Vulkan on Android Developers Guide

Modified: 2015-12-8

This is an early draft of documentation for Android-specific details of using Vulkan. As the API
and platform implementation is not yet final, this document will evolve. It is currently based on
the same versions as the LunarG Vulkan SDK 0.10.x release, specifically:

- VK_API_VERSION: 0.210.1

- VK_KHR_SURFACE_REVISION: 24

- VK_KHR_SWAPCHAIN_REVISION: 67

- VK_KHR_ANDROID_SURFACE_REVISION: 4

Requirements

Headers and specifications for the API, extensions, and SPIR-V should be obtained from the
LunarG SDK or Khronos code repositories. Vulkan-capable Android devices can be obtained
from some Khronos-member OEMs and IHVs under NDA.

As with any Android application that uses native code, developers will need the Android SDK
and NDK. The latest versions of the tools are recommended, but no specific platform version is
required at this point. This document doesn’t describe setting up these tools, getting started with
Android application development, or how to use native code in an Android application.

Using the Vulkan API

Once loaded, the core Vulkan API works the same on Android as on other platforms, and won'’t
be described here.

Loading Vulkan Functions

Vulkan is not yet included in an Android API level, so applications cannot rely on the Vulkan
library being present' on Android Marshmallow devices. Even when it is included in an API
level, applications that want to run on earlier platform versions (e.g. with a fallback to OpenGL
ES) will not be able to directly link against the API. In both cases, applications will need to load
Vulkan dynamically, and handle the possibility that it might not be present:

' Once Vulkan is included in an Android API level, apps that require at least that level will be able to link
against the NDK libvulkan.so library and call Vulkan commands without dynamically loading function
pointers.


https://developer.android.com/sdk/index.html
https://developer.android.com/ndk/index.html
http://developer.android.com/
http://developer.android.com/
http://developer.android.com/ndk/guides/index.html

void* vulkan_so = dlopen("libvulkan.so", RTLD _NOW | RTLD_LOCAL);
if (!vulkan_so) {

LOGD("Vulkan not available: %s", dlerror());

return false;

Function pointers for the global Vulkan commands (those that do not take a dispatchable object
as their first parameter) and vkGetInstanceProcAddr must be loaded dynamically:

PFN_vkEnumerateInstanceExtensionProperties
vkEnumerateInstanceExtensionProperties =
reinterpret_cast<PFN_vkEnumerateInstanceExtensionProperties>(
dlsym(vulkan_so, "vkEnumerateInstanceExtensionProperties"));
PFN_vkEnumerateInstancelayerProperties vkEnumerateInstancelLayerProperties =
reinterpret_cast<PFN_vkEnumerateInstancelLayerProperties>(
dlsym(vulkan_so, "vkEnumerateInstancelLayerProperties"));
PFN_vkCreateInstance vkCreateInstance =
reinterpret_cast<PFN_vkCreateInstance>(
dlsym(vulkan_so, "vkCreateInstance"));
PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr =
reinterpret_cast<PFN_vkGetInstanceProcAddr>(
dlsym(vulkan_so, "vkGetInstanceProcAddr"));

All other Vulkan commands and the commands in the VK_EXT_KHR_swapchain and
VK_EXT_KHR_device_swapchain extensions can be obtained in the same way; function
pointers obtained this way can be used with any Vulkan instance.

Alternately, vkGetDeviceProcAddr and any commands that take VkInstance or
VkPhysicalDevice as their first parameter can be obtained by calling
vkGetInstanceProcAddr. The function pointers returned are specific to the instance used to
retrieve them, and avoid a dispatch indirection. Similarly, commands that take a VkDevice,
VkQueue, or VkCommandBuffer as their first parameter (except vkGetDeviceProcAddr) can be
obtained from vkGetDeviceProcAddr, are specific to a particular device, and avoid a dispatch
indirection.

Compatibility Note: This process reflects an earlier version of the Vulkan specification;
the Android implementation has not yet updated to the currently-required behavior. By
the initial public release, apps will be able to use d1sym to obtain
vkGetInstanceProcAddr, and then use that to obtain function pointers for all other
core and extension commands. vkGetDeviceProcAddr will continue to be available and
will return device-specific function pointers that avoid dispatch overhead.



