OSDN Git Service

gl_VertexID implementation
[android-x86/external-swiftshader.git] / src / OpenGL / compiler / ParseHelper.cpp
index 22e38a7..7cca42c 100644 (file)
@@ -1,8 +1,16 @@
+// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
 //
-// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
 //
+//    http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
 
 #include "ParseHelper.h"
 
@@ -11,6 +19,8 @@
 
 #include "glslang.h"
 #include "preprocessor/SourceLocation.h"
+#include "ValidateGlobalInitializer.h"
+#include "ValidateSwitch.h"
 
 ///////////////////////////////////////////////////////////////////////
 //
 //
 ////////////////////////////////////////////////////////////////////////
 
+namespace
+{
+       bool IsVaryingOut(TQualifier qualifier)
+       {
+               switch(qualifier)
+               {
+               case EvqVaryingOut:
+               case EvqSmoothOut:
+               case EvqFlatOut:
+               case EvqCentroidOut:
+               case EvqVertexOut:
+                       return true;
+
+               default: break;
+               }
+
+               return false;
+       }
+
+       bool IsVaryingIn(TQualifier qualifier)
+       {
+               switch(qualifier)
+               {
+               case EvqVaryingIn:
+               case EvqSmoothIn:
+               case EvqFlatIn:
+               case EvqCentroidIn:
+               case EvqFragmentIn:
+                       return true;
+
+               default: break;
+               }
+
+               return false;
+       }
+
+       bool IsVarying(TQualifier qualifier)
+       {
+               return IsVaryingIn(qualifier) || IsVaryingOut(qualifier);
+       }
+
+       bool IsAssignment(TOperator op)
+       {
+               switch(op)
+               {
+               case EOpPostIncrement:
+               case EOpPostDecrement:
+               case EOpPreIncrement:
+               case EOpPreDecrement:
+               case EOpAssign:
+               case EOpAddAssign:
+               case EOpSubAssign:
+               case EOpMulAssign:
+               case EOpVectorTimesMatrixAssign:
+               case EOpVectorTimesScalarAssign:
+               case EOpMatrixTimesScalarAssign:
+               case EOpMatrixTimesMatrixAssign:
+               case EOpDivAssign:
+               case EOpIModAssign:
+               case EOpBitShiftLeftAssign:
+               case EOpBitShiftRightAssign:
+               case EOpBitwiseAndAssign:
+               case EOpBitwiseXorAssign:
+               case EOpBitwiseOrAssign:
+                       return true;
+               default:
+                       return false;
+               }
+       }
+}
+
 //
 // Look at a '.' field selector string and change it into offsets
 // for a vector.
 //
-bool TParseContext::parseVectorFields(const TString& compString, int vecSize, TVectorFields& fields, int line)
-{
-    fields.num = (int) compString.size();
-    if (fields.num > 4) {
-        error(line, "illegal vector field selection", compString.c_str());
-        return false;
-    }
-
-    enum {
-        exyzw,
-        ergba,
-        estpq
-    } fieldSet[4];
-
-    for (int i = 0; i < fields.num; ++i) {
-        switch (compString[i])  {
-        case 'x':
-            fields.offsets[i] = 0;
-            fieldSet[i] = exyzw;
-            break;
-        case 'r':
-            fields.offsets[i] = 0;
-            fieldSet[i] = ergba;
-            break;
-        case 's':
-            fields.offsets[i] = 0;
-            fieldSet[i] = estpq;
-            break;
-        case 'y':
-            fields.offsets[i] = 1;
-            fieldSet[i] = exyzw;
-            break;
-        case 'g':
-            fields.offsets[i] = 1;
-            fieldSet[i] = ergba;
-            break;
-        case 't':
-            fields.offsets[i] = 1;
-            fieldSet[i] = estpq;
-            break;
-        case 'z':
-            fields.offsets[i] = 2;
-            fieldSet[i] = exyzw;
-            break;
-        case 'b':
-            fields.offsets[i] = 2;
-            fieldSet[i] = ergba;
-            break;
-        case 'p':
-            fields.offsets[i] = 2;
-            fieldSet[i] = estpq;
-            break;
-        case 'w':
-            fields.offsets[i] = 3;
-            fieldSet[i] = exyzw;
-            break;
-        case 'a':
-            fields.offsets[i] = 3;
-            fieldSet[i] = ergba;
-            break;
-        case 'q':
-            fields.offsets[i] = 3;
-            fieldSet[i] = estpq;
-            break;
-        default:
-            error(line, "illegal vector field selection", compString.c_str());
-            return false;
-        }
-    }
-
-    for (int i = 0; i < fields.num; ++i) {
-        if (fields.offsets[i] >= vecSize) {
-            error(line, "vector field selection out of range",  compString.c_str());
-            return false;
-        }
-
-        if (i > 0) {
-            if (fieldSet[i] != fieldSet[i-1]) {
-                error(line, "illegal - vector component fields not from the same set", compString.c_str());
-                return false;
-            }
-        }
-    }
-
-    return true;
+bool TParseContext::parseVectorFields(const TString& compString, int vecSize, TVectorFields& fields, const TSourceLoc &line)
+{
+       fields.num = (int) compString.size();
+       if (fields.num > 4) {
+               error(line, "illegal vector field selection", compString.c_str());
+               return false;
+       }
+
+       enum {
+               exyzw,
+               ergba,
+               estpq
+       } fieldSet[4];
+
+       for (int i = 0; i < fields.num; ++i) {
+               switch (compString[i])  {
+               case 'x':
+                       fields.offsets[i] = 0;
+                       fieldSet[i] = exyzw;
+                       break;
+               case 'r':
+                       fields.offsets[i] = 0;
+                       fieldSet[i] = ergba;
+                       break;
+               case 's':
+                       fields.offsets[i] = 0;
+                       fieldSet[i] = estpq;
+                       break;
+               case 'y':
+                       fields.offsets[i] = 1;
+                       fieldSet[i] = exyzw;
+                       break;
+               case 'g':
+                       fields.offsets[i] = 1;
+                       fieldSet[i] = ergba;
+                       break;
+               case 't':
+                       fields.offsets[i] = 1;
+                       fieldSet[i] = estpq;
+                       break;
+               case 'z':
+                       fields.offsets[i] = 2;
+                       fieldSet[i] = exyzw;
+                       break;
+               case 'b':
+                       fields.offsets[i] = 2;
+                       fieldSet[i] = ergba;
+                       break;
+               case 'p':
+                       fields.offsets[i] = 2;
+                       fieldSet[i] = estpq;
+                       break;
+               case 'w':
+                       fields.offsets[i] = 3;
+                       fieldSet[i] = exyzw;
+                       break;
+               case 'a':
+                       fields.offsets[i] = 3;
+                       fieldSet[i] = ergba;
+                       break;
+               case 'q':
+                       fields.offsets[i] = 3;
+                       fieldSet[i] = estpq;
+                       break;
+               default:
+                       error(line, "illegal vector field selection", compString.c_str());
+                       return false;
+               }
+       }
+
+       for (int i = 0; i < fields.num; ++i) {
+               if (fields.offsets[i] >= vecSize) {
+                       error(line, "vector field selection out of range",  compString.c_str());
+                       return false;
+               }
+
+               if (i > 0) {
+                       if (fieldSet[i] != fieldSet[i-1]) {
+                               error(line, "illegal - vector component fields not from the same set", compString.c_str());
+                               return false;
+                       }
+               }
+       }
+
+       return true;
 }
 
