OSDN Git Service

Merge branch 'master' into ysato-h8300
[uclinux-h8/linux.git] / include / linux / clocksource.h
index abcafaa..d27d015 100644 (file)
@@ -18,8 +18,6 @@
 #include <asm/div64.h>
 #include <asm/io.h>
 
-/* clocksource cycle base type */
-typedef u64 cycle_t;
 struct clocksource;
 struct module;
 
@@ -28,106 +26,6 @@ struct module;
 #endif
 
 /**
- * struct cyclecounter - hardware abstraction for a free running counter
- *     Provides completely state-free accessors to the underlying hardware.
- *     Depending on which hardware it reads, the cycle counter may wrap
- *     around quickly. Locking rules (if necessary) have to be defined
- *     by the implementor and user of specific instances of this API.
- *
- * @read:              returns the current cycle value
- * @mask:              bitmask for two's complement
- *                     subtraction of non 64 bit counters,
- *                     see CLOCKSOURCE_MASK() helper macro
- * @mult:              cycle to nanosecond multiplier
- * @shift:             cycle to nanosecond divisor (power of two)
- */
-struct cyclecounter {
-       cycle_t (*read)(const struct cyclecounter *cc);
-       cycle_t mask;
-       u32 mult;
-       u32 shift;
-};
-
-/**
- * struct timecounter - layer above a %struct cyclecounter which counts nanoseconds
- *     Contains the state needed by timecounter_read() to detect
- *     cycle counter wrap around. Initialize with
- *     timecounter_init(). Also used to convert cycle counts into the
- *     corresponding nanosecond counts with timecounter_cyc2time(). Users
- *     of this code are responsible for initializing the underlying
- *     cycle counter hardware, locking issues and reading the time
- *     more often than the cycle counter wraps around. The nanosecond
- *     counter will only wrap around after ~585 years.
- *
- * @cc:                        the cycle counter used by this instance
- * @cycle_last:                most recent cycle counter value seen by
- *                     timecounter_read()
- * @nsec:              continuously increasing count
- */
-struct timecounter {
-       const struct cyclecounter *cc;
-       cycle_t cycle_last;
-       u64 nsec;
-};
-
-/**
- * cyclecounter_cyc2ns - converts cycle counter cycles to nanoseconds
- * @cc:                Pointer to cycle counter.
- * @cycles:    Cycles
- *
- * XXX - This could use some mult_lxl_ll() asm optimization. Same code
- * as in cyc2ns, but with unsigned result.
- */
-static inline u64 cyclecounter_cyc2ns(const struct cyclecounter *cc,
-                                     cycle_t cycles)
-{
-       u64 ret = (u64)cycles;
-       ret = (ret * cc->mult) >> cc->shift;
-       return ret;
-}
-
-/**
- * timecounter_init - initialize a time counter
- * @tc:                        Pointer to time counter which is to be initialized/reset
- * @cc:                        A cycle counter, ready to be used.
- * @start_tstamp:      Arbitrary initial time stamp.
- *
- * After this call the current cycle register (roughly) corresponds to
- * the initial time stamp. Every call to timecounter_read() increments
- * the time stamp counter by the number of elapsed nanoseconds.
- */
-extern void timecounter_init(struct timecounter *tc,
-                            const struct cyclecounter *cc,
-                            u64 start_tstamp);
-
-/**
- * timecounter_read - return nanoseconds elapsed since timecounter_init()
- *                    plus the initial time stamp
- * @tc:          Pointer to time counter.
- *
- * In other words, keeps track of time since the same epoch as
- * the function which generated the initial time stamp.
- */
-extern u64 timecounter_read(struct timecounter *tc);
-
-/**
- * timecounter_cyc2time - convert a cycle counter to same
- *                        time base as values returned by
- *                        timecounter_read()
- * @tc:                Pointer to time counter.
- * @cycle_tstamp:      a value returned by tc->cc->read()
- *
- * Cycle counts that are converted correctly as long as they
- * fall into the interval [-1/2 max cycle count, +1/2 max cycle count],
- * with "max cycle count" == cs->mask+1.
- *
- * This allows conversion of cycle counter values which were generated
- * in the past.
- */
-extern u64 timecounter_cyc2time(struct timecounter *tc,
-                               cycle_t cycle_tstamp);
-
-/**
  * struct clocksource - hardware abstraction for a free running counter
  *     Provides mostly state-free accessors to the underlying hardware.
  *     This is the structure used for system time.
@@ -158,6 +56,7 @@ extern u64 timecounter_cyc2time(struct timecounter *tc,
  * @shift:             cycle to nanosecond divisor (power of two)
  * @max_idle_ns:       max idle time permitted by the clocksource (nsecs)
  * @maxadj:            maximum adjustment value to mult (~11%)
+ * @max_cycles:                maximum safe cycle value which won't overflow on multiplication
  * @flags:             flags describing special properties
  * @archdata:          arch-specific data
  * @suspend:           suspend function for the clocksource, if necessary
@@ -178,7 +77,7 @@ struct clocksource {
 #ifdef CONFIG_ARCH_CLOCKSOURCE_DATA
        struct arch_clocksource_data archdata;
 #endif
-
+       u64 max_cycles;
        const char *name;
        struct list_head list;
        int rating;
@@ -280,7 +179,6 @@ static inline s64 clocksource_cyc2ns(cycle_t cycles, u32 mult, u32 shift)
 }
 
 
-extern int clocksource_register(struct clocksource*);
 extern int clocksource_unregister(struct clocksource*);
 extern void clocksource_touch_watchdog(void);
 extern struct clocksource* clocksource_get_next(void);
@@ -291,7 +189,7 @@ extern struct clocksource * __init clocksource_default_clock(void);
 extern void clocksource_mark_unstable(struct clocksource *cs);
 
 extern u64
-clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask);
+clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cycles);
 extern void
 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 minsec);
 
@@ -302,7 +200,16 @@ clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 minsec);
 extern int
 __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq);
 extern void
-__clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq);
+__clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq);
+
+/*
+ * Don't call this unless you are a default clocksource
+ * (AKA: jiffies) and absolutely have to.
+ */
+static inline int __clocksource_register(struct clocksource *cs)
+{
+       return __clocksource_register_scale(cs, 1, 0);
+}
 
 static inline int clocksource_register_hz(struct clocksource *cs, u32 hz)
 {
@@ -314,14 +221,14 @@ static inline int clocksource_register_khz(struct clocksource *cs, u32 khz)
        return __clocksource_register_scale(cs, 1000, khz);
 }
 
-static inline void __clocksource_updatefreq_hz(struct clocksource *cs, u32 hz)
+static inline void __clocksource_update_freq_hz(struct clocksource *cs, u32 hz)
 {
-       __clocksource_updatefreq_scale(cs, 1, hz);
+       __clocksource_update_freq_scale(cs, 1, hz);
 }
 
-static inline void __clocksource_updatefreq_khz(struct clocksource *cs, u32 khz)
+static inline void __clocksource_update_freq_khz(struct clocksource *cs, u32 khz)
 {
-       __clocksource_updatefreq_scale(cs, 1000, khz);
+       __clocksource_update_freq_scale(cs, 1000, khz);
 }
 
 
@@ -346,4 +253,10 @@ extern void clocksource_of_init(void);
 static inline void clocksource_of_init(void) {}
 #endif
 
+#ifdef CONFIG_ACPI
+void acpi_generic_timer_init(void);
+#else
+static inline void acpi_generic_timer_init(void) { }
+#endif
+
 #endif /* _LINUX_CLOCKSOURCE_H */