OSDN Git Service

IRDA-3484: Add support for filter property
[android-x86/hardware-intel-libsensors.git] / filtering.c
index bcaaada..510737c 100644 (file)
@@ -1,29 +1,31 @@
-#include <stdlib.h>
+/*
+ * Copyright (C) 2014 Intel Corporation.
+ */
+
 #include <hardware/sensors.h>
-#include <math.h>
-#include <pthread.h>
 #include <utils/Log.h>
 #include "common.h"
 #include "filtering.h"
+#include "description.h"
 
-
-struct filter_median
+typedef struct
 {
        float* buff;
        unsigned int idx;
        unsigned int count;
        unsigned int sample_size;
-};
+}
+filter_median_t;
 
-static unsigned int partition(float* list, unsigned int left,
-       unsigned int right, unsigned int pivot_index)
+
+static unsigned int partition (float* list, unsigned int left, unsigned int right, unsigned int pivot_index)
 {
        unsigned int i;
        unsigned int store_index = left;
        float aux;
        float pivot_value = list[pivot_index];
 
-       // swap list[pivotIndex] and list[right]
+       /* Swap list[pivotIndex] and list[right] */
        aux = list[pivot_index];
        list[pivot_index] = list[right];
        list[right] = aux;
@@ -32,23 +34,26 @@ static unsigned int partition(float* list, unsigned int left,
        {
                if (list[i] < pivot_value)
                {
-                       // swap list[store_index] and list[i]
+                       /* Swap list[store_index] and list[i] */
                        aux = list[store_index];
                        list[store_index] = list[i];
                        list[i] = aux;
                        store_index++;
                }
        }
-       //swap list[right] and list[store_index]
+
+       /* Swap list[right] and list[store_index] */
        aux = list[right];
        list[right] = list[store_index];
        list[store_index] = aux;
        return store_index;
 }
 
-/* http://en.wikipedia.org/wiki/Quickselect */
-float median(float* queue, unsigned int size)
+
+static float median (float* queue, unsigned int size)
 {
+       /* http://en.wikipedia.org/wiki/Quickselect */
+
        unsigned int left = 0;
        unsigned int right = size - 1;
        unsigned int pivot_index;
@@ -75,39 +80,44 @@ float median(float* queue, unsigned int size)
        return temp[left];
 }
 
-void denoise_median_init(int s, unsigned int num_fields,
-       unsigned int max_samples)
+
+static void denoise_median_init (int s, unsigned int num_fields, unsigned int max_samples)
 {
-       struct filter_median* f_data = (struct filter_median*) calloc(1, sizeof(struct filter_median));
-       f_data->buff = (float*)calloc(max_samples,
-               sizeof(float) * num_fields);
+       filter_median_t* f_data = (filter_median_t*) malloc(sizeof(filter_median_t));
+
+       f_data->buff = (float*) calloc(max_samples, sizeof(float) * num_fields);
        f_data->sample_size = max_samples;
        f_data->count = 0;
        f_data->idx = 0;
-       sensor_info[s].filter = f_data;
+       sensor[s].filter = f_data;
 }
 
-void denoise_median_release(int s)
+
+static void denoise_median_reset (sensor_info_t* info)
 {
-       if (!sensor_info[s].filter)
+       filter_median_t* f_data = (filter_median_t*) info->filter;
+
+       if (!f_data)
                return;
 
-       free(((struct filter_median*)sensor_info[s].filter)->buff);
-       free(sensor_info[s].filter);
-       sensor_info[s].filter = NULL;
+       f_data->count = 0;
+       f_data->idx = 0;
 }
 
-void denoise_median(struct sensor_info_t* info, struct sensors_event_t* data,
-                                       unsigned int num_fields)
+
+static void denoise_median (sensor_info_t* info, sensors_event_t* data, unsigned int num_fields)
 {
        float x, y, z;
        float scale;
        unsigned int field, offset;
 