 
@@ -114,48 +195,48 @@ bool TParseContext::parseVectorFields(const TString& compString, int vecSize, TV
 // Look at a '.' field selector string and change it into offsets
 // for a matrix.
 //
-bool TParseContext::parseMatrixFields(const TString& compString, int matCols, int matRows, TMatrixFields& fields, int line)
-{
-    fields.wholeRow = false;
-    fields.wholeCol = false;
-    fields.row = -1;
-    fields.col = -1;
-
-    if (compString.size() != 2) {
-        error(line, "illegal length of matrix field selection", compString.c_str());
-        return false;
-    }
-
-    if (compString[0] == '_') {
-        if (compString[1] < '0' || compString[1] > '3') {
-            error(line, "illegal matrix field selection", compString.c_str());
-            return false;
-        }
-        fields.wholeCol = true;
-        fields.col = compString[1] - '0';
-    } else if (compString[1] == '_') {
-        if (compString[0] < '0' || compString[0] > '3') {
-            error(line, "illegal matrix field selection", compString.c_str());
-            return false;
-        }
-        fields.wholeRow = true;
-        fields.row = compString[0] - '0';
-    } else {
-        if (compString[0] < '0' || compString[0] > '3' ||
-            compString[1] < '0' || compString[1] > '3') {
-            error(line, "illegal matrix field selection", compString.c_str());
-            return false;
-        }
-        fields.row = compString[0] - '0';
-        fields.col = compString[1] - '0';
-    }
-
-    if (fields.row >= matRows || fields.col >= matCols) {
-        error(line, "matrix field selection out of range", compString.c_str());
-        return false;
-    }
-
-    return true;
+bool TParseContext::parseMatrixFields(const TString& compString, int matCols, int matRows, TMatrixFields& fields, const TSourceLoc &line)
+{
+       fields.wholeRow = false;
+       fields.wholeCol = false;
+       fields.row = -1;
+       fields.col = -1;
+
+       if (compString.size() != 2) {
+               error(line, "illegal length of matrix field selection", compString.c_str());
+               return false;
+       }
+
+       if (compString[0] == '_') {
+               if (compString[1] < '0' || compString[1] > '3') {
+                       error(line, "illegal matrix field selection", compString.c_str());
+                       return false;
+               }
+               fields.wholeCol = true;
+               fields.col = compString[1] - '0';
+       } else if (compString[1] == '_') {
+               if (compString[0] < '0' || compString[0] > '3') {
+                       error(line, "illegal matrix field selection", compString.c_str());
+                       return false;
+               }
+               fields.wholeRow = true;
+               fields.row = compString[0] - '0';
+       } else {
+               if (compString[0] < '0' || compString[0] > '3' ||
+                       compString[1] < '0' || compString[1] > '3') {
+                       error(line, "illegal matrix field selection", compString.c_str());
+                       return false;
+               }
+               fields.row = compString[0] - '0';
+               fields.col = compString[1] - '0';
+       }
+
+       if (fields.row >= matRows || fields.col >= matCols) {
+               error(line, "matrix field selection out of range", compString.c_str());
+               return false;
+       }
+
+       return true;
 }
 
 ///////////////////////////////////////////////////////////////////////
@@ -174,86 +255,84 @@ void TParseContext::recover()
 //
 // Used by flex/bison to output all syntax and parsing errors.
 //
-void TParseContext::error(TSourceLoc loc,
-                          const char* reason, const char* token,
-                          const char* extraInfo)
+void TParseContext::error(const TSourceLoc& loc,
+                                                 const char* reason, const char* token,
+                                                 const char* extraInfo)
 {
-    pp::SourceLocation srcLoc;
-    DecodeSourceLoc(loc, &srcLoc.file, &srcLoc.line);
-    diagnostics.writeInfo(pp::Diagnostics::PP_ERROR,
-                          srcLoc, reason, token, extraInfo);
+       pp::SourceLocation srcLoc(loc.first_file, loc.first_line);
+       mDiagnostics.writeInfo(pp::Diagnostics::PP_ERROR,
+                                                  srcLoc, reason, token, extraInfo);
 
 }
 
-void TParseContext::warning(TSourceLoc loc,
-                            const char* reason, const char* token,
-                            const char* extraInfo) {
-    pp::SourceLocation srcLoc;
-    DecodeSourceLoc(loc, &srcLoc.file, &srcLoc.line);
-    diagnostics.writeInfo(pp::Diagnostics::PP_WARNING,
-                          srcLoc, reason, token, extraInfo);
+void TParseContext::warning(const TSourceLoc& loc,
+                                                       const char* reason, const char* token,
+                                                       const char* extraInfo) {
+       pp::SourceLocation srcLoc(loc.first_file, loc.first_line);
+       mDiagnostics.writeInfo(pp::Diagnostics::PP_WARNING,
+                                                  srcLoc, reason, token, extraInfo);
 }
 
 void TParseContext::trace(const char* str)
 {
-    diagnostics.writeDebug(str);
+       mDiagnostics.writeDebug(str);
 }
 
 //
 // Same error message for all places assignments don't work.
 //
-void TParseContext::assignError(int line, const char* op, TString left, TString right)
+void TParseContext::assignError(const TSourceLoc &line, const char* op, TString left, TString right)
 {
-    std::stringstream extraInfoStream;
-    extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'";
-    std::string extraInfo = extraInfoStream.str();
-    error(line, "", op, extraInfo.c_str());
+       std::stringstream extraInfoStream;
+       extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'";
+       std::string extraInfo = extraInfoStream.str();
+       error(line, "", op, extraInfo.c_str());
 }
 
 //
 // Same error message for all places unary operations don't work.
 //
-void TParseContext::unaryOpError(int line, const char* op, TString operand)
+void TParseContext::unaryOpError(const TSourceLoc &line, const char* op, TString operand)
 {
-    std::stringstream extraInfoStream;
-    extraInfoStream << "no operation '" << op << "' exists that takes an operand of type " << operand
-                    << " (or there is no acceptable conversion)";
-    std::string extraInfo = extraInfoStream.str();
-    error(line, " wrong operand type", op, extraInfo.c_str());
+       std::stringstream extraInfoStream;
+       extraInfoStream << "no operation '" << op << "' exists that takes an operand of type " << operand
+                                       << " (or there is no acceptable conversion)";
+       std::string extraInfo = extraInfoStream.str();
+       error(line, " wrong operand type", op, extraInfo.c_str());
 }
 
 //
 // Same error message for all binary operations don't work.
 //
-void TParseContext::binaryOpError(int line, const char* op, TString left, TString right)
-{
-    std::stringstream extraInfoStream;
-    extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '" << left 
-                    << "' and a right operand of type '" << right << "' (or there is no acceptable conversion)";
-    std::string extraInfo = extraInfoStream.str();
-    error(line, " wrong operand types ", op, extraInfo.c_str());
-}
-
-bool TParseContext::precisionErrorCheck(int line, TPrecision precision, TBasicType type){
-    if (!checksPrecisionErrors)
-        return false;
-    switch( type ){
-    case EbtFloat:
-        if( precision == EbpUndefined ){
-            error( line, "No precision specified for (float)", "" );
-            return true;
-        }
-        break;
-    case EbtInt:
-        if( precision == EbpUndefined ){
-            error( line, "No precision specified (int)", "" );
-            return true;
-        }
-        break;
-    default:
-        return false;
-    }
-    return false;
+void TParseContext::binaryOpError(const TSourceLoc &line, const char* op, TString left, TString right)
+{
+       std::stringstream extraInfoStream;
+       extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '" << left
+                                       << "' and a right operand of type '" << right << "' (or there is no acceptable conversion)";
+       std::string extraInfo = extraInfoStream.str();
+       error(line, " wrong operand types ", op, extraInfo.c_str());
+}
+
+bool TParseContext::precisionErrorCheck(const TSourceLoc &line, TPrecision precision, TBasicType type){
+       if (!mChecksPrecisionErrors)
+               return false;
+       switch( type ){
+       case EbtFloat:
+               if( precision == EbpUndefined ){
+                       error( line, "No precision specified for (float)", "" );
+                       return true;
+               }
+               break;
+       case EbtInt:
+               if( precision == EbpUndefined ){
+                       error( line, "No precision specified (int)", "" );
+                       return true;
+               }
+               break;
+       default:
+               return false;
+       }
+       return false;
 }
 
