OSDN Git Service

Moping the floor: remove superfluous f type specifiers
[android-x86/hardware-intel-libsensors.git] / control.c
index a7fe20c..9d88047 100644 (file)
--- a/control.c
+++ b/control.c
 #include "transform.h"
 #include "calibration.h"
 #include "description.h"
+#include "filtering.h"
 
 /* Currently active sensors count, per device */
 static int poll_sensors_per_dev[MAX_DEVICES];  /* poll-mode sensors */
 static int trig_sensors_per_dev[MAX_DEVICES];  /* trigger, event based */
 
 static int device_fd[MAX_DEVICES];   /* fd on the /dev/iio:deviceX file */
+static int has_iio_ts[MAX_DEVICES];  /* ts channel available on this iio dev */
 
 static int poll_fd; /* epoll instance covering all enabled sensors */
 
 static int active_poll_sensors; /* Number of enabled poll-mode sensors */
 
+int64_t ts_delta; /* delta between SystemClock.getNanos and our timestamp */
+
 /* We use pthread condition variables to get worker threads out of sleep */
 static pthread_condattr_t thread_cond_attr     [MAX_SENSORS];
 static pthread_cond_t     thread_release_cond  [MAX_SENSORS];
@@ -102,7 +106,51 @@ static int setup_trigger (int s, const char* trigger_val)
 }
 
 
-void build_sensor_report_maps(int dev_num)
+static void enable_iio_timestamp (int dev_num, int known_channels)
+{
+       /* Check if we have a dedicated iio timestamp channel */
+
+       char spec_buf[MAX_TYPE_SPEC_LEN];
+       char sysfs_path[PATH_MAX];
+       int n;
+
+       sprintf(sysfs_path, CHANNEL_PATH "%s", dev_num, "in_timestamp_type");
+
+       n = sysfs_read_str(sysfs_path, spec_buf, sizeof(spec_buf));
+
+       if (n <= 0)
+               return;
+
+       if (strcmp(spec_buf, "le:s64/64>>0"))
+               return;
+
+       /* OK, type is int64_t as expected, in little endian representation */
+
+       sprintf(sysfs_path, CHANNEL_PATH"%s", dev_num, "in_timestamp_index");
+
+       if (sysfs_read_int(sysfs_path, &n))
+               return;
+
+       /* Check that the timestamp comes after the other fields we read */
+       if (n != known_channels)
+               return;
+
+       /* Try enabling that channel */
+       sprintf(sysfs_path, CHANNEL_PATH "%s", dev_num, "in_timestamp_en");
+
+       sysfs_write_int(sysfs_path, 1);
+
+       if (sysfs_read_int(sysfs_path, &n))
+               return;
+
+       if (n) {
+               ALOGI("Detected timestamp channel on iio device %d\n", dev_num);
+               has_iio_ts[dev_num] = 1;
+       }
+}
+
+
+void build_sensor_report_maps (int dev_num)
 {
        /*
         * Read sysfs files from a iio device's scan_element directory, and
@@ -237,6 +285,9 @@ void build_sensor_report_maps(int dev_num)
 
                offset += size;
         }
+
+       /* Enable the timestamp channel if there is one available */
+       enable_iio_timestamp(dev_num, known_channels);
 }
 
 
@@ -250,20 +301,18 @@ int adjust_counters (int s, int enabled)
         */
 
        int dev_num = sensor_info[s].dev_num;
-       int catalog_index = sensor_info[s].catalog_index;
-       int sensor_type = sensor_catalog[catalog_index].type;
 
        /* Refcount per sensor, in terms of enable count */
        if (enabled) {
                ALOGI("Enabling sensor %d (iio device %d: %s)\n",
                        s, dev_num, sensor_info[s].friendly_name);
 
-               sensor_info[s].enable_count++;
-
-               if (sensor_info[s].enable_count > 1)
+               if (sensor_info[s].enabled)
                        return 0; /* The sensor was, and remains, in use */
 
-               switch (sensor_type) {
+               sensor_info[s].enabled = 1;
+
+               switch (sensor_info[s].type) {
                        case SENSOR_TYPE_MAGNETIC_FIELD:
                                compass_read_data(&sensor_info[s]);
                                break;
@@ -274,28 +323,29 @@ int adjust_counters (int s, int enabled)
                                break;
                }
        } else {
-               if (sensor_info[s].enable_count == 0)
-                       return -1; /* Spurious disable call */
+               if (sensor_info[s].enabled == 0)
+                       return 0; /* Spurious disable call */
 
