OSDN Git Service

Allow for a slight difference when parsing available frequencies
[android-x86/hardware-intel-libsensors.git] / control.c
index 433cc82..14f5570 100644 (file)
--- a/control.c
+++ b/control.c
@@ -6,6 +6,8 @@
 #include <ctype.h>
 #include <fcntl.h>
 #include <pthread.h>
+#include <time.h>
+#include <math.h>
 #include <sys/epoll.h>
 #include <sys/socket.h>
 #include <utils/Log.h>
 #include "utils.h"
 #include "transform.h"
 #include "calibration.h"
+#include "description.h"
+#include "filtering.h"
 
 /* Currently active sensors count, per device */
 static int poll_sensors_per_dev[MAX_DEVICES];  /* poll-mode sensors */
 static int trig_sensors_per_dev[MAX_DEVICES];  /* trigger, event based */
 
 static int device_fd[MAX_DEVICES];   /* fd on the /dev/iio:deviceX file */
-
+static int has_iio_ts[MAX_DEVICES];  /* ts channel available on this iio dev */
+static int expected_dev_report_size[MAX_DEVICES]; /* expected iio scan len */
 static int poll_fd; /* epoll instance covering all enabled sensors */
 
 static int active_poll_sensors; /* Number of enabled poll-mode sensors */
 
+/* We use pthread condition variables to get worker threads out of sleep */
+static pthread_condattr_t thread_cond_attr     [MAX_SENSORS];
+static pthread_cond_t     thread_release_cond  [MAX_SENSORS];
+static pthread_mutex_t    thread_release_mutex [MAX_SENSORS];
+
 /*
  * We associate tags to each of our poll set entries. These tags have the
  * following values:
  * - a iio device number if the fd is a iio character device fd
  * - THREAD_REPORT_TAG_BASE + sensor handle if the fd is the receiving end of a
  *   pipe used by a sysfs data acquisition thread
- *  */
+ */
 #define THREAD_REPORT_TAG_BASE 0x00010000
 
+#define ENABLE_BUFFER_RETRIES 10
+#define ENABLE_BUFFER_RETRY_DELAY_MS 10
+
+
+inline int is_enabled (int s)
+{
+       return sensor[s].directly_enabled || sensor[s].ref_count;
+}
+
+
+static int check_state_change (int s, int enabled, int from_virtual)
+{
+       if (enabled) {
+               if (sensor[s].directly_enabled)
+                                       /*
+                                        * We're being enabled but already were
+                                        * directly activated: no change.
+                                        */
+                                       return 0;
+
+               if (!from_virtual)
+                       /* We're being directly enabled */
+                       sensor[s].directly_enabled = 1;
+
+               if (sensor[s].ref_count)
+                       /* We were already indirectly enabled */
+                       return 0;
+
+               return 1; /* Do continue enabling this sensor */
+       }
+
+       if (!is_enabled(s))
+               /* We are being disabled but already were: no change */
+               return 0;
+
+       if (from_virtual && sensor[s].directly_enabled)
+               /* We're indirectly disabled but the base is still active */
+               return 0;
+
+       /* If it's disable, and it's from Android, and we still have ref counts */
+       if (!from_virtual && sensor[s].ref_count) {
+               sensor[s].directly_enabled = 0;
+               return 0;
+       }
+
+       /*If perhaps we are from virtual but we're disabling it*/
+       sensor[s].directly_enabled = 0;
+
+       return 1; /* Do continue disabling this sensor */
+}
+
 
 static int enable_buffer(int dev_num, int enabled)
 {
        char sysfs_path[PATH_MAX];
+       int ret, retries, millisec;
+       struct timespec req = {0};
+
+       retries = ENABLE_BUFFER_RETRIES;
+       millisec = ENABLE_BUFFER_RETRY_DELAY_MS;
+       req.tv_sec = 0;
+       req.tv_nsec = millisec * 1000000L;
 
        sprintf(sysfs_path, ENABLE_PATH, dev_num);
 
-       /* Low level, non-multiplexed, enable/disable routine */
-       return sysfs_write_int(sysfs_path, enabled);
+       while (retries--) {
+               /* Low level, non-multiplexed, enable/disable routine */
+               ret = sysfs_write_int(sysfs_path, enabled);
+               if (ret > 0)
+                       break;
+
+               ALOGE("Failed enabling buffer, retrying");
+               nanosleep(&req, (struct timespec *)NULL);
+       }
+
+       if (ret < 0) {
+               ALOGE("Could not enable buffer\n");
+               return -EIO;
+       }
+
+       return 0;
+}
+
+
+static int setup_trigger (int s, const char* trigger_val)
+{
+       char sysfs_path[PATH_MAX];
+       int ret = -1, attempts = 5;
+
+       sprintf(sysfs_path, TRIGGER_PATH, sensor[s].dev_num);
+
+       if (trigger_val[0] != '\n')
+               ALOGI("Setting S%d (%s) trigger to %s\n", s,
+                       sensor[s].friendly_name, trigger_val);
+
+       while (ret == -1 && attempts) {
+               ret = sysfs_write_str(sysfs_path, trigger_val);
+               attempts--;
+       }
+
+       if (ret != -1)
+               sensor[s].selected_trigger = trigger_val;
+       else
+               ALOGE("Setting S%d (%s) trigger to %s FAILED.\n", s,
+                       sensor[s].friendly_name, trigger_val);
+       return ret;
 }
 
 
-static int setup_trigger(int dev_num, const char* trigger_val)
+static void enable_iio_timestamp (int dev_num, int known_channels)
 {
+       /* Check if we have a dedicated iio timestamp channel */
+
+       char spec_buf[MAX_TYPE_SPEC_LEN];
        char sysfs_path[PATH_MAX];
+       int n;
+
+       sprintf(sysfs_path, CHANNEL_PATH "%s", dev_num, "in_timestamp_type");
+
+       n = sysfs_read_str(sysfs_path, spec_buf, sizeof(spec_buf));
+
+       if (n <= 0)
+               return;
+
+       if (strcmp(spec_buf, "le:s64/64>>0"))
+               return;
+
+       /* OK, type is int64_t as expected, in little endian representation */
+
+       sprintf(sysfs_path, CHANNEL_PATH"%s", dev_num, "in_timestamp_index");
+
+       if (sysfs_read_int(sysfs_path, &n))
+               return;
+
+       /* Check that the timestamp comes after the other fields we read */
+       if (n != known_channels)
+               return;
+
+       /* Try enabling that channel */
+       sprintf(sysfs_path, CHANNEL_PATH "%s", dev_num, "in_timestamp_en");
+
+       sysfs_write_int(sysfs_path, 1);
+
+       if (sysfs_read_int(sysfs_path, &n))
+               return;
+
+       if (n) {
+               ALOGI("Detected timestamp channel on iio device %d\n", dev_num);
+               has_iio_ts[dev_num] = 1;
+       }
+}
+
+
+static int decode_type_spec (const char type_buf[MAX_TYPE_SPEC_LEN],
+                            struct datum_info_t *type_info)
+{
+       /* Return size in bytes for this type specification, or -1 in error */
+       char sign;
+       char endianness;
+       unsigned int realbits, storagebits, shift;
+       int tokens;
+
+       /* Valid specs: "le:u10/16>>0", "le:s16/32>>0" or "le:s32/32>>0" */
+
+       tokens = sscanf(type_buf, "%ce:%c%u/%u>>%u",
+                       &endianness, &sign, &realbits, &storagebits, &shift);
+
+       if     (tokens != 5 ||
+               (endianness != 'b' && endianness != 'l') ||
+               (sign != 'u' && sign != 's') ||
+               realbits > storagebits ||
+               (storagebits != 16 && storagebits != 32 && storagebits != 64)) {
+                       ALOGE("Invalid iio channel type spec: %s\n", type_buf);
+                       return -1;
+               }
 