-       struct filter_median* f_data = (struct filter_median*) info->filter;
+       filter_median_t* f_data = (filter_median_t*) info->filter;
        if (!f_data)
                return;
 
+       /* If we are at event count 1 reset the indices */
+       if (info->event_count == 1)
+               denoise_median_reset(info);
 
        if (f_data->count < f_data->sample_size)
                f_data->count++;
@@ -123,38 +133,181 @@ void denoise_median(struct sensor_info_t* info, struct sensors_event_t* data,
 }
 
 
+static void denoise_average (sensor_info_t* si, sensors_event_t* data, int num_fields, int max_samples)
+{
+       /*
+        * Smooth out incoming data using a moving average over a number of
+        * samples. We accumulate one second worth of samples, or max_samples,
+        * depending on which is lower.
+        */
+
+       int i;
+       int f;
+       int sampling_rate = (int) si->sampling_rate;
+       int history_size;
+       int history_full = 0;
+
+       /* Don't denoise anything if we have less than two samples per second */
+       if (sampling_rate < 2)
+               return;
+
+       /* Restrict window size to the min of sampling_rate and max_samples */
+       if (sampling_rate > max_samples)
+               history_size = max_samples;
+       else
+               history_size = sampling_rate;
+
+       /* Reset history if we're operating on an incorrect window size */
+       if (si->history_size != history_size) {
+               si->history_size = history_size;
+               si->history_entries = 0;
+               si->history_index = 0;
+               si->history = (float*) realloc(si->history, si->history_size * num_fields * sizeof(float));
+               if (si->history) {
+                       si->history_sum = (float*) realloc(si->history_sum, num_fields * sizeof(float));
+                       if (si->history_sum)
+                               memset(si->history_sum, 0, num_fields * sizeof(float));
+               }
+       }
+
+       if (!si->history || !si->history_sum)
+               return; /* Unlikely, but still... */
+
+       /* Update initialized samples count */
+       if (si->history_entries < si->history_size)
+               si->history_entries++;
+       else
+               history_full = 1;
+
+       /* Record new sample and calculate the moving sum */
+       for (f=0; f < num_fields; f++) {
+               /** A field is going to be overwritten if history is full, so decrease the history sum */
+               if (history_full)
+                       si->history_sum[f] -=
+                               si->history[si->history_index * num_fields + f];
+
+               si->history[si->history_index * num_fields + f] = data->data[f];
+               si->history_sum[f] += data->data[f];
+
+               /* For now simply compute a mobile mean for each field and output filtered data */
+               data->data[f] = si->history_sum[f] / si->history_entries;
+       }
+
+       /* Update our rolling index (next evicted cell) */
+       si->history_index = (si->history_index + 1) % si->history_size;
+}
+
+
+void setup_noise_filtering (int s)
+{
+       char filter_buf[MAX_NAME_SIZE];
+
+       /* By default, don't apply filtering */
+       sensor[s].filter_type = FILTER_TYPE_NONE;
+
+       /* If noisy, start with default filter for sensor type */
+       if (sensor[s].quirks & QUIRK_NOISY)
+               switch (sensor[s].type) {
+                       case SENSOR_TYPE_GYROSCOPE:
+                               sensor[s].filter_type = FILTER_TYPE_MEDIAN;
+                               break;
+
+                       case SENSOR_TYPE_MAGNETIC_FIELD:
+                               sensor[s].filter_type = FILTER_TYPE_MOVING_AVERAGE;
+                               break;
+               }
+
+       /* Use whatever was specified if there's an explicit configuration choice for this sensor */
+
+       filter_buf[0] = '\0';
+       sensor_get_st_prop(s, "filter", filter_buf);
+
+       if (strstr(filter_buf, "median"))
+               sensor[s].filter_type = FILTER_TYPE_MEDIAN;
+
+       if (strstr(filter_buf, "average"))
+               sensor[s].filter_type = FILTER_TYPE_MOVING_AVERAGE;
+
+       switch (sensor[s].filter_type) {
+               case FILTER_TYPE_MEDIAN:
+                       denoise_median_init(s, 3, 5);
+                       break;
+       }
+}
+
+
+void denoise (int s, sensors_event_t* data)
+{
+       switch (sensor[s].filter_type) {
+               case FILTER_TYPE_MEDIAN:
+                       denoise_median(&sensor[s], data, 3);
+                       break;
+
+               case FILTER_TYPE_MOVING_AVERAGE:
+                       denoise_average(&sensor[s], data, 3 , 20);
+                       break;
+       }
+}
+
+
+void release_noise_filtering_data (int s)
+{
+       void *buff;
+
+       /* Delete moving average structures */
+       if (sensor[s].history) {
+               free(sensor[s].history);
+               sensor[s].history = NULL;
+               sensor[s].history_size = 0;
+               if (sensor[s].history_sum) {
+                       free(sensor[s].history_sum);
+                       sensor[s].history_sum = NULL;
+               }
+       }
+
+       /* Delete median filter structures */
+       if (sensor[s].filter) {
+               buff = ((filter_median_t*) sensor[s].filter)->buff;
+
+               if (buff)
+                       free(buff);
+
+               free(sensor[s].filter);
+               sensor[s].filter = NULL;
+       }
+}
+
+
 #define GLOBAL_HISTORY_SIZE 100
 