 //
@@ -262,115 +341,117 @@ bool TParseContext::precisionErrorCheck(int line, TPrecision precision, TBasicTy
 //
 // Returns true if the was an error.
 //
-bool TParseContext::lValueErrorCheck(int line, const char* op, TIntermTyped* node)
-{
-    TIntermSymbol* symNode = node->getAsSymbolNode();
-    TIntermBinary* binaryNode = node->getAsBinaryNode();
-
-    if (binaryNode) {
-        bool errorReturn;
-
-        switch(binaryNode->getOp()) {
-        case EOpIndexDirect:
-        case EOpIndexIndirect:
-        case EOpIndexDirectStruct:
-            return lValueErrorCheck(line, op, binaryNode->getLeft());
-        case EOpVectorSwizzle:
-            errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft());
-            if (!errorReturn) {
-                int offset[4] = {0,0,0,0};
-
-                TIntermTyped* rightNode = binaryNode->getRight();
-                TIntermAggregate *aggrNode = rightNode->getAsAggregate();
-
-                for (TIntermSequence::iterator p = aggrNode->getSequence().begin();
-                                               p != aggrNode->getSequence().end(); p++) {
-                    int value = (*p)->getAsTyped()->getAsConstantUnion()->getIConst(0);
-                    offset[value]++;
-                    if (offset[value] > 1) {
-                        error(line, " l-value of swizzle cannot have duplicate components", op);
-
-                        return true;
-                    }
-                }
-            }
-
-            return errorReturn;
-        default:
-            break;
-        }
-        error(line, " l-value required", op);
-
-        return true;
-    }
-
-
-    const char* symbol = 0;
-    if (symNode != 0)
-        symbol = symNode->getSymbol().c_str();
-
-    const char* message = 0;
-    switch (node->getQualifier()) {
-    case EvqConstExpr:      message = "can't modify a const";        break;
-    case EvqConstReadOnly:  message = "can't modify a const";        break;
-    case EvqAttribute:      message = "can't modify an attribute";   break;
-    case EvqFragmentIn:     message = "can't modify an input";       break;
-    case EvqVertexIn:       message = "can't modify an input";       break;
-    case EvqUniform:        message = "can't modify a uniform";      break;
-    case EvqSmoothIn:
-    case EvqFlatIn:
-    case EvqCentroidIn:
-    case EvqVaryingIn:      message = "can't modify a varying";      break;
-    case EvqInput:          message = "can't modify an input";       break;
-    case EvqFragCoord:      message = "can't modify gl_FragCoord";   break;
-    case EvqFrontFacing:    message = "can't modify gl_FrontFacing"; break;
-    case EvqPointCoord:     message = "can't modify gl_PointCoord";  break;
-    case EvqInstanceID:     message = "can't modify gl_InstanceID";  break;
-    default:
-
-        //
-        // Type that can't be written to?
-        //
-        if(IsSampler(node->getBasicType()))
-        {
-            message = "can't modify a sampler";
-        }
-        else if(node->getBasicType() == EbtVoid)
-        {
-            message = "can't modify void";
-        }
-    }
-
-    if (message == 0 && binaryNode == 0 && symNode == 0) {
-        error(line, " l-value required", op);
-
-        return true;
-    }
-
-
-    //
-    // Everything else is okay, no error.
-    //
-    if (message == 0)
-        return false;
-
-    //
-    // If we get here, we have an error and a message.
-    //
-    if (symNode) {
-        std::stringstream extraInfoStream;
-        extraInfoStream << "\"" << symbol << "\" (" << message << ")";
-        std::string extraInfo = extraInfoStream.str();
-        error(line, " l-value required", op, extraInfo.c_str());
-    }
-    else {
-        std::stringstream extraInfoStream;
-        extraInfoStream << "(" << message << ")";
-        std::string extraInfo = extraInfoStream.str();
-        error(line, " l-value required", op, extraInfo.c_str());
-    }
-
-    return true;
+bool TParseContext::lValueErrorCheck(const TSourceLoc &line, const char* op, TIntermTyped* node)
+{
+       TIntermSymbol* symNode = node->getAsSymbolNode();
+       TIntermBinary* binaryNode = node->getAsBinaryNode();
+
+       if (binaryNode) {
+               bool errorReturn;
+
+               switch(binaryNode->getOp()) {
+               case EOpIndexDirect:
+               case EOpIndexIndirect:
+               case EOpIndexDirectStruct:
+               case EOpIndexDirectInterfaceBlock:
+                       return lValueErrorCheck(line, op, binaryNode->getLeft());
+               case EOpVectorSwizzle:
+                       errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft());
+                       if (!errorReturn) {
+                               int offset[4] = {0,0,0,0};
+
+                               TIntermTyped* rightNode = binaryNode->getRight();
+                               TIntermAggregate *aggrNode = rightNode->getAsAggregate();
+
+                               for (TIntermSequence::iterator p = aggrNode->getSequence().begin();
+                                                                                          p != aggrNode->getSequence().end(); p++) {
+                                       int value = (*p)->getAsTyped()->getAsConstantUnion()->getIConst(0);
+                                       offset[value]++;
+                                       if (offset[value] > 1) {
+                                               error(line, " l-value of swizzle cannot have duplicate components", op);
+
+                                               return true;
+                                       }
+                               }
+                       }
+
+                       return errorReturn;
+               default:
+                       break;
+               }
+               error(line, " l-value required", op);
+
+               return true;
+       }
+
+
+       const char* symbol = 0;
+       if (symNode != 0)
+               symbol = symNode->getSymbol().c_str();
+
+       const char* message = 0;
+       switch (node->getQualifier()) {
+       case EvqConstExpr:      message = "can't modify a const";        break;
+       case EvqConstReadOnly:  message = "can't modify a const";        break;
+       case EvqAttribute:      message = "can't modify an attribute";   break;
+       case EvqFragmentIn:     message = "can't modify an input";       break;
+       case EvqVertexIn:       message = "can't modify an input";       break;
+       case EvqUniform:        message = "can't modify a uniform";      break;
+       case EvqSmoothIn:
+       case EvqFlatIn:
+       case EvqCentroidIn:
+       case EvqVaryingIn:      message = "can't modify a varying";      break;
+       case EvqInput:          message = "can't modify an input";       break;
+       case EvqFragCoord:      message = "can't modify gl_FragCoord";   break;
+       case EvqFrontFacing:    message = "can't modify gl_FrontFacing"; break;
+       case EvqPointCoord:     message = "can't modify gl_PointCoord";  break;
+       case EvqInstanceID:     message = "can't modify gl_InstanceID";  break;
+       case EvqVertexID:       message = "can't modify gl_VertexID";    break;
+       default:
+
+               //
+               // Type that can't be written to?
+               //
+               if(IsSampler(node->getBasicType()))
+               {
+                       message = "can't modify a sampler";
+               }
+               else if(node->getBasicType() == EbtVoid)
+               {
+                       message = "can't modify void";
+               }
+       }
+
+       if (message == 0 && binaryNode == 0 && symNode == 0) {
+               error(line, " l-value required", op);
+
+               return true;
+       }
+
+
+       //
+       // Everything else is okay, no error.
+       //
+       if (message == 0)
+               return false;
+
+       //
+       // If we get here, we have an error and a message.
+       //
+       if (symNode) {
+               std::stringstream extraInfoStream;
+               extraInfoStream << "\"" << symbol << "\" (" << message << ")";
+               std::string extraInfo = extraInfoStream.str();
+               error(line, " l-value required", op, extraInfo.c_str());
+       }
+       else {
+               std::stringstream extraInfoStream;
+               extraInfoStream << "(" << message << ")";
+               std::string extraInfo = extraInfoStream.str();
+               error(line, " l-value required", op, extraInfo.c_str());
+       }
+
+       return true;
 }
 