-       sprintf(sysfs_path, TRIGGER_PATH, dev_num);
+       type_info->endianness   =               endianness;
+       type_info->sign         =               sign;
+       type_info->realbits     =       (short) realbits;
+       type_info->storagebits  =       (short) storagebits;
+       type_info->shift        =       (short) shift;
 
-       return sysfs_write_str(sysfs_path, trigger_val);
+       return storagebits / 8;
 }
 
 
-void build_sensor_report_maps(int dev_num)
+void build_sensor_report_maps (int dev_num)
 {
        /*
         * Read sysfs files from a iio device's scan_element directory, and
@@ -93,17 +267,17 @@ void build_sensor_report_maps(int dev_num)
 
        /* For each sensor that is linked to this device */
        for (s=0; s<sensor_count; s++) {
-               if (sensor_info[s].dev_num != dev_num)
+               if (sensor[s].dev_num != dev_num)
                        continue;
 
-               i = sensor_info[s].catalog_index;
+               i = sensor[s].catalog_index;
 
                /* Read channel details through sysfs attributes */
-               for (c=0; c<sensor_info[s].num_channels; c++) {
+               for (c=0; c<sensor[s].num_channels; c++) {
 
                        /* Read _type file */
                        sprintf(sysfs_path, CHANNEL_PATH "%s",
-                               sensor_info[s].dev_num,
+                               sensor[s].dev_num,
                                sensor_catalog[i].channel[c].type_path);
 
                        n = sysfs_read_str(sysfs_path, spec_buf, 
@@ -115,17 +289,17 @@ void build_sensor_report_maps(int dev_num)
                                        continue;
                                }
 
-                       ch_spec = sensor_info[s].channel[c].type_spec;
+                       ch_spec = sensor[s].channel[c].type_spec;
 
                        memcpy(ch_spec, spec_buf, sizeof(spec_buf));
 
-                       ch_info = &sensor_info[s].channel[c].type_info;
+                       ch_info = &sensor[s].channel[c].type_info;
 
                        size = decode_type_spec(ch_spec, ch_info);
 
                        /* Read _index file */
                        sprintf(sysfs_path, CHANNEL_PATH "%s",
-                               sensor_info[s].dev_num,
+                               sensor[s].dev_num,
                                sensor_catalog[i].channel[c].index_path);
 
                        n = sysfs_read_int(sysfs_path, &ch_index);
@@ -152,12 +326,12 @@ void build_sensor_report_maps(int dev_num)
 
                /* Stop sampling - if we are recovering from hal restart */
                 enable_buffer(dev_num, 0);
-                setup_trigger(dev_num, "\n");
+                setup_trigger(s, "\n");
 
                /* Turn on channels we're aware of */
-               for (c=0;c<sensor_info[s].num_channels; c++) {
+               for (c=0;c<sensor[s].num_channels; c++) {
                        sprintf(sysfs_path, CHANNEL_PATH "%s",
-                               sensor_info[s].dev_num,
+                               sensor[s].dev_num,
                                sensor_catalog[i].channel[c].en_path);
                        sysfs_write_int(sysfs_path, 1);
                }
@@ -185,71 +359,77 @@ void build_sensor_report_maps(int dev_num)
                        continue;
 
                ALOGI("S%d C%d : offset %d, size %d, type %s\n",
-                     s, c, offset, size, sensor_info[s].channel[c].type_spec);
+                     s, c, offset, size, sensor[s].channel[c].type_spec);
 
-               sensor_info[s].channel[c].offset        = offset;
-               sensor_info[s].channel[c].size          = size;
+               sensor[s].channel[c].offset     = offset;
+               sensor[s].channel[c].size               = size;
 
                offset += size;
         }
+
+       /* Enable the timestamp channel if there is one available */
+       enable_iio_timestamp(dev_num, known_channels);
+
+       /* Add padding and timestamp size if it's enabled on this iio device */
+       if (has_iio_ts[dev_num])
+               offset = (offset+7)/8*8 + sizeof(int64_t);
+
+       expected_dev_report_size[dev_num] = offset;
+       ALOGI("Expecting %d scan length on iio dev %d\n", offset, dev_num);
+
+       if (expected_dev_report_size[dev_num] > MAX_DEVICE_REPORT_SIZE) {
+               ALOGE("Unexpectedly large scan buffer on iio dev%d: %d bytes\n",
+                     dev_num, expected_dev_report_size[dev_num]);
+
+               expected_dev_report_size[dev_num] = MAX_DEVICE_REPORT_SIZE;
+       }
 }
 
 
-int adjust_counters (int s, int enabled)
+int adjust_counters (int s, int enabled, int from_virtual)
 {
        /*
         * Adjust counters based on sensor enable action. Return values are:
-        * -1 if there's an inconsistency: abort action in this case
         *  0 if the operation was completed and we're all set
         *  1 if we toggled the state of the sensor and there's work left
         */
 
-       int dev_num = sensor_info[s].dev_num;
-       int catalog_index = sensor_info[s].catalog_index;
-       int sensor_type = sensor_catalog[catalog_index].type;
+       int dev_num = sensor[s].dev_num;
+
+       if (!check_state_change(s, enabled, from_virtual))
+               /* The state of the sensor remains the same: we're done */
+               return 0;
 
-       /* Refcount per sensor, in terms of enable count */
        if (enabled) {
                ALOGI("Enabling sensor %d (iio device %d: %s)\n",
-                       s, dev_num, sensor_info[s].friendly_name);
+                       s, dev_num, sensor[s].friendly_name);
 
-               sensor_info[s].enable_count++;
-
-               if (sensor_info[s].enable_count > 1)
-                       return 0; /* The sensor was, and remains, in use */
-
-               switch (sensor_type) {
+               switch (sensor[s].type) {
                        case SENSOR_TYPE_MAGNETIC_FIELD:
-                               compass_read_data(&sensor_info[s]);
+                               compass_read_data(&sensor[s]);
                                break;
 
                        case SENSOR_TYPE_GYROSCOPE:
-                               gyro_cal_init(&sensor_info[s]);
+                               gyro_cal_init(&sensor[s]);
                                break;
                }
        } else {
-               if (sensor_info[s].enable_count == 0)
-                       return -1; /* Spurious disable call */
-
                ALOGI("Disabling sensor %d (iio device %d: %s)\n", s, dev_num,
-                     sensor_info[s].friendly_name);
-
-               sensor_info[s].enable_count--;
-
-               if (sensor_info[s].enable_count > 0)
-                       return 0; /* The sensor was, and remains, in use */
+                     sensor[s].friendly_name);
 
                /* Sensor disabled, lower report available flag */
-               sensor_info[s].report_pending = 0;
+               sensor[s].report_pending = 0;
+
+               if (sensor[s].type == SENSOR_TYPE_MAGNETIC_FIELD)
+                       compass_store_data(&sensor[s]);
 
-               if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
-                       compass_store_data(&sensor_info[s]);
+               if (sensor[s].type == SENSOR_TYPE_GYROSCOPE)
+                       gyro_store_data(&sensor[s]);
        }
 
-       /* We changed the state of a sensor - adjust per iio device counters */
+       /* We changed the state of a sensor: adjust device ref counts */
 
-       /* If this is a regular event-driven sensor */
-       if (sensor_info[s].num_channels) {
+       if (sensor[s].num_channels) {
 
                        if (enabled)
                                trig_sensors_per_dev[dev_num]++;
@@ -257,7 +437,7 @@ int adjust_counters (int s, int enabled)
                                trig_sensors_per_dev[dev_num]--;
 