-struct recorded_sample_t
+typedef struct
 {
        int sensor;
        int motion_trigger;
        sensors_event_t data;
-};
+}
+recorded_sample_t;
 
 /*
- * This is a circular buffer holding the last GLOBAL_HISTORY_SIZE events,
- * covering the entire sensor collection. It is intended as a way to correlate
- * data coming from active sensors, no matter the sensor type, over a recent
- * window of time. The array is not sorted ; we simply evict the oldest cell
- * (by insertion time) and replace its contents. Timestamps don't necessarily
- * grow monotonically as they tell the data acquisition type, and that there can
- * be a delay between acquisition and insertion into this table.
+ * This is a circular buffer holding the last GLOBAL_HISTORY_SIZE events, covering the entire sensor collection. It is intended as a way to correlate
+ * data coming from active sensors, no matter the sensor type, over a recent window of time. The array is not sorted ; we simply evict the oldest cell
+ * (by insertion time) and replace its contents. Timestamps don't necessarily grow monotonically as they tell the data acquisition type, and that there
+ * can be a delay between acquisition and insertion into this table.
  */
 
-static struct recorded_sample_t global_history[GLOBAL_HISTORY_SIZE];
+static recorded_sample_t global_history[GLOBAL_HISTORY_SIZE];
 
 static int initialized_entries;        /* How many of these are initialized          */
 static int insertion_index;    /* Index of sample to evict next time         */
 
 
-void record_sample (int s, const struct sensors_event_t* event)
+void record_sample (int s, const sensors_event_t* event)
 {
-       struct recorded_sample_t *cell;
+       recorded_sample_t *cell;
        int i;
 
        /* Don't record duplicate samples, as they are not useful for filters */
-       if (sensor_info[s].report_pending == DATA_DUPLICATE)
+       if (sensor[s].report_pending == DATA_DUPLICATE)
                return;
 
        if (initialized_entries == GLOBAL_HISTORY_SIZE) {
@@ -167,10 +320,9 @@ void record_sample (int s, const struct sensors_event_t* event)
 
        cell = &global_history[i];
 
-       cell->sensor            = s;
+       cell->sensor = s;
 
-       cell->motion_trigger    = (sensor_info[s].selected_trigger ==
-                                  sensor_info[s].motion_trigger_name);
+       cell->motion_trigger = (sensor[s].selected_trigger == sensor[s].motion_trigger_name);
 
        memcpy(&cell->data, event, sizeof(sensors_event_t));
 }