 //
@@ -381,12 +462,12 @@ bool TParseContext::lValueErrorCheck(int line, const char* op, TIntermTyped* nod
 //
 bool TParseContext::constErrorCheck(TIntermTyped* node)
 {
-    if (node->getQualifier() == EvqConstExpr)
-        return false;
+       if (node->getQualifier() == EvqConstExpr)
+               return false;
 
-    error(node->getLine(), "constant expression required", "");
+       error(node->getLine(), "constant expression required", "");
 
-    return true;
+       return true;
 }
 
 //
@@ -397,12 +478,12 @@ bool TParseContext::constErrorCheck(TIntermTyped* node)
 //
 bool TParseContext::integerErrorCheck(TIntermTyped* node, const char* token)
 {
-    if (node->isScalarInt())
-        return false;
+       if (node->isScalarInt())
+               return false;
 
-    error(node->getLine(), "integer expression required", token);
+       error(node->getLine(), "integer expression required", token);
 
-    return true;
+       return true;
 }
 
 //
@@ -411,14 +492,14 @@ bool TParseContext::integerErrorCheck(TIntermTyped* node, const char* token)
 //
 // Returns true if the was an error.
 //
-bool TParseContext::globalErrorCheck(int line, bool global, const char* token)
+bool TParseContext::globalErrorCheck(const TSourceLoc &line, bool global, const char* token)
 {
-    if (global)
-        return false;
+       if (global)
+               return false;
 
-    error(line, "only allowed at global scope", token);
+       error(line, "only allowed at global scope", token);
 
-    return true;
+       return true;
 }
 
 //
@@ -430,21 +511,21 @@ bool TParseContext::globalErrorCheck(int line, bool global, const char* token)
 //
 // Returns true if there was an error.
 //
-bool TParseContext::reservedErrorCheck(int line, const TString& identifier)
+bool TParseContext::reservedErrorCheck(const TSourceLoc &line, const TString& identifier)
 {
-    static const char* reservedErrMsg = "reserved built-in name";
-    if (!symbolTable.atBuiltInLevel()) {
-        if (identifier.compare(0, 3, "gl_") == 0) {
-            error(line, reservedErrMsg, "gl_");
-            return true;
-        }
-        if (identifier.find("__") != TString::npos) {
-            error(line, "identifiers containing two consecutive underscores (__) are reserved as possible future keywords", identifier.c_str());
-            return true;
-        }
-    }
+       static const char* reservedErrMsg = "reserved built-in name";
+       if (!symbolTable.atBuiltInLevel()) {
+               if (identifier.compare(0, 3, "gl_") == 0) {
+                       error(line, reservedErrMsg, "gl_");
+                       return true;
+               }
+               if (identifier.find("__") != TString::npos) {
+                       error(line, "identifiers containing two consecutive underscores (__) are reserved as possible future keywords", identifier.c_str());
+                       return true;
+               }
+       }
 
-    return false;
+       return false;
 }
 
 //
@@ -454,166 +535,170 @@ bool TParseContext::reservedErrorCheck(int line, const TString& identifier)
 //
 // Returns true if there was an error in construction.
 //
-bool TParseContext::constructorErrorCheck(int line, TIntermNode* node, TFunction& function, TOperator op, TType* type)
-{
-    *type = function.getReturnType();
-
-    bool constructingMatrix = false;
-    switch(op) {
-    case EOpConstructMat2:
-    case EOpConstructMat3:
-    case EOpConstructMat4:
-        constructingMatrix = true;
-        break;
-    default:
-        break;
-    }
-
-    //
-    // Note: It's okay to have too many components available, but not okay to have unused
-    // arguments.  'full' will go to true when enough args have been seen.  If we loop
-    // again, there is an extra argument, so 'overfull' will become true.
-    //
-
-    int size = 0;
-    bool constType = true;
-    bool full = false;
-    bool overFull = false;
-    bool matrixInMatrix = false;
-    bool arrayArg = false;
-    for (int i = 0; i < function.getParamCount(); ++i) {
-        const TParameter& param = function.getParam(i);
-        size += param.type->getObjectSize();
-
-        if (constructingMatrix && param.type->isMatrix())
-            matrixInMatrix = true;
-        if (full)
-            overFull = true;
-        if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize())
-            full = true;
-        if (param.type->getQualifier() != EvqConstExpr)
-            constType = false;
-        if (param.type->isArray())
-            arrayArg = true;
-    }
-
-    if (constType)
-        type->setQualifier(EvqConstExpr);
-
-    if (type->isArray() && type->getArraySize() != function.getParamCount()) {
-        error(line, "array constructor needs one argument per array element", "constructor");
-        return true;
-    }
-
-    if (arrayArg && op != EOpConstructStruct) {
-        error(line, "constructing from a non-dereferenced array", "constructor");
-        return true;
-    }
-
-    if (matrixInMatrix && !type->isArray()) {
-        if (function.getParamCount() != 1) {
-          error(line, "constructing matrix from matrix can only take one argument", "constructor");
-          return true;
-        }
-    }
-
-    if (overFull) {
-        error(line, "too many arguments", "constructor");
-        return true;
-    }
-
-    if (op == EOpConstructStruct && !type->isArray() && int(type->getStruct()->fields().size()) != function.getParamCount()) {
-        error(line, "Number of constructor parameters does not match the number of structure fields", "constructor");
-        return true;
-    }
-
-    if (!type->isMatrix() || !matrixInMatrix) {
-        if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) ||
-            (op == EOpConstructStruct && size < type->getObjectSize())) {
-            error(line, "not enough data provided for construction", "constructor");
-            return true;
-        }
-    }
-
-    TIntermTyped *typed = node ? node->getAsTyped() : 0;
-    if (typed == 0) {
-        error(line, "constructor argument does not have a type", "constructor");
-        return true;
-    }
-    if (op != EOpConstructStruct && IsSampler(typed->getBasicType())) {
-        error(line, "cannot convert a sampler", "constructor");
-        return true;
-    }
-    if (typed->getBasicType() == EbtVoid) {
-        error(line, "cannot convert a void", "constructor");
-        return true;
-    }
-
-    return false;
+bool TParseContext::constructorErrorCheck(const TSourceLoc &line, TIntermNode* node, TFunction& function, TOperator op, TType* type)
+{
+       *type = function.getReturnType();
+
+       bool constructingMatrix = false;
+       switch(op) {
+       case EOpConstructMat2:
+       case EOpConstructMat2x3:
+       case EOpConstructMat2x4:
+       case EOpConstructMat3x2:
+       case EOpConstructMat3:
+       case EOpConstructMat3x4:
+       case EOpConstructMat4x2:
+       case EOpConstructMat4x3:
+       case EOpConstructMat4:
+               constructingMatrix = true;
+               break;
+       default:
+               break;
+       }
+
+       //
+       // Note: It's okay to have too many components available, but not okay to have unused
+       // arguments.  'full' will go to true when enough args have been seen.  If we loop
+       // again, there is an extra argument, so 'overfull' will become true.
+       //
+
+       size_t size = 0;
+       bool full = false;
+       bool overFull = false;
+       bool matrixInMatrix = false;
+       bool arrayArg = false;
+       for (size_t i = 0; i < function.getParamCount(); ++i) {
+               const TParameter& param = function.getParam(i);
+               size += param.type->getObjectSize();
+
+               if (constructingMatrix && param.type->isMatrix())
+                       matrixInMatrix = true;
+               if (full)
+                       overFull = true;
+               if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize())
+                       full = true;
+               if (param.type->isArray())
+                       arrayArg = true;
+       }
+
+       if(type->isArray()) {
+               if(type->getArraySize() == 0) {
+                       type->setArraySize(function.getParamCount());
+               } else if(type->getArraySize() != (int)function.getParamCount()) {
+                       error(line, "array constructor needs one argument per array element", "constructor");
+                       return true;
+               }
+       }
+
+       if (arrayArg && op != EOpConstructStruct) {
+               error(line, "constructing from a non-dereferenced array", "constructor");
+               return true;
+       }
+
+       if (matrixInMatrix && !type->isArray()) {
+               if (function.getParamCount() != 1) {
+                 error(line, "constructing matrix from matrix can only take one argument", "constructor");
+                 return true;
+               }
+       }
+
+       if (overFull) {
+               error(line, "too many arguments", "constructor");
+               return true;
+       }
+
+       if (op == EOpConstructStruct && !type->isArray() && type->getStruct()->fields().size() != function.getParamCount()) {
+               error(line, "Number of constructor parameters does not match the number of structure fields", "constructor");
+               return true;
+       }
+
+       if (!type->isMatrix() || !matrixInMatrix) {
+               if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) ||
+                       (op == EOpConstructStruct && size < type->getObjectSize())) {
+                       error(line, "not enough data provided for construction", "constructor");
+                       return true;
+               }
+       }
+
+       TIntermTyped *typed = node ? node->getAsTyped() : 0;
+       if (typed == 0) {
+               error(line, "constructor argument does not have a type", "constructor");
+               return true;
+       }
+       if (op != EOpConstructStruct && IsSampler(typed->getBasicType())) {
+               error(line, "cannot convert a sampler", "constructor");
+               return true;
+       }
+       if (typed->getBasicType() == EbtVoid) {
+               error(line, "cannot convert a void", "constructor");
+               return true;
+       }
+
+       return false;
 }
 