                        return 1;
-               }
+       }
 
        if (enabled) {
                active_poll_sensors++;
@@ -273,13 +453,11 @@ int adjust_counters (int s, int enabled)
 
 static int get_field_count (int s)
 {
-       int catalog_index = sensor_info[s].catalog_index;
-       int sensor_type   = sensor_catalog[catalog_index].type;
-
-       switch (sensor_type) {
+       switch (sensor[s].type) {
                case SENSOR_TYPE_ACCELEROMETER:         /* m/s^2        */
                case SENSOR_TYPE_MAGNETIC_FIELD:        /* micro-tesla  */
                case SENSOR_TYPE_ORIENTATION:           /* degrees      */
+               case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
                case SENSOR_TYPE_GYROSCOPE:             /* radians/s    */
                        return 3;
 
@@ -292,7 +470,7 @@ static int get_field_count (int s)
                        return 1;
 
                case SENSOR_TYPE_ROTATION_VECTOR:
-                       return  4;
+                       return 4;
 
                default:
                        ALOGE("Unknown sensor type!\n");
@@ -301,14 +479,6 @@ static int get_field_count (int s)
 }
 
 
-/* Check and honor termination requests */
-#define CHECK_CANCEL(s)                                                               \
-       if (sensor_info[s].thread_data_fd[1] == -1) {                          \
-                       ALOGV("Acquisition thread for S%d exiting\n", s);      \
-                       pthread_exit(0);                                       \
-       }
-
-
 static void* acquisition_routine (void* param)
 {
        /*
@@ -320,68 +490,96 @@ static void* acquisition_routine (void* param)
         * Bionic does not provide pthread_cancel / pthread_testcancel...
         */
 
-       int s = (int) param;
-       int report_fd;
-       int num_fields;
-       uint32_t period;
-       int64_t entry_ts;
+       int s = (int) (size_t) param;
+       int num_fields, sample_size;
        struct sensors_event_t data = {0};
        int c;
-       int sampling_rate;
        int ret;
-       uint32_t elapsed;
-
-       ALOGV("Entering data acquisition thread for sensor %d\n", s);
+       struct timespec target_time;
+       int64_t timestamp, period, start, stop;
 
        if (s < 0 || s >= sensor_count) {
                ALOGE("Invalid sensor handle!\n");
                return NULL;
        }
 
-       if (!sensor_info[s].sampling_rate) {
-               ALOGE("Zero rate in acquisition routine for sensor %d\n", s);
+       ALOGI("Entering data acquisition thread S%d (%s), rate:%g\n",
+             s, sensor[s].friendly_name, sensor[s].sampling_rate);
+
+       if (sensor[s].sampling_rate <= 0) {
+               ALOGE("Invalid rate in acquisition routine for sensor %d: %g\n",
+                       s, sensor[s].sampling_rate);
                return NULL;
        }
 
        num_fields = get_field_count(s);
+       sample_size = sizeof(int64_t) + num_fields * sizeof(float);
 
-       while (1) {
-               CHECK_CANCEL(s)
-
-               /* Pinpoint the moment we start sampling */
-               entry_ts = get_timestamp();
+       /*
+        * Each condition variable is associated to a mutex that has to be
+        * locked by the thread that's waiting on it. We use these condition
+        * variables to get the acquisition threads out of sleep quickly after
+        * the sampling rate is adjusted, or the sensor is disabled.
+        */
+       pthread_mutex_lock(&thread_release_mutex[s]);
 
-               ALOGV("Acquiring sample data for sensor %d through sysfs\n", s);
+       /* Pinpoint the moment we start sampling */
+       timestamp = get_timestamp_monotonic();
 
+       /* Check and honor termination requests */
+       while (sensor[s].thread_data_fd[1] != -1) {
+               start = get_timestamp_boot();
                /* Read values through sysfs */
                for (c=0; c<num_fields; c++) {
                        data.data[c] = acquire_immediate_value(s, c);
-
-                       ALOGV("\tfield %d: %f\n", c, data.data[c]);
-                       CHECK_CANCEL(s)
+                       /* Check and honor termination requests */
+                       if (sensor[s].thread_data_fd[1] == -1)
+                               goto exit;
                }
+               stop = get_timestamp_boot();
+               data.timestamp = start/2 + stop/2;
 
                /* If the sample looks good */
-               if (sensor_info[s].ops.finalize(s, &data)) {
+               if (sensor[s].ops.finalize(s, &data)) {
 
                        /* Pipe it for transmission to poll loop */
-                       ret = write(    sensor_info[s].thread_data_fd[1],
-                                       data.data,
-                                       num_fields * sizeof(float));
-               }
+                       ret = write(    sensor[s].thread_data_fd[1],
+                                       &data.timestamp, sample_size);
 
-               CHECK_CANCEL(s)
+                       if (ret != sample_size)
+                               ALOGE("S%d write failure: wrote %d, got %d\n",
+                                     s, sample_size, ret);
+               }
 
-               /* Sleep a little, deducting read & write times */
-               elapsed = (get_timestamp() - entry_ts) / 1000;
+               /* Check and honor termination requests */
+               if (sensor[s].thread_data_fd[1] == -1)
+                       goto exit;
 
-               period = (uint32_t)
-                        (1000000000LL / sensor_info[s].sampling_rate / 1000);
+               /* Recalculate period asumming sensor[s].sampling_rate
+                * can be changed dynamically during the thread run */
+               if (sensor[s].sampling_rate <= 0) {
+                       ALOGE("Unexpected sampling rate for sensor %d: %g\n",
+                               s, sensor[s].sampling_rate);
+                       goto exit;
+               }
 
-               if (period > elapsed)
-                       usleep(period - elapsed);
+               period = (int64_t) (1000000000LL / sensor[s].sampling_rate);
+               timestamp += period;
+               set_timestamp(&target_time, timestamp);
+
+               /*
+                * Wait until the sampling time elapses, or a rate change is
+                * signaled, or a thread exit is requested.
+                */
+               ret = pthread_cond_timedwait(   &thread_release_cond[s],
+                                               &thread_release_mutex[s],
+                                               &target_time);
        }
 
+exit:
+       ALOGV("Acquisition thread for S%d exiting\n", s);
+       pthread_mutex_unlock(&thread_release_mutex[s]);
+       pthread_exit(0);
        return NULL;
 }
 
@@ -395,10 +593,16 @@ static void start_acquisition_thread (int s)
 
        ALOGV("Initializing acquisition context for sensor %d\n", s);
 
+       /* Create condition variable and mutex for quick thread release */
+       ret = pthread_condattr_init(&thread_cond_attr[s]);
+       ret = pthread_condattr_setclock(&thread_cond_attr[s], CLOCK_MONOTONIC);
+       ret = pthread_cond_init(&thread_release_cond[s], &thread_cond_attr[s]);
+       ret = pthread_mutex_init(&thread_release_mutex[s], NULL);
+
        /* Create a pipe for inter thread communication */
-       ret = pipe(sensor_info[s].thread_data_fd);
+       ret = pipe(sensor[s].thread_data_fd);
 
-       incoming_data_fd = sensor_info[s].thread_data_fd[0];
+       incoming_data_fd = sensor[s].thread_data_fd[0];
 
        ev.events = EPOLLIN;
        ev.data.u32 = THREAD_REPORT_TAG_BASE + s;
@@ -407,70 +611,361 @@ static void start_acquisition_thread (int s)
        ret = epoll_ctl(poll_fd, EPOLL_CTL_ADD, incoming_data_fd , &ev);
 