                ALOGI("Disabling sensor %d (iio device %d: %s)\n", s, dev_num,
                      sensor_info[s].friendly_name);
 
-               sensor_info[s].enable_count--;
-
-               if (sensor_info[s].enable_count > 0)
-                       return 0; /* The sensor was, and remains, in use */
+               sensor_info[s].enabled = 0;
 
                /* Sensor disabled, lower report available flag */
                sensor_info[s].report_pending = 0;
 
-               if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
+               if (sensor_info[s].type == SENSOR_TYPE_MAGNETIC_FIELD)
                        compass_store_data(&sensor_info[s]);
+
+               if(sensor_info[s].type == SENSOR_TYPE_GYROSCOPE ||
+                       sensor_info[s].type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED)
+                       gyro_store_data(&sensor_info[s]);
        }
 
 
        /* If uncalibrated type and pair is already active don't adjust counters */
-       if (sensor_type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED &&
-               sensor_info[sensor_info[s].pair_idx].enable_count != 0)
+       if (sensor_info[s].type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED &&
+               sensor_info[sensor_info[s].pair_idx].enabled != 0)
                        return 0;
 
        /* We changed the state of a sensor - adjust per iio device counters */
@@ -325,10 +375,7 @@ int adjust_counters (int s, int enabled)
 
 static int get_field_count (int s)
 {
-       int catalog_index = sensor_info[s].catalog_index;
-       int sensor_type   = sensor_catalog[catalog_index].type;
-
-       switch (sensor_type) {
+       switch (sensor_info[s].type) {
                case SENSOR_TYPE_ACCELEROMETER:         /* m/s^2        */
                case SENSOR_TYPE_MAGNETIC_FIELD:        /* micro-tesla  */
                case SENSOR_TYPE_ORIENTATION:           /* degrees      */
@@ -354,7 +401,6 @@ static int get_field_count (int s)
 }
 
 
-
 static void* acquisition_routine (void* param)
 {
        /*
@@ -372,7 +418,7 @@ static void* acquisition_routine (void* param)
        int c;
        int ret;
        struct timespec target_time;
-       int64_t timestamp, period;
+       int64_t timestamp, period, start, stop;
 
        if (s < 0 || s >= sensor_count) {
                ALOGE("Invalid sensor handle!\n");
@@ -389,7 +435,7 @@ static void* acquisition_routine (void* param)
        }
 
        num_fields = get_field_count(s);
-       sample_size = num_fields * sizeof(float);
+       sample_size = sizeof(int64_t) + num_fields * sizeof(float);
 
        /*
         * Each condition variable is associated to a mutex that has to be
@@ -400,11 +446,11 @@ static void* acquisition_routine (void* param)
        pthread_mutex_lock(&thread_release_mutex[s]);
 
        /* Pinpoint the moment we start sampling */
-       timestamp = get_timestamp();
+       timestamp = get_timestamp_monotonic();
 
        /* Check and honor termination requests */
        while (sensor_info[s].thread_data_fd[1] != -1) {
-
+               start = get_timestamp();
                /* Read values through sysfs */
                for (c=0; c<num_fields; c++) {
                        data.data[c] = acquire_immediate_value(s, c);
@@ -412,13 +458,16 @@ static void* acquisition_routine (void* param)
                        if (sensor_info[s].thread_data_fd[1] == -1)
                                goto exit;
                }
+               stop = get_timestamp();
+               data.timestamp = start/2 + stop/2;
 
                /* If the sample looks good */
                if (sensor_info[s].ops.finalize(s, &data)) {
 
                        /* Pipe it for transmission to poll loop */
                        ret = write(    sensor_info[s].thread_data_fd[1],
-                                       data.data, sample_size);
+                                       &data.timestamp, sample_size);
+
                        if (ret != sample_size)
                                ALOGE("S%d acquisition thread: tried to write %d, ret: %d\n",
                                        s, sample_size, ret);
@@ -468,7 +517,7 @@ static void start_acquisition_thread (int s)
 
        /* Create condition variable and mutex for quick thread release */
        ret = pthread_condattr_init(&thread_cond_attr[s]);
-       ret = pthread_condattr_setclock(&thread_cond_attr[s], POLLING_CLOCK);
+       ret = pthread_condattr_setclock(&thread_cond_attr[s], CLOCK_MONOTONIC);
        ret = pthread_cond_init(&thread_release_cond[s], &thread_cond_attr[s]);
        ret = pthread_mutex_init(&thread_release_mutex[s], NULL);
 