 // This function checks to see if a void variable has been declared and raise an error message for such a case
 //
 // returns true in case of an error
 //
-bool TParseContext::voidErrorCheck(int line, const TString& identifier, const TPublicType& pubType)
+bool TParseContext::voidErrorCheck(const TSourceLoc &line, const TString& identifier, const TBasicType& type)
 {
-    if (pubType.type == EbtVoid) {
-        error(line, "illegal use of type 'void'", identifier.c_str());
-        return true;
-    }
+       if(type == EbtVoid) {
+               error(line, "illegal use of type 'void'", identifier.c_str());
+               return true;
+       }
 
-    return false;
+       return false;
 }
 
 // This function checks to see if the node (for the expression) contains a scalar boolean expression or not
 //
 // returns true in case of an error
 //
-bool TParseContext::boolErrorCheck(int line, const TIntermTyped* type)
+bool TParseContext::boolErrorCheck(const TSourceLoc &line, const TIntermTyped* type)
 {
-    if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) {
-        error(line, "boolean expression expected", "");
-        return true;
-    }
+       if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) {
+               error(line, "boolean expression expected", "");
+               return true;
+       }
 
-    return false;
+       return false;
 }
 
 // This function checks to see if the node (for the expression) contains a scalar boolean expression or not
 //
 // returns true in case of an error
 //
-bool TParseContext::boolErrorCheck(int line, const TPublicType& pType)
+bool TParseContext::boolErrorCheck(const TSourceLoc &line, const TPublicType& pType)
 {
-    if (pType.type != EbtBool || pType.array || (pType.primarySize > 1) || (pType.secondarySize > 1)) {
-        error(line, "boolean expression expected", "");
-        return true;
-    }
+       if (pType.type != EbtBool || pType.array || (pType.primarySize > 1) || (pType.secondarySize > 1)) {
+               error(line, "boolean expression expected", "");
+               return true;
+       }
 
-    return false;
+       return false;
 }
 
-bool TParseContext::samplerErrorCheck(int line, const TPublicType& pType, const char* reason)
+bool TParseContext::samplerErrorCheck(const TSourceLoc &line, const TPublicType& pType, const char* reason)
 {
-    if (pType.type == EbtStruct) {
-        if (containsSampler(*pType.userDef)) {
-            error(line, reason, getBasicString(pType.type), "(structure contains a sampler)");
+       if (pType.type == EbtStruct) {
+               if (containsSampler(*pType.userDef)) {
+                       error(line, reason, getBasicString(pType.type), "(structure contains a sampler)");
 
-            return true;
-        }
+                       return true;
+               }
 
-        return false;
-    } else if (IsSampler(pType.type)) {
-        error(line, reason, getBasicString(pType.type));
+               return false;
+       } else if (IsSampler(pType.type)) {
+               error(line, reason, getBasicString(pType.type));
 
-        return true;
-    }
+               return true;
+       }
 
-    return false;
+       return false;
 }
 
-bool TParseContext::structQualifierErrorCheck(int line, const TPublicType& pType)
+bool TParseContext::structQualifierErrorCheck(const TSourceLoc &line, const TPublicType& pType)
 {
        switch(pType.qualifier)
        {
@@ -639,57 +724,120 @@ bool TParseContext::structQualifierErrorCheck(int line, const TPublicType& pType
                break;
        }
 
-    if (pType.qualifier != EvqUniform && samplerErrorCheck(line, pType, "samplers must be uniform"))
-        return true;
+       if (pType.qualifier != EvqUniform && samplerErrorCheck(line, pType, "samplers must be uniform"))
+               return true;
 
        // check for layout qualifier issues
-       const TLayoutQualifier layoutQualifier = pType.layoutQualifier;
-
        if (pType.qualifier != EvqVertexIn && pType.qualifier != EvqFragmentOut &&
-           layoutLocationErrorCheck(line, pType.layoutQualifier))
+               layoutLocationErrorCheck(line, pType.layoutQualifier))
+       {
+               return true;
+       }
+
+       return false;
+}
+
+// These checks are common for all declarations starting a declarator list, and declarators that follow an empty
+// declaration.
+//
+bool TParseContext::singleDeclarationErrorCheck(const TPublicType &publicType, const TSourceLoc &identifierLocation)
+{
+       switch(publicType.qualifier)
+       {
+       case EvqVaryingIn:
+       case EvqVaryingOut:
+       case EvqAttribute:
+       case EvqVertexIn:
+       case EvqFragmentOut:
+               if(publicType.type == EbtStruct)
+               {
+                       error(identifierLocation, "cannot be used with a structure",
+                               getQualifierString(publicType.qualifier));
+                       return true;
+               }
+
+       default: break;
+       }
+
+       if(publicType.qualifier != EvqUniform && samplerErrorCheck(identifierLocation, publicType,
+               "samplers must be uniform"))
+       {
+               return true;
+       }
+
+       // check for layout qualifier issues
+       const TLayoutQualifier layoutQualifier = publicType.layoutQualifier;
+
+       if(layoutQualifier.matrixPacking != EmpUnspecified)
+       {
+               error(identifierLocation, "layout qualifier", getMatrixPackingString(layoutQualifier.matrixPacking),
+                       "only valid for interface blocks");
+               return true;
+       }
+
+       if(layoutQualifier.blockStorage != EbsUnspecified)
+       {
+               error(identifierLocation, "layout qualifier", getBlockStorageString(layoutQualifier.blockStorage),
+                       "only valid for interface blocks");
+               return true;
+       }
+
+       if(publicType.qualifier != EvqVertexIn && publicType.qualifier != EvqFragmentOut &&
+               layoutLocationErrorCheck(identifierLocation, publicType.layoutQualifier))
+       {
+               return true;
+       }
+
+       return false;
+}
+
+bool TParseContext::layoutLocationErrorCheck(const TSourceLoc &location, const TLayoutQualifier &layoutQualifier)
+{
+       if(layoutQualifier.location != -1)
        {
+               error(location, "invalid layout qualifier:", "location", "only valid on program inputs and outputs");
                return true;
        }
 