        /* Create and start worker thread */
-       ret = pthread_create(   &sensor_info[s].acquisition_thread,
+       ret = pthread_create(   &sensor[s].acquisition_thread,
                                NULL,
                                acquisition_routine,
-                               (void*) s);
+                               (void*) (size_t) s);
 }
 
 
 static void stop_acquisition_thread (int s)
 {
-       int incoming_data_fd = sensor_info[s].thread_data_fd[0];
-       int outgoing_data_fd = sensor_info[s].thread_data_fd[1];
+       int incoming_data_fd = sensor[s].thread_data_fd[0];
+       int outgoing_data_fd = sensor[s].thread_data_fd[1];
 
        ALOGV("Tearing down acquisition context for sensor %d\n", s);
 
        /* Delete the incoming side of the pipe from our poll set */
        epoll_ctl(poll_fd, EPOLL_CTL_DEL, incoming_data_fd, NULL);
 
-       /* Mark the pipe ends as invalid ; that's a cheap exit signal */
-       sensor_info[s].thread_data_fd[0] = -1;
-       sensor_info[s].thread_data_fd[1] = -1;
+       /* Mark the pipe ends as invalid ; that's a cheap exit flag */
+       sensor[s].thread_data_fd[0] = -1;
+       sensor[s].thread_data_fd[1] = -1;
 
        /* Close both sides of our pipe */
        close(incoming_data_fd);
        close(outgoing_data_fd);
 
-       /* Wait end of thread, and clean up thread handle */
-       pthread_join(sensor_info[s].acquisition_thread, NULL);
+       /* Stop acquisition thread and clean up thread handle */
+       pthread_cond_signal(&thread_release_cond[s]);
+       pthread_join(sensor[s].acquisition_thread, NULL);
 
        /* Clean up our sensor descriptor */
-       sensor_info[s].acquisition_thread = -1;
+       sensor[s].acquisition_thread = -1;
+
+       /* Delete condition variable and mutex */
+       pthread_cond_destroy(&thread_release_cond[s]);
+       pthread_mutex_destroy(&thread_release_mutex[s]);
+}
+
+
+static void sensor_activate_virtual (int s, int enabled, int from_virtual)
+{
+       int i, base;
+
+       sensor[s].event_count = 0;
+       sensor[s].meta_data_pending = 0;
+
+       if (!check_state_change(s, enabled, from_virtual))
+               return;
+       if (enabled) {
+               /* Enable all the base sensors for this virtual one */
+               for (i = 0; i < sensor[s].base_count; i++) {
+                       base = sensor[s].base[i];
+                       sensor_activate(base, enabled, 1);
+                       sensor[base].ref_count++;
+               }
+               return;
+       }
+
+       /* Sensor disabled, lower report available flag */
+       sensor[s].report_pending = 0;
+
+       for (i = 0; i < sensor[s].base_count; i++) {
+               base = sensor[s].base[i];
+               sensor_activate(base, enabled, 1);
+               sensor[base].ref_count--;
+       }
+
+}
+
+
+static int is_fast_accelerometer (int s)
+{
+       /*
+        * Some games don't react well to accelerometers using any-motion
+        * triggers. Even very low thresholds seem to trip them, and they tend
+        * to request fairly high event rates. Favor continuous triggers if the
+        * sensor is an accelerometer and uses a sampling rate of at least 25.
+        */
+
+       if (sensor[s].type != SENSOR_TYPE_ACCELEROMETER)
+               return 0;
+
+       if (sensor[s].sampling_rate < 25)
+               return 0;
+
+       return 1;
+}
+
+
+static void tentative_switch_trigger (int s)
+{
+       /*
+        * Under certain situations it may be beneficial to use an alternate
+        * trigger:
+        *
+        * - for applications using the accelerometer with high sampling rates,
+        *   prefer the continuous trigger over the any-motion one, to avoid
+        *   jumps related to motion thresholds
+        */
+
+       if (is_fast_accelerometer(s) &&
+               !(sensor[s].quirks & QUIRK_TERSE_DRIVER) &&
+                       sensor[s].selected_trigger ==
+                               sensor[s].motion_trigger_name)
+               setup_trigger(s, sensor[s].init_trigger_name);
+}
+
+
+static int setup_delay_sysfs (int s, float requested_rate)
+{
+       /* Set the rate at which a specific sensor should report events */
+       /* See Android sensors.h for indication on sensor trigger modes */
+
+       char sysfs_path[PATH_MAX];
+       char avail_sysfs_path[PATH_MAX];
+       int dev_num             =       sensor[s].dev_num;
+       int i                   =       sensor[s].catalog_index;
+       const char *prefix      =       sensor_catalog[i].tag;
+       int per_sensor_sampling_rate;
+       int per_device_sampling_rate;
+       int32_t min_delay_us = sensor_desc[s].minDelay;
+       max_delay_t max_delay_us = sensor_desc[s].maxDelay;
+       float min_supported_rate = max_delay_us ? 1000000.0/max_delay_us : 1;
+       float max_supported_rate =
+               min_delay_us && min_delay_us != -1 ? 1000000.0/min_delay_us : 0;
+       char freqs_buf[100];
+       char* cursor;
+       int n;
+       float sr;
+       float cur_sampling_rate; /* Currently used sampling rate              */
+       float arb_sampling_rate; /* Granted sampling rate after arbitration   */
+
+       ALOGV("Sampling rate %g requested on sensor %d (%s)\n", requested_rate,
+             s, sensor[s].friendly_name);
+
+       sensor[s].requested_rate = requested_rate;
+
+       arb_sampling_rate = requested_rate;
+
+       if (arb_sampling_rate < min_supported_rate) {
+               ALOGV("Sampling rate %g too low for %s, using %g instead\n",
+                      arb_sampling_rate, sensor[s].friendly_name,
+                      min_supported_rate);
+
+               arb_sampling_rate = min_supported_rate;
+       }
+
+       if (max_supported_rate && arb_sampling_rate > max_supported_rate) {
+               ALOGV("Sampling rate %g too high for %s, using %g instead\n",
+               arb_sampling_rate, sensor[s].friendly_name, max_supported_rate);
+               arb_sampling_rate = max_supported_rate;
+       }
+
+       sensor[s].sampling_rate = arb_sampling_rate;
+
+       /* If we're dealing with a poll-mode sensor */
+       if (!sensor[s].num_channels) {
+               /* Wake up thread so the new sampling rate gets used */
+               pthread_cond_signal(&thread_release_cond[s]);
+               return 0;
+       }
+
+       sprintf(sysfs_path, SENSOR_SAMPLING_PATH, dev_num, prefix);
+
+       if (sysfs_read_float(sysfs_path, &cur_sampling_rate) != -1) {
+               per_sensor_sampling_rate = 1;
+               per_device_sampling_rate = 0;
+       } else {
+               per_sensor_sampling_rate = 0;
+
+               sprintf(sysfs_path, DEVICE_SAMPLING_PATH, dev_num);
+
+               if (sysfs_read_float(sysfs_path, &cur_sampling_rate) != -1)
+                       per_device_sampling_rate = 1;
+               else
+                       per_device_sampling_rate = 0;
+       }
+
+       if (!per_sensor_sampling_rate && !per_device_sampling_rate) {
+               ALOGE("No way to adjust sampling rate on sensor %d\n", s);
+               return -ENOSYS;
+       }
+
+       /* Coordinate with others active sensors on the same device, if any */
+       if (per_device_sampling_rate)
+               for (n=0; n<sensor_count; n++)
+                       if (n != s && sensor[n].dev_num == dev_num &&
+                           sensor[n].num_channels &&
+                           is_enabled(s) &&
+                           sensor[n].sampling_rate > arb_sampling_rate)
+                               arb_sampling_rate = sensor[n].sampling_rate;
+
+       /* Check if we have contraints on allowed sampling rates */
+
+       sprintf(avail_sysfs_path, DEVICE_AVAIL_FREQ_PATH, dev_num);
+
+       if (sysfs_read_str(avail_sysfs_path, freqs_buf, sizeof(freqs_buf)) > 0){
+               cursor = freqs_buf;
+
+               /* Decode allowed sampling rates string, ex: "10 20 50 100" */
+
+               /* While we're not at the end of the string */
+               while (*cursor && cursor[0]) {
+
+                       /* Decode a single value */
+                       sr = strtod(cursor, NULL);
+
+                       /*
+                        * If this matches the selected rate, we're happy.
+                        * Have some tolerance to counter rounding errors and
+                        * avoid needless jumps to higher rates.
+                        */
+                       if (fabs(arb_sampling_rate - sr) <= 0.001) {
+                               arb_sampling_rate = sr;
+                               break;
+                       }
+
+                       /*
+                        * If we reached a higher value than the desired rate,
+                        * adjust selected rate so it matches the first higher
+                        * available one and stop parsing - this makes the
+                        * assumption that rates are sorted by increasing value
+                        * in the allowed frequencies string.
+                        */
+                       if (sr > arb_sampling_rate) {
+                               arb_sampling_rate = sr;
+                               break;
+                       }
+
+                       /* Skip digits */
+                       while (cursor[0] && !isspace(cursor[0]))
+                               cursor++;
+
+                       /* Skip spaces */
+                       while (cursor[0] && isspace(cursor[0]))
+                                       cursor++;
+               }
+       }
+
+       if (max_supported_rate &&
+               arb_sampling_rate > max_supported_rate) {
+               arb_sampling_rate = max_supported_rate;
+       }
+
+       /* If the desired rate is already active we're all set */
+       if (arb_sampling_rate == cur_sampling_rate)
+               return 0;
+
+       ALOGI("Sensor %d (%s) sampling rate set to %g\n",
+             s, sensor[s].friendly_name, arb_sampling_rate);
+
+       if (trig_sensors_per_dev[dev_num])
+               enable_buffer(dev_num, 0);
+
+       sysfs_write_float(sysfs_path, arb_sampling_rate);
+
+       /* Check if it makes sense to use an alternate trigger */
+       tentative_switch_trigger(s);
+
+       if (trig_sensors_per_dev[dev_num])
+               enable_buffer(dev_num, 1);
+
+       return 0;
+}
+
+
+/*
+ * We go through all the virtual sensors of the base - and the base itself
+ * in order to recompute the maximum requested delay of the group and setup the base
+ * at that specific delay.
+ */
+static int arbitrate_bases (int s)
+{
+       int i, vidx;
+
+       float arbitrated_rate = 0;
+
+       if (sensor[s].directly_enabled)
+               arbitrated_rate = sensor[s].requested_rate;
+
+        for (i = 0; i < sensor_count; i++) {
+                       for (vidx = 0; vidx < sensor[i].base_count; vidx++)
+                       /* If we have a virtual sensor depending on this one - handle it */
+                               if (sensor[i].base[vidx] == s &&
+                                       sensor[i].directly_enabled &&
+                                       sensor[i].requested_rate > arbitrated_rate)
+                                               arbitrated_rate = sensor[i].requested_rate;
+               }
+
+       return setup_delay_sysfs(s, arbitrated_rate);
+}
+
+
+/*
+ * Re-assesment for delays. We need to re-asses delays for all related groups
+ * of sensors everytime a sensor enables / disables / changes frequency.
+ */
+int arbitrate_delays (int s)
+{
+       int i;
+
+       if (!sensor[s].is_virtual) {
+               return arbitrate_bases(s);
+       }
+       /* Is virtual sensor - go through bases */
+       for (i = 0; i < sensor[s].base_count; i++)
+               arbitrate_bases(sensor[s].base[i]);
+
+       return 0;
 }
 