@@ -533,6 +582,8 @@ int sensor_activate(int s, int enabled)
 
        /* Prepare the report timestamp field for the first event, see set_report_ts method */
        sensor_info[s].report_ts = 0;
+       ts_delta = load_timestamp_sys_clock() - get_timestamp_monotonic();
+
 
        /* If we want to activate gyro calibrated and gyro uncalibrated is activated
         * Deactivate gyro uncalibrated - Uncalibrated releases handler
@@ -544,8 +595,8 @@ int sensor_activate(int s, int enabled)
         * Deactivate gyro calibrated   - Calibrated releases handler
         * Reactivate gyro uncalibrated - Uncalibrated has handler */
 
-       if (sensor_catalog[sensor_info[s].catalog_index].type == SENSOR_TYPE_GYROSCOPE &&
-               sensor_info[s].pair_idx && sensor_info[sensor_info[s].pair_idx].enable_count != 0) {
+       if (sensor_info[s].type == SENSOR_TYPE_GYROSCOPE &&
+               sensor_info[s].pair_idx && sensor_info[sensor_info[s].pair_idx].enabled != 0) {
 
                                sensor_activate(sensor_info[s].pair_idx, 0);
                                ret = sensor_activate(s, enabled);
@@ -559,6 +610,12 @@ int sensor_activate(int s, int enabled)
        if (ret <= 0)
                return ret;
 
+       sensor_info[s].event_count = 0;
+       sensor_info[s].meta_data_pending = 0;
+
+       if (enabled && (sensor_info[s].quirks & QUIRK_NOISY))
+               /* Initialize filtering data if required */
+               setup_noise_filtering(s);
 
        if (!is_poll_sensor) {
 
@@ -599,16 +656,8 @@ int sensor_activate(int s, int enabled)
                                device_fd[dev_num] = -1;
                        }
 
-               /* If we recorded a trail of samples for filtering, delete it */
-               if (sensor_info[s].history) {
-                       free(sensor_info[s].history);
-                       sensor_info[s].history = NULL;
-                       sensor_info[s].history_size = 0;
-                       if (sensor_info[s].history_sum) {
-                               free(sensor_info[s].history_sum);
-                               sensor_info[s].history_sum = NULL;
-                       }
-               }
+               /* Release any filtering data we may have accumulated */
+               release_noise_filtering_data(s);
 
                return 0;
        }
@@ -665,9 +714,8 @@ static int is_fast_accelerometer (int s)
         * to request fairly high event rates. Favor continuous triggers if the
         * sensor is an accelerometer and uses a sampling rate of at least 25.
         */
-       int catalog_index = sensor_info[s].catalog_index;
 
-       if (sensor_catalog[catalog_index].type != SENSOR_TYPE_ACCELEROMETER)
+       if (sensor_info[s].type != SENSOR_TYPE_ACCELEROMETER)
                return 0;
 
        if (sensor_info[s].sampling_rate < 25)
@@ -708,11 +756,12 @@ static void enable_motion_trigger (int dev_num)
 
        for (s=0; s<MAX_SENSORS; s++)
                if (sensor_info[s].dev_num == dev_num &&
-                   sensor_info[s].enable_count &&
+                   sensor_info[s].enabled &&
                    sensor_info[s].num_channels &&
                    (!sensor_info[s].motion_trigger_name[0] ||
                     !sensor_info[s].report_initialized ||
-                    is_fast_accelerometer(s))
+                    is_fast_accelerometer(s) ||
+                    (sensor_info[s].quirks & QUIRK_FORCE_CONTINUOUS))
                    )
                        return; /* Nope */
 
@@ -720,9 +769,8 @@ static void enable_motion_trigger (int dev_num)
 
        for (s=0; s<MAX_SENSORS; s++)
                if (sensor_info[s].dev_num == dev_num &&
-                   sensor_info[s].enable_count &&
+                   sensor_info[s].enabled &&
                    sensor_info[s].num_channels &&
-                   !(sensor_info[s].quirks & QUIRK_CONTINUOUS_DRIVER) &&
                    sensor_info[s].selected_trigger !=
                        sensor_info[s].motion_trigger_name)
                                candidate[candidate_count++] = s;
@@ -742,9 +790,17 @@ static void enable_motion_trigger (int dev_num)
        enable_buffer(dev_num, 1);
 }
 
