matrix is not positive definite. return false } norm = math.Sqrt((1 + norm) * (1 - norm)) cos := getFloats(n, false) defer putFloats(cos) sin := getFloats(n, false) defer putFloats(sin) for i := n - 1; i >= 0; i-- { // Compute parameters of Givens matrices that zero elements of p // backwards. cos[i], sin[i], norm, _ = blas64.Rotg(norm, work[i]) if norm < 0 { norm *= -1 cos[i] *= -1 sin[i] *= -1 } } umat := c.chol.mat stride := umat.Stride for i := n - 1; i >= 0; i-- { // Apply Givens matrices to U. // TODO(vladimir-ch): Use workspace to avoid modifying the // receiver in case an invalid factorization is created. blas64.Rot(n-i, blas64.Vector{1, work[i:n]}, blas64.Vector{1, umat.Data[i*stride+i : i*stride+n]}, cos[i], sin[i]) if umat.Data[i*stride+i] == 0 { // The matrix is singular (may rarely happen due to // floating-point effects?). ok = false } else if umat.Data[i*stride+i] < 0 { // Diagonal elements should be positive. If it happens // that on the i-th row the diagonal is negative, // multiply U from the left by an identity matrix that // has -1 on the i-th row. blas64.Scal(n-i, -1, blas64.Vector{1, umat.Data[i*stride+i : i*stride+n]}) } } if ok { c.updateCond(-1) } else { c.Reset() } return ok } func (c *Cholesky) valid() bool { return c.chol != nil && !c.chol.IsZero() }