 
-int sensor_activate(int s, int enabled)
+int sensor_activate (int s, int enabled, int from_virtual)
 {
        char device_name[PATH_MAX];
-       char trigger_name[MAX_NAME_SIZE + 16];
-       int c;
        struct epoll_event ev = {0};
        int dev_fd;
        int ret;
-       int dev_num = sensor_info[s].dev_num;
-       int i = sensor_info[s].catalog_index;
-       int is_poll_sensor = !sensor_info[s].num_channels;
+       int dev_num = sensor[s].dev_num;
+       int is_poll_sensor = !sensor[s].num_channels;
 
-       ret = adjust_counters(s, enabled);
+       if (sensor[s].is_virtual) {
+               sensor_activate_virtual(s, enabled, from_virtual);
+               arbitrate_delays(s);
+               return 0;
+       }
+
+       /* Prepare the report timestamp field for the first event, see set_report_ts method */
+       sensor[s].report_ts = 0;
+
+       ret = adjust_counters(s, enabled, from_virtual);
 
        /* If the operation was neutral in terms of state, we're done */
        if (ret <= 0)
                return ret;
 
+       arbitrate_delays(s);
+
+       sensor[s].event_count = 0;
+       sensor[s].meta_data_pending = 0;
+
+       if (enabled && (sensor[s].quirks & QUIRK_NOISY))
+               /* Initialize filtering data if required */
+               setup_noise_filtering(s);
+
        if (!is_poll_sensor) {
 
                /* Stop sampling */
                enable_buffer(dev_num, 0);
-               setup_trigger(dev_num, "\n");
+               setup_trigger(s, "\n");
 
                /* If there's at least one sensor enabled on this iio device */
                if (trig_sensors_per_dev[dev_num]) {
-                       sprintf(trigger_name, "%s-dev%d",
-                                       sensor_info[s].internal_name, dev_num);
 
                        /* Start sampling */
-                       setup_trigger(dev_num, trigger_name);
+                       setup_trigger(s, sensor[s].init_trigger_name);
                        enable_buffer(dev_num, 1);
                }
        }
@@ -498,6 +993,10 @@ int sensor_activate(int s, int enabled)
                                close(dev_fd);
                                device_fd[dev_num] = -1;
                        }
+
+               /* Release any filtering data we may have accumulated */
+               release_noise_filtering_data(s);
+
                return 0;
        }
 
@@ -511,7 +1010,7 @@ int sensor_activate(int s, int enabled)
                if (dev_fd == -1) {
                        ALOGE("Could not open fd on %s (%s)\n",
                              device_name, strerror(errno));
-                       adjust_counters(s, 0);
+                       adjust_counters(s, 0, from_virtual);
                        return -1;
                }
 
@@ -535,6 +1034,9 @@ int sensor_activate(int s, int enabled)
                }
        }
 
+       /* Ensure that on-change sensors send at least one event after enable */
+       sensor[s].prev_val = -1;
+
        if (is_poll_sensor)
                start_acquisition_thread(s);
 