+/* CTS acceptable thresholds:
+ *     EventGapVerification.java: (th <= 1.8)
+ *     FrequencyVerification.java: (0.9)*(expected freq) => (th <= 1.1111)
+ */
+#define THRESHOLD 1.10
+#define MAX_DELAY 500000000 /* 500 ms */
 void set_report_ts(int s, int64_t ts)
 {
        int64_t maxTs, period;
+       int catalog_index = sensor_info[s].catalog_index;
+       int is_accel      = (sensor_catalog[catalog_index].type == SENSOR_TYPE_ACCELEROMETER);
 
        /*
        *  A bit of a hack to please a bunch of cts tests. They
@@ -757,14 +813,18 @@ void set_report_ts(int s, int64_t ts)
                REPORTING_MODE(sensor_desc[s].flags) == SENSOR_FLAG_CONTINUOUS_MODE)
        {
                period = (int64_t) (1000000000LL / sensor_info[s].sampling_rate);
-               maxTs = sensor_info[s].report_ts + period;
+               maxTs = sensor_info[s].report_ts + (is_accel ? 1 : THRESHOLD) * period;
+               /* If we're too far behind get back on track */
+               if (ts - maxTs >= MAX_DELAY)
+                       maxTs = ts;
                sensor_info[s].report_ts = (ts < maxTs ? ts : maxTs);
        } else {
                sensor_info[s].report_ts = ts;
        }
 }
 
-static int integrate_device_report(int dev_num)
+
+static int integrate_device_report (int dev_num)
 {
        int len;
        int s,c;
@@ -773,7 +833,8 @@ static int integrate_device_report(int dev_num)
        unsigned char *target;
        unsigned char *source;
        int size;
-       int64_t ts;
+       int64_t ts = 0;
+       int ts_offset = 0;      /* Offset of iio timestamp, if provided */
 
        /* There's an incoming report on the specified iio device char dev fd */
 
@@ -787,8 +848,6 @@ static int integrate_device_report(int dev_num)
                return -1;
        }
 
-       ts = get_timestamp();
-
        len = read(device_fd[dev_num], buf, MAX_SENSOR_REPORT_SIZE);
 
        if (len == -1) {
@@ -803,7 +862,7 @@ static int integrate_device_report(int dev_num)
 
        for (s=0; s<MAX_SENSORS; s++)
                if (sensor_info[s].dev_num == dev_num &&
-                   sensor_info[s].enable_count) {
+                   sensor_info[s].enabled) {
 
                        sr_offset = 0;
 
@@ -825,24 +884,46 @@ static int integrate_device_report(int dev_num)
                        ALOGV("Sensor %d report available (%d bytes)\n", s,
                              sr_offset);
 
-                       set_report_ts(s, ts);
-                       sensor_info[s].report_pending = 1;
+                       sensor_info[s].report_pending = DATA_TRIGGER;
                        sensor_info[s].report_initialized = 1;
+                       set_report_ts(s, get_timestamp());
+
+                       ts_offset += sr_offset;
                }
 
        /* Tentatively switch to an any-motion trigger if conditions are met */
        enable_motion_trigger(dev_num);
 
+       /* If no iio timestamp channel was detected for this device, bail out */
+       if (!has_iio_ts[dev_num])
+               return 0;
+
+       /* Align on a 64 bits boundary */
+       ts_offset = (ts_offset + 7)/8*8;
+
+       /* If we read an amount of data consistent with timestamp presence */
+       if (len == ts_offset + (int) sizeof(int64_t))
+               ts = *(int64_t*) (buf + ts_offset);
+
+       if (ts == 0) {
+               ALOGV("Unreliable timestamp channel on iio dev %d\n", dev_num);
+               return 0;
+       }
+
+       ALOGV("Driver timestamp on iio device %d: ts=%lld\n", dev_num, ts);
+
+       for (s=0; s<MAX_SENSORS; s++)
+               if (sensor_info[s].dev_num == dev_num && sensor_info[s].enabled)
+                       set_report_ts(s, ts);
+
        return 0;
 }
 
 
-static int propagate_sensor_report(int s, struct sensors_event_t  *data)
+static int propagate_sensor_report (int s, struct sensors_event_t  *data)
 {
        /* There's a sensor report pending for this sensor ; transmit it */
 