Window System Integration

Android uses the VK_KHR _surface, VK_KHR swapchain, and VK_KHR_android_surface
extensions to allow Vulkan to render to on-screen windows represented by an ANativeWindow.
This document doesn’t describe how to obtain an ANativeWindow representing an Android
window; see the NDK native-activity or gles3jni samples.

There should be no need to call any ANativeWindow_* functions on the ANativeWindow
directly when using Vulkan; all queries and configuration can be done through the
VkSurfaceKHR object and VkSwapchKHR creation. The vkCreateAndroidSurfaceKHR function
in the VK_KHR _android_surface extension is used to create the VkSurfaceKHR from an
ANativeWindow.

Surface properties and swapchain creation have some platform-specific behaviors. On Android:

e VkSurfacePropertieskKHR: :currentExtent is the default size of the window; a
swapchain with this size will not be scaled during presentation.

e VkSwapchainCreateInfoKHR: :minImageCount should be set to 3 for best
performance on current Android devices when attempting to render at the display refresh
rate.

e |[f VkSwapchainCreateInfoKHR: :imageExtent is not the same as
VkSurfacePropertieskHR: : currentExtent, the swapchain images will be scaled to
the window size during presentation. The scaling filter is not specified, but is bilinear or
better. If the image and surface aspect ratios are different, images will be scaled
non-uniformly rather than letterboxed.

e On Android there is no performance advantage to setting
VkSwapchainCreateInfoKHR: :clipped to VK_TRUE, though there may be on other
platforms.

At the moment, implementation of these extensions is not complete. Only the following is
expected to work reliably:

VkSwapchainCreateInfoKHR: :imageFormat == VK_FORMAT_R8G8B8A8 UNORM
VkSwapchainCreateInfoKHR: :preTransform ==
VK_SURFACE_TRANSFORM_NONE_BIT_KHR

VkSwapchainCreateInfoKHR: :presentMode == VK_PRESENT_MODE_FIFO KHR
VkSwapchainCreateInfoKHR: :0ldSwapchain == VK_NULL_HANDLE

Support for additional image formats, pre-transformed images, mailbox presentation mode (but
not immediate presentation), and swapchain re-creation are all expected to work before the
initial public release.


http://developer.android.com/ndk/samples/sample_na.html
https://github.com/googlesamples/android-ndk/tree/master/gles3jni

Validation Layers

The LunarG validation layers and VK_EXT_debug_report extension are usable on Android.

Obtaining Layers

Layers can be downloaded from the Khronos GitLab LoaderAndTools repository, using branch
‘sdk-0.10’. To build the layers for all ABls:

LoaderAndTools$ cd buildAndroid
buildAndroid$ ./android-generate.sh
buildAndroid$ ndk-build

Layer libraries will be in libs/<abi>.

Installing Layers

Layer libraries include in the APK native library directory will be enumerated and can be enabled
even in non-debuggable apps. Copy them into the appropriate libs/<abi> directory (e.g. via a
build rule) and they will automatically be included in the APK by ‘ant’, and extracted during
installation.

TODO: Figure out how this works with the Gradle build system used by Android Studio.

For debuggable apps, layer libraries in /data/local/tmp/vulkan/ will also be enumerated
and can be enabled.
TODO: Confirm this works as expected on user device builds. We may need to change
the path (e.g. something under /sdcard/), and the application probably has to have
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE">.

Most developers will want to explicitly enable/disable validation layers programmatically, and
provide their own message handler callback via the VK_EXT_debug_report extension.
However, if the app is debuggable, validation layers can be enabled and ERROR and WARN
messages sent to logcat without modifying the app:

adb shell setprop debug.vulkan.layer.<n> <layer name>
adb shell setprop debug.vulkan.enable_callback 1

For example:

adb shell setprop debug.vulkan.layer.® ParamChecker
adb shell setprop debug.vulkan.layer.l DrawState

H H H B


https://gitlab.khronos.org/vulkan/LoaderAndTools
http://developer.android.com/guide/topics/manifest/application-element.html#debug

When these properties are defined, the loader will add the named layers to the enabled layer
list, ordered by increasing <n>.