@@ -542,16 +1044,129 @@ int sensor_activate(int s, int enabled)
 }
 
 
-static int integrate_device_report(int dev_num)
+static void enable_motion_trigger (int dev_num)
+{
+       /*
+        * In the ideal case, we enumerate two triggers per iio device ; the
+        * default (periodically firing) trigger, and another one (the motion
+        * trigger) that only fires up when motion is detected. This second one
+        * allows for lesser energy consumption, but requires periodic sample
+        * duplication at the HAL level for sensors that Android defines as
+        * continuous. This "duplicate last sample" logic can only be engaged
+        * once we got a first sample for the driver, so we start with the
+        * default trigger when an iio device is first opened, then adjust the
+        * trigger when we got events for all active sensors. Unfortunately in
+        * the general case several sensors can be associated to a given iio
+        * device, they can independently be controlled, and we have to adjust
+        * the trigger in use at the iio device level depending on whether or
+        * not appropriate conditions are met at the sensor level.
+        */
+
+       int s;
+       int i;
+       int active_sensors = trig_sensors_per_dev[dev_num];
+       int candidate[MAX_SENSORS];
+       int candidate_count = 0;
+
+       if  (!active_sensors)
+               return;
+
+       /* Check that all active sensors are ready to switch */
+
+       for (s=0; s<MAX_SENSORS; s++)
+               if (sensor[s].dev_num == dev_num &&
+                   is_enabled(s) &&
+                   sensor[s].num_channels &&
+                   (!sensor[s].motion_trigger_name[0] ||
+                    !sensor[s].report_initialized ||
+                    is_fast_accelerometer(s) ||
+                    (sensor[s].quirks & QUIRK_FORCE_CONTINUOUS))
+                   )
+                       return; /* Nope */
+
+       /* Record which particular sensors need to switch */
+
+       for (s=0; s<MAX_SENSORS; s++)
+               if (sensor[s].dev_num == dev_num &&
+                   is_enabled(s) &&
+                   sensor[s].num_channels &&
+                   sensor[s].selected_trigger !=
+                       sensor[s].motion_trigger_name)
+                               candidate[candidate_count++] = s;
+
+       if (!candidate_count)
+               return;
+
+       /* Now engage the motion trigger for sensors which aren't using it */
+
+       enable_buffer(dev_num, 0);
+
+       for (i=0; i<candidate_count; i++) {
+               s = candidate[i];
+               setup_trigger(s, sensor[s].motion_trigger_name);
+       }
+
+       enable_buffer(dev_num, 1);
+}
+
+
+/*
+ *  CTS acceptable thresholds:
+ *     EventGapVerification.java: (th <= 1.8)
+ *     FrequencyVerification.java: (0.9)*(expected freq) => (th <= 1.1111)
+ */
+#define THRESHOLD 1.10
+#define MAX_DELAY 500000000 /* 500 ms */
+
+void set_report_ts(int s, int64_t ts)
+{
+       int64_t maxTs, period;
+
+       /*
+       *  A bit of a hack to please a bunch of cts tests. They
+       *  expect the timestamp to be exacly according to the set-up
+       *  frequency but if we're simply getting the timestamp at hal level
+       *  this may not be the case. Perhaps we'll get rid of this when
+       *  we'll be reading the timestamp from the iio channel for all sensors
+       */
+       if (sensor[s].report_ts && sensor[s].sampling_rate &&
+               REPORTING_MODE(sensor_desc[s].flags) == SENSOR_FLAG_CONTINUOUS_MODE)
+       {
+               period = (int64_t) (1000000000LL / sensor[s].sampling_rate);
+               maxTs = sensor[s].report_ts + THRESHOLD * period;
+               /* If we're too far behind get back on track */
+               if (ts - maxTs >= MAX_DELAY)
+                       maxTs = ts;
+               sensor[s].report_ts = (ts < maxTs ? ts : maxTs);
+       } else {
+               sensor[s].report_ts = ts;
+       }
+}
+
+
+static void stamp_reports (int dev_num, int64_t ts)
+{
+       int s;
+
+       for (s=0; s<MAX_SENSORS; s++)
+                       if (sensor[s].dev_num == dev_num &&
+                               is_enabled(s))
+                                       set_report_ts(s, ts);
+}
+
+
+static int integrate_device_report (int dev_num)
 {
        int len;
        int s,c;
-       unsigned char buf[MAX_SENSOR_REPORT_SIZE] = { 0 };
+       unsigned char buf[MAX_DEVICE_REPORT_SIZE] = { 0 };
        int sr_offset;
        unsigned char *target;
        unsigned char *source;
        int size;
-       int ts;
+       int64_t ts = 0;
+       int ts_offset = 0;      /* Offset of iio timestamp, if provided */
+       int64_t boot_to_rt_delta;
 
        /* There's an incoming report on the specified iio device char dev fd */
 
@@ -565,9 +1180,7 @@ static int integrate_device_report(int dev_num)
                return -1;
        }
 
-       ts = get_timestamp();
-
-       len = read(device_fd[dev_num], buf, MAX_SENSOR_REPORT_SIZE);
+       len = read(device_fd[dev_num], buf, expected_dev_report_size[dev_num]);
 
        if (len == -1) {
                ALOGE("Could not read report from iio device %d (%s)\n",
@@ -577,21 +1190,23 @@ static int integrate_device_report(int dev_num)
 
        ALOGV("Read %d bytes from iio device %d\n", len, dev_num);
 
+       /* Map device report to sensor reports */
+
        for (s=0; s<MAX_SENSORS; s++)
-               if (sensor_info[s].dev_num == dev_num &&
-                   sensor_info[s].enable_count) {
+               if (sensor[s].dev_num == dev_num &&
+                   is_enabled(s)) {
 
                        sr_offset = 0;
 
                        /* Copy data from device to sensor report buffer */
-                       for (c=0; c<sensor_info[s].num_channels; c++) {
+                       for (c=0; c<sensor[s].num_channels; c++) {
 
-                               target = sensor_info[s].report_buffer +
+                               target = sensor[s].report_buffer +
                                        sr_offset;
 
-                               source = buf + sensor_info[s].channel[c].offset;
+                               source = buf + sensor[s].channel[c].offset;
 
-                               size = sensor_info[s].channel[c].size;
+                               size = sensor[s].channel[c].size;
 
                                memcpy(target, source, size);
 
@@ -601,20 +1216,70 @@ static int integrate_device_report(int dev_num)
                        ALOGV("Sensor %d report available (%d bytes)\n", s,
                              sr_offset);
 
-                       sensor_info[s].report_ts = ts;
-                       sensor_info[s].report_pending = 1;
+                       sensor[s].report_pending = DATA_TRIGGER;
+                       sensor[s].report_initialized = 1;
+
+                       ts_offset += sr_offset;
                }
 
+       /* Tentatively switch to an any-motion trigger if conditions are met */
+       enable_motion_trigger(dev_num);
+
+       /* If no iio timestamp channel was detected for this device, bail out */
+       if (!has_iio_ts[dev_num]) {
+               stamp_reports(dev_num, get_timestamp_boot());
+               return 0;
+       }
+
+       /* Don't trust the timestamp channel in any-motion mode */
+       for (s=0; s<MAX_SENSORS; s++)
+               if (sensor[s].dev_num == dev_num &&
+                   is_enabled(s) &&
+                   sensor[s].selected_trigger ==
+                                       sensor[s].motion_trigger_name) {
+               stamp_reports(dev_num, get_timestamp_boot());
+               return 0;
+       }
+
+       /* Align on a 64 bits boundary */
+       ts_offset = (ts_offset + 7)/8*8;
+
+       /* If we read an amount of data consistent with timestamp presence */
+       if (len == expected_dev_report_size[dev_num])
+               ts = *(int64_t*) (buf + ts_offset);
+
+       if (ts == 0) {
+               ALOGV("Unreliable timestamp channel on iio dev %d\n", dev_num);
+               stamp_reports(dev_num, get_timestamp_boot());
+               return 0;
+       }
+
+       ALOGV("Driver timestamp on iio device %d: ts=%lld\n", dev_num, ts);
+
+       boot_to_rt_delta = get_timestamp_boot() - get_timestamp_realtime();
+
+       stamp_reports(dev_num, ts + boot_to_rt_delta);
+
        return 0;
 }
 
 
-static int propagate_sensor_report(int s, struct sensors_event_t  *data)
+static int propagate_vsensor_report (int s, struct sensors_event_t  *data)
+{
+       /* There's a new report stored in sensor.sample for this sensor; transmit it */
+
+       memcpy(data, &sensor[s].sample, sizeof(struct sensors_event_t));
+
+       data->sensor    = s;
+       data->type      = sensor[s].type;
+       return 1;
+}
+
+
+static int propagate_sensor_report (int s, struct sensors_event_t  *data)
 {
        /* There's a sensor report pending for this sensor ; transmit it */
 