-       int catalog_index = sensor_info[s].catalog_index;
-       int sensor_type   = sensor_catalog[catalog_index].type;
        int num_fields    = get_field_count(s);
        int c;
        unsigned char* current_sample;
@@ -853,18 +934,18 @@ static int propagate_sensor_report(int s, struct sensors_event_t  *data)
 
 
        /* Only return uncalibrated event if also gyro active */
-       if (sensor_type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED &&
-               sensor_info[sensor_info[s].pair_idx].enable_count != 0)
+       if (sensor_info[s].type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED &&
+               sensor_info[sensor_info[s].pair_idx].enabled != 0)
                        return 0;
 
        memset(data, 0, sizeof(sensors_event_t));
 
        data->version   = sizeof(sensors_event_t);
        data->sensor    = s;
-       data->type      = sensor_type;
+       data->type      = sensor_info[s].type;
        data->timestamp = sensor_info[s].report_ts;
 
-       ALOGV("Sample on sensor %d (type %d):\n", s, sensor_type);
+       ALOGV("Sample on sensor %d (type %d):\n", s, sensor_info[s].type);
 
        current_sample = sensor_info[s].report_buffer;
 
@@ -912,12 +993,12 @@ static void synthetize_duplicate_samples (void)
        for (s=0; s<sensor_count; s++) {
 
                /* Ignore disabled sensors */
-               if (!sensor_info[s].enable_count)
+               if (!sensor_info[s].enabled)
                        continue;
 
                /* If the sensor is continuously firing, leave it alone */
-               if (    sensor_info[s].selected_trigger !=
-                       sensor_info[s].motion_trigger_name)
+               if (sensor_info[s].selected_trigger !=
+                   sensor_info[s].motion_trigger_name)
                        continue;
 
                /* If we haven't seen a sample, there's nothing to duplicate */
@@ -940,7 +1021,7 @@ static void synthetize_duplicate_samples (void)
                if (target_ts <= current_ts) {
                        /* Mark the sensor for event generation */
                        set_report_ts(s, current_ts);
-                       sensor_info[s].report_pending = 1;
+                       sensor_info[s].report_pending = DATA_DUPLICATE;
                }
        }
 }
@@ -951,16 +1032,22 @@ static void integrate_thread_report (uint32_t tag)
        int s = tag - THREAD_REPORT_TAG_BASE;
        int len;
        int expected_len;
+       int64_t timestamp;
+       unsigned char current_sample[MAX_SENSOR_REPORT_SIZE];
 
-       expected_len = get_field_count(s) * sizeof(float);
+       expected_len = sizeof(int64_t) + get_field_count(s) * sizeof(float);
 
        len = read(sensor_info[s].thread_data_fd[0],
-                  sensor_info[s].report_buffer,
+                  current_sample,
                   expected_len);
 
+       memcpy(&timestamp, current_sample, sizeof(int64_t));
+       memcpy(sensor_info[s].report_buffer, sizeof(int64_t) + current_sample,
+                       expected_len - sizeof(int64_t));
+
        if (len == expected_len) {
-               set_report_ts(s, get_timestamp());
-               sensor_info[s].report_pending = 1;
+               set_report_ts(s, timestamp);
+               sensor_info[s].report_pending = DATA_SYSFS;
        }
 }
 
@@ -979,13 +1066,13 @@ static int get_poll_wait_timeout (void)
        int64_t period;
 
        /*
-        * Check if have have to deal with "terse" drivers that only send events
-        * when there is motion, despite the fact that the associated Android
-        * sensor type is continuous rather than on-change. In that case we have
-        * to duplicate events. Check deadline for the nearest upcoming event.
+        * Check if we're dealing with a driver that only send events when
+        * there is motion, despite the fact that the associated Android sensor
+        * type is continuous rather than on-change. In that case we have to
+        * duplicate events. Check deadline for the nearest upcoming event.
         */
        for (s=0; s<sensor_count; s++)
-               if (sensor_info[s].enable_count &&
+               if (sensor_info[s].enabled &&
                    sensor_info[s].selected_trigger ==
                    sensor_info[s].motion_trigger_name &&
                    sensor_info[s].sampling_rate) {
@@ -1033,15 +1120,16 @@ return_available_sensor_reports:
        for (s=0; s<sensor_count && returned_events < count; s++) {
                if (sensor_info[s].report_pending) {
                        event_count = 0;
-                       /* Lower flag */
-                       sensor_info[s].report_pending = 0;
 