-    return false;
+       return false;
 }
 
-bool TParseContext::layoutLocationErrorCheck(const TSourceLoc &location, const TLayoutQualifier &layoutQualifier)\r
-{\r
-       if(layoutQualifier.location != -1)\r
-       {\r
-               error(location, "invalid layout qualifier:", "location", "only valid on program inputs and outputs");\r
-               return true;\r
-       }\r
-\r
-       return false;\r
-}\r
+bool TParseContext::locationDeclaratorListCheck(const TSourceLoc& line, const TPublicType &pType)
+{
+       if(pType.layoutQualifier.location != -1)
+       {
+               error(line, "location must only be specified for a single input or output variable", "location");
+               return true;
+       }
+
+       return false;
+}
 
-bool TParseContext::parameterSamplerErrorCheck(int line, TQualifier qualifier, const TType& type)
+bool TParseContext::parameterSamplerErrorCheck(const TSourceLoc &line, TQualifier qualifier, const TType& type)
 {
-    if ((qualifier == EvqOut || qualifier == EvqInOut) &&
-             type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) {
-        error(line, "samplers cannot be output parameters", type.getBasicString());
-        return true;
-    }
+       if ((qualifier == EvqOut || qualifier == EvqInOut) &&
+                        type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) {
+               error(line, "samplers cannot be output parameters", type.getBasicString());
+               return true;
+       }
 
-    return false;
+       return false;
 }
 
 bool TParseContext::containsSampler(TType& type)
 {
-    if (IsSampler(type.getBasicType()))
-        return true;
+       if (IsSampler(type.getBasicType()))
+               return true;
 
-    if (type.getBasicType() == EbtStruct) {
-        const TFieldList& fields = type.getStruct()->fields();
-        for(unsigned int i = 0; i < fields.size(); ++i) {
-            if (containsSampler(*fields[i]->type()))
-                return true;
-        }
-    }
+       if (type.getBasicType() == EbtStruct || type.isInterfaceBlock()) {
+               const TFieldList& fields = type.getStruct()->fields();
+               for(unsigned int i = 0; i < fields.size(); ++i) {
+                       if (containsSampler(*fields[i]->type()))
+                               return true;
+               }
+       }
 
-    return false;
+       return false;
 }
 
 //
@@ -697,41 +845,47 @@ bool TParseContext::containsSampler(TType& type)
 //
 // Returns true if there was an error.
 //
-bool TParseContext::arraySizeErrorCheck(int line, TIntermTyped* expr, int& size)
+bool TParseContext::arraySizeErrorCheck(const TSourceLoc &line, TIntermTyped* expr, int& size)
 {
-    TIntermConstantUnion* constant = expr->getAsConstantUnion();
+       TIntermConstantUnion* constant = expr->getAsConstantUnion();
+
+       if (expr->getQualifier() != EvqConstExpr || constant == 0 || !constant->isScalarInt())
+       {
+               error(line, "array size must be a constant integer expression", "");
+               return true;
+       }
 
-    if (constant == 0 || !constant->isScalarInt())
-    {
-        error(line, "array size must be a constant integer expression", "");
-        return true;
-    }
+       if (constant->getBasicType() == EbtUInt)
+       {
+               unsigned int uintSize = constant->getUConst(0);
+               if (uintSize > static_cast<unsigned int>(std::numeric_limits<int>::max()))
+               {
+                       error(line, "array size too large", "");
+                       size = 1;
+                       return true;
+               }
 
-    if (constant->getBasicType() == EbtUInt)
-    {
-        unsigned int uintSize = constant->getUConst(0);
-        if (uintSize > static_cast<unsigned int>(std::numeric_limits<int>::max()))
-        {
-            error(line, "array size too large", "");
-            size = 1;
-            return true;
-        }
+               size = static_cast<int>(uintSize);
+       }
+       else
+       {
+               size = constant->getIConst(0);
 
-        size = static_cast<int>(uintSize);
-    }
-    else
-    {
-        size = constant->getIConst(0);
+               if (size < 0)
+               {
+                       error(line, "array size must be non-negative", "");
+                       size = 1;
+                       return true;
+               }
+       }
 
-        if (size <= 0)
-        {
-            error(line, "array size must be a positive integer", "");
-            size = 1;
-            return true;
-        }
-    }
+       if(size == 0)
+       {
+               error(line, "array size must be greater than zero", "");
+               return true;
+       }
 
-    return false;
+       return false;
 }
 
 //
@@ -739,14 +893,14 @@ bool TParseContext::arraySizeErrorCheck(int line, TIntermTyped* expr, int& size)
 //
 // Returns true if there is an error.
 //
-bool TParseContext::arrayQualifierErrorCheck(int line, TPublicType type)
+bool TParseContext::arrayQualifierErrorCheck(const TSourceLoc &line, TPublicType type)
 {
-    if ((type.qualifier == EvqAttribute) || (type.qualifier == EvqVertexIn) || (type.qualifier == EvqConstExpr)) {
-        error(line, "cannot declare arrays of this qualifier", TType(type).getCompleteString().c_str());
-        return true;
-    }
+       if ((type.qualifier == EvqAttribute) || (type.qualifier == EvqVertexIn) || (type.qualifier == EvqConstExpr && mShaderVersion < 300)) {
+               error(line, "cannot declare arrays of this qualifier", TType(type).getCompleteString().c_str());
+               return true;
+       }
 
-    return false;
+       return false;
 }
 
 //
@@ -754,165 +908,101 @@ bool TParseContext::arrayQualifierErrorCheck(int line, TPublicType type)
 //
 // Returns true if there is an error.
 //
-bool TParseContext::arrayTypeErrorCheck(int line, TPublicType type)
+bool TParseContext::arrayTypeErrorCheck(const TSourceLoc &line, TPublicType type)
 {
-    //
-    // Can the type be an array?
-    //
-    if (type.array) {
-        error(line, "cannot declare arrays of arrays", TType(type).getCompleteString().c_str());
-        return true;
-    }
+       //
+       // Can the type be an array?
+       //
+       if (type.array) {
+               error(line, "cannot declare arrays of arrays", TType(type).getCompleteString().c_str());
+               return true;
+       }
 
-    return false;
-}
+       // In ESSL1.00 shaders, structs cannot be varying (section 4.3.5). This is checked elsewhere.
+       // In ESSL3.00 shaders, struct inputs/outputs are allowed but not arrays of structs (section 4.3.4).
+       if(mShaderVersion >= 300 && type.type == EbtStruct && IsVarying(type.qualifier))
+       {
+               error(line, "cannot declare arrays of structs of this qualifier",
+                     TType(type).getCompleteString().c_str());
+               return true;
+       }
 