-       int catalog_index = sensor_info[s].catalog_index;
-       int sensor_type   = sensor_catalog[catalog_index].type;
        int num_fields    = get_field_count(s);
        int c;
        unsigned char* current_sample;
@@ -627,15 +1292,15 @@ static int propagate_sensor_report(int s, struct sensors_event_t  *data)
 
        data->version   = sizeof(sensors_event_t);
        data->sensor    = s;
-       data->type      = sensor_type;
-       data->timestamp = sensor_info[s].report_ts;
+       data->type      = sensor[s].type;
+       data->timestamp = sensor[s].report_ts;
 
-       ALOGV("Sample on sensor %d (type %d):\n", s, sensor_type);
+       ALOGV("Sample on sensor %d (type %d):\n", s, sensor[s].type);
 
-       current_sample = sensor_info[s].report_buffer;
+       current_sample = sensor[s].report_buffer;
 
        /* If this is a poll sensor */
-       if (!sensor_info[s].num_channels) {
+       if (!sensor[s].num_channels) {
                /* Use the data provided by the acquisition thread */
                ALOGV("Reporting data from worker thread for S%d\n", s);
                memcpy(data->data, current_sample, num_fields * sizeof(float));
@@ -645,18 +1310,70 @@ static int propagate_sensor_report(int s, struct sensors_event_t  *data)
        /* Convert the data into the expected Android-level format */
        for (c=0; c<num_fields; c++) {
 
-               data->data[c] = sensor_info[s].ops.transform
+               data->data[c] = sensor[s].ops.transform
                                                        (s, c, current_sample);
 
                ALOGV("\tfield %d: %f\n", c, data->data[c]);
-               current_sample += sensor_info[s].channel[c].size;
+               current_sample += sensor[s].channel[c].size;
        }
 
        /*
         * The finalize routine, in addition to its late sample processing duty,
         * has the final say on whether or not the sample gets sent to Android.
         */
-       return sensor_info[s].ops.finalize(s, data);
+       return sensor[s].ops.finalize(s, data);
+}
+
+
+static void synthetize_duplicate_samples (void)
+{
+       /*
+        * Some sensor types (ex: gyroscope) are defined as continuously firing
+        * by Android, despite the fact that we can be dealing with iio drivers
+        * that only report events for new samples. For these we generate
+        * reports periodically, duplicating the last data we got from the
+        * driver. This is not necessary for polling sensors.
+        */
+
+       int s;
+       int64_t current_ts;
+       int64_t target_ts;
+       int64_t period;
+
+       for (s=0; s<sensor_count; s++) {
+
+               /* Ignore disabled sensors */
+               if (!is_enabled(s))
+                       continue;
+
+               /* If the sensor is continuously firing, leave it alone */
+               if (sensor[s].selected_trigger !=
+                   sensor[s].motion_trigger_name)
+                       continue;
+
+               /* If we haven't seen a sample, there's nothing to duplicate */
+               if (!sensor[s].report_initialized)
+                       continue;
+
+               /* If a sample was recently buffered, leave it alone too */
+               if (sensor[s].report_pending)
+                       continue;
+
+               /* We also need a valid sampling rate to be configured */
+               if (!sensor[s].sampling_rate)
+                       continue;
+
+               period = (int64_t) (1000000000.0/ sensor[s].sampling_rate);
+
+               current_ts = get_timestamp_boot();
+               target_ts = sensor[s].report_ts + period;
+
+               if (target_ts <= current_ts) {
+                       /* Mark the sensor for event generation */
+                       set_report_ts(s, current_ts);
+                       sensor[s].report_pending = DATA_DUPLICATE;
+               }
+       }
 }
 
 
@@ -665,53 +1382,122 @@ static void integrate_thread_report (uint32_t tag)
        int s = tag - THREAD_REPORT_TAG_BASE;
        int len;
        int expected_len;
+       int64_t timestamp;
+       unsigned char current_sample[MAX_SENSOR_REPORT_SIZE];
 
-       expected_len = get_field_count(s) * sizeof(float);
+       expected_len = sizeof(int64_t) + get_field_count(s) * sizeof(float);
 
-       len = read(sensor_info[s].thread_data_fd[0],
-                  sensor_info[s].report_buffer,
+       len = read(sensor[s].thread_data_fd[0],
+                  current_sample,
                   expected_len);
 
+       memcpy(&timestamp, current_sample, sizeof(int64_t));
+       memcpy(sensor[s].report_buffer, sizeof(int64_t) + current_sample,
+                       expected_len - sizeof(int64_t));
+
        if (len == expected_len) {
-               sensor_info[s].report_ts = get_timestamp();
-               sensor_info[s].report_pending = 1;
+               set_report_ts(s, timestamp);
+               sensor[s].report_pending = DATA_SYSFS;
        }
 }
 
 
-int sensor_poll(struct sensors_event_t* data, int count)
+static int get_poll_wait_timeout (void)
+{
+       /*
+        * Compute an appropriate timeout value, in ms, for the epoll_wait
+        * call that's going to await for iio device reports and incoming
+        * reports from our sensor sysfs data reader threads.
+        */
+
+       int s;
+       int64_t target_ts = INT64_MAX;
+       int64_t ms_to_wait;
+       int64_t period;
+
+       /*
+        * Check if we're dealing with a driver that only send events when
+        * there is motion, despite the fact that the associated Android sensor
+        * type is continuous rather than on-change. In that case we have to
+        * duplicate events. Check deadline for the nearest upcoming event.
+        */
+       for (s=0; s<sensor_count; s++)
+               if (is_enabled(s) &&
+                   sensor[s].selected_trigger ==
+                   sensor[s].motion_trigger_name &&
+                   sensor[s].sampling_rate) {
+                       period = (int64_t) (1000000000.0 /
+                                               sensor[s].sampling_rate);
+
+                       if (sensor[s].report_ts + period < target_ts)
+                               target_ts = sensor[s].report_ts + period;
+               }
+
+       /* If we don't have such a driver to deal with */
+       if (target_ts == INT64_MAX)
+               return -1; /* Infinite wait */
+
+       ms_to_wait = (target_ts - get_timestamp_boot()) / 1000000;
+
+       /* If the target timestamp is already behind us, don't wait */
+       if (ms_to_wait < 1)
+               return 0;
+
+       return ms_to_wait;
+}
+
+
+int sensor_poll (struct sensors_event_t* data, int count)
 {
        int s;
        int i;
        int nfds;
        struct epoll_event ev[MAX_DEVICES];
-       int64_t target_ts;
        int returned_events;
+       int event_count;
+       int uncal_start;
 
        /* Get one or more events from our collection of sensors */
-
 return_available_sensor_reports:
 
-       returned_events = 0;
+       /* Synthetize duplicate samples if needed */
+       synthetize_duplicate_samples();
 
+       returned_events = 0;
        /* Check our sensor collection for available reports */
-       for (s=0; s<sensor_count && returned_events<count; s++)
-               if (sensor_info[s].report_pending) {
+       for (s=0; s<sensor_count && returned_events < count; s++) {
+               if (sensor[s].report_pending) {
+                       event_count = 0;
+
+                       if (sensor[s].is_virtual)
+                               event_count = propagate_vsensor_report(s, &data[returned_events]);
+                       else {
+                               /* Report this event if it looks OK */
+                               event_count = propagate_sensor_report(s, &data[returned_events]);
+                       }
 