                        /* Report this event if it looks OK */
                        event_count = propagate_sensor_report(s, &data[returned_events]);
 
+                       /* Lower flag */
+                       sensor_info[s].report_pending = 0;
+
                        /* Duplicate only if both cal & uncal are active */
-                       if (sensor_catalog[sensor_info[s].catalog_index].type == SENSOR_TYPE_GYROSCOPE &&
-                                       sensor_info[s].pair_idx && sensor_info[sensor_info[s].pair_idx].enable_count != 0) {
+                       if (sensor_info[s].type == SENSOR_TYPE_GYROSCOPE &&
+                                       sensor_info[s].pair_idx && sensor_info[sensor_info[s].pair_idx].enabled != 0) {
                                        struct gyro_cal* gyro_data = (struct gyro_cal*) sensor_info[s].cal_data;
 
                                        memcpy(&data[returned_events + event_count], &data[returned_events],
@@ -1123,6 +1211,25 @@ await_event:
 }
 
 
+static void tentative_switch_trigger (int s)
+{
+       /*
+        * Under certain situations it may be beneficial to use an alternate
+        * trigger:
+        *
+        * - for applications using the accelerometer with high sampling rates,
+        *   prefer the continuous trigger over the any-motion one, to avoid
+        *   jumps related to motion thresholds
+        */
+
+       if (is_fast_accelerometer(s) &&
+               !(sensor_info[s].quirks & QUIRK_TERSE_DRIVER) &&
+                       sensor_info[s].selected_trigger ==
+                               sensor_info[s].motion_trigger_name)
+               setup_trigger(s, sensor_info[s].init_trigger_name);
+}
+
+
 int sensor_set_delay(int s, int64_t ns)
 {
        /* Set the rate at which a specific sensor should report events */
@@ -1140,9 +1247,9 @@ int sensor_set_delay(int s, int64_t ns)
        int per_device_sampling_rate;
        int32_t min_delay_us = sensor_desc[s].minDelay;
        max_delay_t max_delay_us = sensor_desc[s].maxDelay;
-       float min_supported_rate = max_delay_us ? (1000000.0f / max_delay_us) : 1;
+       float min_supported_rate = max_delay_us ? (1000000.0 / max_delay_us) : 1;
        float max_supported_rate = 
-               (min_delay_us && min_delay_us != -1) ? (1000000.0f / min_delay_us) : 0;
+               (min_delay_us && min_delay_us != -1) ? (1000000.0 / min_delay_us) : 0;
        char freqs_buf[100];
        char* cursor;
        int n;
@@ -1206,7 +1313,7 @@ int sensor_set_delay(int s, int64_t ns)
                for (n=0; n<sensor_count; n++)
                        if (n != s && sensor_info[n].dev_num == dev_num &&
                            sensor_info[n].num_channels &&
-                           sensor_info[n].enable_count &&
+                           sensor_info[n].enabled &&
                            sensor_info[n].sampling_rate > new_sampling_rate)
                                new_sampling_rate= sensor_info[n].sampling_rate;
 
@@ -1251,13 +1358,11 @@ int sensor_set_delay(int s, int64_t ns)
                }
        }
 
-
        if (max_supported_rate &&
                new_sampling_rate > max_supported_rate) {
                new_sampling_rate = max_supported_rate;
        }
 
-
        /* If the desired rate is already active we're all set */
        if (new_sampling_rate == cur_sampling_rate)
                return 0;
@@ -1269,10 +1374,8 @@ int sensor_set_delay(int s, int64_t ns)
 
        sysfs_write_float(sysfs_path, new_sampling_rate);
 
-       /* Switch back to continuous sampling for accelerometer based games */
-       if (is_fast_accelerometer(s) && sensor_info[s].selected_trigger !=
-                                       sensor_info[s].init_trigger_name)
-               setup_trigger(s, sensor_info[s].init_trigger_name);
+       /* Check if it makes sense to use an alternate trigger */
+       tentative_switch_trigger(s);
 
        if (trig_sensors_per_dev[dev_num])
                enable_buffer(dev_num, 1);
@@ -1284,7 +1387,7 @@ int sensor_flush (int s)
 {
        /* If one shot or not enabled return -EINVAL */
        if (sensor_desc[s].flags & SENSOR_FLAG_ONE_SHOT_MODE ||
-               sensor_info[s].enable_count == 0)
+               sensor_info[s].enabled == 0)
                return -EINVAL;
 
        sensor_info[s].meta_data_pending++;