-//
-// Do all the semantic checking for declaring an array, with and
-// without a size, and make the right changes to the symbol table.
-//
-// size == 0 means no specified size.
-//
-// Returns true if there was an error.
-//
-bool TParseContext::arrayErrorCheck(int line, TString& identifier, TPublicType type, TVariable*& variable)
-{
-    //
-    // Don't check for reserved word use until after we know it's not in the symbol table,
-    // because reserved arrays can be redeclared.
-    //
-
-    bool builtIn = false;
-    bool sameScope = false;
-    TSymbol* symbol = symbolTable.find(identifier, shaderVersion, &builtIn, &sameScope);
-    if (symbol == 0 || !sameScope) {
-        if (reservedErrorCheck(line, identifier))
-            return true;
-
-        variable = new TVariable(&identifier, TType(type));
-
-        if (type.arraySize)
-            variable->getType().setArraySize(type.arraySize);
-
-        if (! symbolTable.declare(*variable)) {
-            delete variable;
-            error(line, "INTERNAL ERROR inserting new symbol", identifier.c_str());
-            return true;
-        }
-    } else {
-        if (! symbol->isVariable()) {
-            error(line, "variable expected", identifier.c_str());
-            return true;
-        }
-
-        variable = static_cast<TVariable*>(symbol);
-        if (! variable->getType().isArray()) {
-            error(line, "redeclaring non-array as array", identifier.c_str());
-            return true;
-        }
-        if (variable->getType().getArraySize() > 0) {
-            error(line, "redeclaration of array with size", identifier.c_str());
-            return true;
-        }
-
-        if (! variable->getType().sameElementType(TType(type))) {
-            error(line, "redeclaration of array with a different type", identifier.c_str());
-            return true;
-        }
-
-        TType* t = variable->getArrayInformationType();
-        while (t != 0) {
-            if (t->getMaxArraySize() > type.arraySize) {
-                error(line, "higher index value already used for the array", identifier.c_str());
-                return true;
-            }
-            t->setArraySize(type.arraySize);
-            t = t->getArrayInformationType();
-        }
-
-        if (type.arraySize)
-            variable->getType().setArraySize(type.arraySize);
-    }
-
-    if (voidErrorCheck(line, identifier, type))
-        return true;
-
-    return false;
-}
-
-bool TParseContext::arraySetMaxSize(TIntermSymbol *node, TType* type, int size, bool updateFlag, TSourceLoc line)
-{
-    bool builtIn = false;
-    TSymbol* symbol = symbolTable.find(node->getSymbol(), shaderVersion, &builtIn);
-    if (symbol == 0) {
-        error(line, " undeclared identifier", node->getSymbol().c_str());
-        return true;
-    }
-    TVariable* variable = static_cast<TVariable*>(symbol);
-
-    type->setArrayInformationType(variable->getArrayInformationType());
-    variable->updateArrayInformationType(type);
-
-    // special casing to test index value of gl_FragData. If the accessed index is >= gl_MaxDrawBuffers
-    // its an error
-    if (node->getSymbol() == "gl_FragData") {
-        TSymbol* fragData = symbolTable.find("gl_MaxDrawBuffers", shaderVersion, &builtIn);
-        ASSERT(fragData);
-
-        int fragDataValue = static_cast<TVariable*>(fragData)->getConstPointer()[0].getIConst();
-        if (fragDataValue <= size) {
-            error(line, "", "[", "gl_FragData can only have a max array size of up to gl_MaxDrawBuffers");
-            return true;
-        }
-    }
-
-    // we dont want to update the maxArraySize when this flag is not set, we just want to include this
-    // node type in the chain of node types so that its updated when a higher maxArraySize comes in.
-    if (!updateFlag)
-        return false;
-
-    size++;
-    variable->getType().setMaxArraySize(size);
-    type->setMaxArraySize(size);
-    TType* tt = type;
-
-    while(tt->getArrayInformationType() != 0) {
-        tt = tt->getArrayInformationType();
-        tt->setMaxArraySize(size);
-    }
-
-    return false;
+       return false;
 }
 
-//
-// Enforce non-initializer type/qualifier rules.
-//
-// Returns true if there was an error.
-//
-bool TParseContext::nonInitConstErrorCheck(int line, TString& identifier, TPublicType& type, bool array)
+bool TParseContext::arraySetMaxSize(TIntermSymbol *node, TType* type, int size, bool updateFlag, const TSourceLoc &line)
 {
-    if (type.qualifier == EvqConstExpr)
-    {
-        // Make the qualifier make sense.
-        type.qualifier = EvqTemporary;
+       bool builtIn = false;
+       TSymbol* symbol = symbolTable.find(node->getSymbol(), mShaderVersion, &builtIn);
+       if (symbol == 0) {
+               error(line, " undeclared identifier", node->getSymbol().c_str());
+               return true;
+       }
+       TVariable* variable = static_cast<TVariable*>(symbol);
+
+       type->setArrayInformationType(variable->getArrayInformationType());
+       variable->updateArrayInformationType(type);
+
+       // special casing to test index value of gl_FragData. If the accessed index is >= gl_MaxDrawBuffers
+       // its an error
+       if (node->getSymbol() == "gl_FragData") {
+               TSymbol* fragData = symbolTable.find("gl_MaxDrawBuffers", mShaderVersion, &builtIn);
+               ASSERT(fragData);
+
+               int fragDataValue = static_cast<TVariable*>(fragData)->getConstPointer()[0].getIConst();
+               if (fragDataValue <= size) {
+                       error(line, "", "[", "gl_FragData can only have a max array size of up to gl_MaxDrawBuffers");
+                       return true;
+               }
+       }
+
+       // we dont want to update the maxArraySize when this flag is not set, we just want to include this
+       // node type in the chain of node types so that its updated when a higher maxArraySize comes in.
+       if (!updateFlag)
+               return false;
+
+       size++;
+       variable->getType().setMaxArraySize(size);
+       type->setMaxArraySize(size);
+       TType* tt = type;
+
+       while(tt->getArrayInformationType() != 0) {
+               tt = tt->getArrayInformationType();
+               tt->setMaxArraySize(size);
+       }
+
+       return false;
+}
+
+//
+// Enforce non-initializer type/qualifier rules.
+//
+// Returns true if there was an error.
+//
+bool TParseContext::nonInitConstErrorCheck(const TSourceLoc &line, TString& identifier, TPublicType& type, bool array)
+{
+       if (type.qualifier == EvqConstExpr)
+       {
+               // Make the qualifier make sense.
+               type.qualifier = EvqTemporary;
 
-        if (array)
-        {
-            error(line, "arrays may not be declared constant since they cannot be initialized", identifier.c_str());
-        }
-        else if (type.isStructureContainingArrays())
-        {
-            error(line, "structures containing arrays may not be declared constant since they cannot be initialized", identifier.c_str());
-        }
-        else
-        {
-            error(line, "variables with qualifier 'const' must be initialized", identifier.c_str());
-        }
+               if (array)
+               {
+                       error(line, "arrays may not be declared constant since they cannot be initialized", identifier.c_str());
+               }
+               else if (type.isStructureContainingArrays())
+               {
+                       error(line, "structures containing arrays may not be declared constant since they cannot be initialized", identifier.c_str());
+               }
+               else
+               {
+                       error(line, "variables with qualifier 'const' must be initialized", identifier.c_str());
+               }
 