                        /* Lower flag */
-                       sensor_info[s].report_pending = 0;
-
-                       /* Report this event if it looks OK */
-                       returned_events +=
-                            propagate_sensor_report(s, &data[returned_events]);
-
+                       sensor[s].report_pending = 0;
+                       returned_events += event_count;
                        /*
                         * If the sample was deemed invalid or unreportable,
                         * e.g. had the same value as the previously reported
                         * value for a 'on change' sensor, silently drop it.
                         */
                }
-
+               while (sensor[s].meta_data_pending) {
+                       /* See sensors.h on these */
+                       data[returned_events].version = META_DATA_VERSION;
+                       data[returned_events].sensor = 0;
+                       data[returned_events].type = SENSOR_TYPE_META_DATA;
+                       data[returned_events].reserved0 = 0;
+                       data[returned_events].timestamp = 0;
+                       data[returned_events].meta_data.sensor = s;
+                       data[returned_events].meta_data.what = META_DATA_FLUSH_COMPLETE;
+                       returned_events++;
+                       sensor[s].meta_data_pending--;
+               }
+       }
        if (returned_events)
                return returned_events;
 
@@ -719,10 +1505,10 @@ await_event:
 
        ALOGV("Awaiting sensor data\n");
 
-       nfds = epoll_wait(poll_fd, ev, MAX_DEVICES, -1);
+       nfds = epoll_wait(poll_fd, ev, MAX_DEVICES, get_poll_wait_timeout());
 
        if (nfds == -1) {
-               ALOGI("epoll_wait returned -1 (%s)\n", strerror(errno));
+               ALOGE("epoll_wait returned -1 (%s)\n", strerror(errno));
                goto await_event;
        }
 
@@ -752,144 +1538,34 @@ await_event:
 }
 
 
-int sensor_set_delay(int s, int64_t ns)
+int sensor_set_delay (int s, int64_t ns)
 {
-       /* Set the rate at which a specific sensor should report events */
+       float requested_sampling_rate;
 
-       /* See Android sensors.h for indication on sensor trigger modes */
-
-       char sysfs_path[PATH_MAX];
-       char avail_sysfs_path[PATH_MAX];
-       int dev_num             =       sensor_info[s].dev_num;
-       int i                   =       sensor_info[s].catalog_index;
-       const char *prefix      =       sensor_catalog[i].tag;
-       float new_sampling_rate; /* Granted sampling rate after arbitration   */
-       float cur_sampling_rate; /* Currently used sampling rate              */
-       int per_sensor_sampling_rate;
-       int per_device_sampling_rate;
-       float max_supported_rate = 0;
-       char freqs_buf[100];
-       char* cursor;
-       int n;
-       float sr;
-
-       if (!ns) {
-               ALOGE("Rejecting zero delay request on sensor %d\n", s);
+       if (ns <= 0) {
+               ALOGE("Invalid delay requested on sensor %d: %lld\n", s, ns);
                return -EINVAL;
        }
 
-       new_sampling_rate = 1000000000LL/ns;
-
-       /*
-        * Artificially limit ourselves to 1 Hz or higher. This is mostly to
-        * avoid setting up the stage for divisions by zero.
-        */
-       if (new_sampling_rate < 1)
-               new_sampling_rate = 1;
-
-       sensor_info[s].sampling_rate = new_sampling_rate;
-
-       /* If we're dealing with a poll-mode sensor */
-       if (!sensor_info[s].num_channels) {
-               /* The new sampling rate will be used on next iteration */
-               return 0;
-       }
-
-       sprintf(sysfs_path, SENSOR_SAMPLING_PATH, dev_num, prefix);
-
-       if (sysfs_read_float(sysfs_path, &cur_sampling_rate) != -1) {
-               per_sensor_sampling_rate = 1;
-               per_device_sampling_rate = 0;
-       } else {
-               per_sensor_sampling_rate = 0;
-
-               sprintf(sysfs_path, DEVICE_SAMPLING_PATH, dev_num);
-
-               if (sysfs_read_float(sysfs_path, &cur_sampling_rate) != -1)
-                       per_device_sampling_rate = 1;
-               else
-                       per_device_sampling_rate = 0;
-       }
-
-       if (!per_sensor_sampling_rate && !per_device_sampling_rate) {
-               ALOGE("No way to adjust sampling rate on sensor %d\n", s);
-               return -ENOSYS;
-       }
-
-       /* Coordinate with others active sensors on the same device, if any */
-       if (per_device_sampling_rate)
-               for (n=0; n<sensor_count; n++)
-                       if (n != s && sensor_info[n].dev_num == dev_num &&
-                           sensor_info[n].num_channels &&
-                           sensor_info[n].enable_count &&
-                           sensor_info[n].sampling_rate > new_sampling_rate)
-                               new_sampling_rate= sensor_info[n].sampling_rate;
+       requested_sampling_rate = 1000000000.0/ns;
 
-       /* Check if we have contraints on allowed sampling rates */
-
-       sprintf(avail_sysfs_path, DEVICE_AVAIL_FREQ_PATH, dev_num);
-
-       if (sysfs_read_str(avail_sysfs_path, freqs_buf, sizeof(freqs_buf)) > 0){
-               cursor = freqs_buf;
+       ALOGV("Entering set delay S%d (%s): current rate: %f, requested: %f\n",
+               s, sensor[s].friendly_name, sensor[s].sampling_rate,
+               requested_sampling_rate);
 
-               /* Decode allowed sampling rates string, ex: "10 20 50 100" */
+       sensor[s].requested_rate = requested_sampling_rate;
 
-               /* While we're not at the end of the string */
-               while (*cursor && cursor[0]) {
-
-                       /* Decode a single value */
-                       sr = strtod(cursor, NULL);
-
-                       if (sr > max_supported_rate)
-                               max_supported_rate = sr;
-
-                       /* If this matches the selected rate, we're happy */
-                       if (new_sampling_rate == sr)
-                               break;
-
-                       /*
-                        * If we reached a higher value than the desired rate,
-                        * adjust selected rate so it matches the first higher
-                        * available one and stop parsing - this makes the
-                        * assumption that rates are sorted by increasing value
-                        * in the allowed frequencies string.
-                        */
-                       if (sr > new_sampling_rate) {
-                               new_sampling_rate = sr;
-                               break;
-                       }
-
-                       /* Skip digits */
-                       while (cursor[0] && !isspace(cursor[0]))
-                               cursor++;
-
-                       /* Skip spaces */
-                       while (cursor[0] && isspace(cursor[0]))
-                                       cursor++;
-               }
-       }
-
-
-       if (max_supported_rate &&
-               new_sampling_rate > max_supported_rate) {
-               new_sampling_rate = max_supported_rate;
-       }
-
-
-       /* If the desired rate is already active we're all set */
-       if (new_sampling_rate == cur_sampling_rate)
-               return 0;
-
-       ALOGI("Sensor %d sampling rate set to %g\n", s, new_sampling_rate);
-
-       if (trig_sensors_per_dev[dev_num])
-               enable_buffer(dev_num, 0);
+       return arbitrate_delays(s);
+}
 
-       sysfs_write_float(sysfs_path, new_sampling_rate);
 
-       if (trig_sensors_per_dev[dev_num])
-               enable_buffer(dev_num, 1);
+int sensor_flush (int s)
+{
+       /* If one shot or not enabled return -EINVAL */
+       if (sensor_desc[s].flags & SENSOR_FLAG_ONE_SHOT_MODE || !is_enabled(s))
+               return -EINVAL;
 
+       sensor[s].meta_data_pending++;
        return 0;
 }
 
@@ -897,7 +1573,6 @@ int sensor_set_delay(int s, int64_t ns)
 int allocate_control_data (void)
 {
        int i;
-       struct epoll_event ev = {0};
 
        for (i=0; i<MAX_DEVICES; i++)
                device_fd[i] = -1;