-        return true;
-    }
+               return true;
+       }
 
-    return false;
+       return false;
 }
 
 //
@@ -921,85 +1011,171 @@ bool TParseContext::nonInitConstErrorCheck(int line, TString& identifier, TPubli
 //
 // Returns true if there was an error.
 //
-bool TParseContext::nonInitErrorCheck(int line, TString& identifier, TPublicType& type, TVariable*& variable)
+bool TParseContext::nonInitErrorCheck(const TSourceLoc &line, const TString& identifier, TPublicType& type)
+{
+       if(type.qualifier == EvqConstExpr)
+       {
+               // Make the qualifier make sense.
+               type.qualifier = EvqTemporary;
+
+               // Generate informative error messages for ESSL1.
+               // In ESSL3 arrays and structures containing arrays can be constant.
+               if(mShaderVersion < 300 && type.isStructureContainingArrays())
+               {
+                       error(line,
+                               "structures containing arrays may not be declared constant since they cannot be initialized",
+                               identifier.c_str());
+               }
+               else
+               {
+                       error(line, "variables with qualifier 'const' must be initialized", identifier.c_str());
+               }
+
+               return true;
+       }
+       if(type.isUnsizedArray())
+       {
+               error(line, "implicitly sized arrays need to be initialized", identifier.c_str());
+               return true;
+       }
+       return false;
+}
+
+// Do some simple checks that are shared between all variable declarations,
+// and update the symbol table.
+//
+// Returns true if declaring the variable succeeded.
+//
+bool TParseContext::declareVariable(const TSourceLoc &line, const TString &identifier, const TType &type,
+       TVariable **variable)
 {
-    if (reservedErrorCheck(line, identifier))
-        recover();
+       ASSERT((*variable) == nullptr);
 
-    variable = new TVariable(&identifier, TType(type));
+       // gl_LastFragData may be redeclared with a new precision qualifier
+       if(type.isArray() && identifier.compare(0, 15, "gl_LastFragData") == 0)
+       {
+               const TVariable *maxDrawBuffers =
+                       static_cast<const TVariable *>(symbolTable.findBuiltIn("gl_MaxDrawBuffers", mShaderVersion));
+               if(type.getArraySize() != maxDrawBuffers->getConstPointer()->getIConst())
+               {
+                       error(line, "redeclaration of gl_LastFragData with size != gl_MaxDrawBuffers", identifier.c_str());
+                       return false;
+               }
+       }
 
-    if (! symbolTable.declare(*variable)) {
-        error(line, "redefinition", variable->getName().c_str());
-        delete variable;
-        variable = 0;
-        return true;
-    }
+       if(reservedErrorCheck(line, identifier))
+               return false;
 
-    if (voidErrorCheck(line, identifier, type))
-        return true;
+       (*variable) = new TVariable(&identifier, type);
+       if(!symbolTable.declare(**variable))
+       {
+               error(line, "redefinition", identifier.c_str());
+               delete (*variable);
+               (*variable) = nullptr;
+               return false;
+       }
 
-    return false;
+       if(voidErrorCheck(line, identifier, type.getBasicType()))
+               return false;
+
+       return true;
 }
 
-bool TParseContext::paramErrorCheck(int line, TQualifier qualifier, TQualifier paramQualifier, TType* type)
+bool TParseContext::paramErrorCheck(const TSourceLoc &line, TQualifier qualifier, TQualifier paramQualifier, TType* type)
 {
-    if (qualifier != EvqConstReadOnly && qualifier != EvqTemporary) {
-        error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier));
-        return true;
-    }
-    if (qualifier == EvqConstReadOnly && paramQualifier != EvqIn) {
-        error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier));
-        return true;
-    }
+       if (qualifier != EvqConstReadOnly && qualifier != EvqTemporary) {
+               error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier));
+               return true;
+       }
+       if (qualifier == EvqConstReadOnly && paramQualifier != EvqIn) {
+               error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier));
+               return true;
+       }
+
+       if (qualifier == EvqConstReadOnly)
+               type->setQualifier(EvqConstReadOnly);
+       else
+               type->setQualifier(paramQualifier);
+
+       return false;
+}
 
-    if (qualifier == EvqConstReadOnly)
-        type->setQualifier(EvqConstReadOnly);
-    else
-        type->setQualifier(paramQualifier);
+bool TParseContext::extensionErrorCheck(const TSourceLoc &line, const TString& extension)
+{
+       const TExtensionBehavior& extBehavior = extensionBehavior();
+       TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str());
+       if (iter == extBehavior.end()) {
+               error(line, "extension", extension.c_str(), "is not supported");
+               return true;
+       }
+       // In GLSL ES, an extension's default behavior is "disable".
+       if (iter->second == EBhDisable || iter->second == EBhUndefined) {
+               error(line, "extension", extension.c_str(), "is disabled");
+               return true;
+       }
+       if (iter->second == EBhWarn) {
+               warning(line, "extension", extension.c_str(), "is being used");
+               return false;
+       }
 
-    return false;
+       return false;
 }
 
-bool TParseContext::extensionErrorCheck(int line, const TString& extension)
+bool TParseContext::functionCallLValueErrorCheck(const TFunction *fnCandidate, TIntermAggregate *aggregate)
 {
-    const TExtensionBehavior& extBehavior = extensionBehavior();
-    TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str());
-    if (iter == extBehavior.end()) {
-        error(line, "extension", extension.c_str(), "is not supported");
-        return true;
-    }
-    // In GLSL ES, an extension's default behavior is "disable".
-    if (iter->second == EBhDisable || iter->second == EBhUndefined) {
-        error(line, "extension", extension.c_str(), "is disabled");
-        return true;
-    }
-    if (iter->second == EBhWarn) {
-        warning(line, "extension", extension.c_str(), "is being used");
-        return false;
-    }
+       for(size_t i = 0; i < fnCandidate->getParamCount(); ++i)
+       {
+               TQualifier qual = fnCandidate->getParam(i).type->getQualifier();
+               if(qual == EvqOut || qual == EvqInOut)
+               {
+                       TIntermTyped *node = (aggregate->getSequence())[i]->getAsTyped();
+                       if(lValueErrorCheck(node->getLine(), "assign", node))
+                       {
+                               error(node->getLine(),
+                                       "Constant value cannot be passed for 'out' or 'inout' parameters.", "Error");
+                               recover();
+                               return true;
+                       }
+               }
+       }
+       return false;
+}
 
-    return false;
+void TParseContext::es3InvariantErrorCheck(const TQualifier qualifier, const TSourceLoc &invariantLocation)
+{
+       switch(qualifier)
+       {
+       case EvqVaryingOut:
+       case EvqSmoothOut:
+       case EvqFlatOut:
+       case EvqCentroidOut:
+       case EvqVertexOut:
+       case EvqFragmentOut:
+               break;
+       default:
+               error(invariantLocation, "Only out variables can be invariant.", "invariant");
+               recover();
+               break;
+       }
 }
 
 bool TParseContext::supportsExtension(const char* extension)
 {
-    const TExtensionBehavior& extbehavior = extensionBehavior();
-    TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
-    return (iter != extbehavior.end());
+       const TExtensionBehavior& extbehavior = extensionBehavior();
+       TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
+       return (iter != extbehavior.end());
 }
 
-void TParseContext::handleExtensionDirective(int line, const char* extName, const char* behavior)
+void TParseContext::handleExtensionDirective(const TSourceLoc &line, const char* extName, const char* behavior)
 {
-    pp::SourceLocation loc;
-    DecodeSourceLoc(line, &loc.file, &loc.line);
-    directiveHandler.handleExtension(loc, extName, behavior);
+       pp::SourceLocation loc(line.first_file, line.first_line);
+       mDirectiveHandler.handleExtension(loc, extName, behavior);
 }
 
-void TParseContext::handlePragmaDirective(int line, const char* name, const char* value)
+void TParseContext::handlePragmaDirective(const TSourceLoc &line, const char* name, const char* value)
 {
-    pp::SourceLocation loc;
-    DecodeSourceLoc(line, &loc.file, &loc.line);
-    directiveHandler.handlePragma(loc, name, value);
+       pp::SourceLocation loc(line.first_file, line.first_line);
+       mDirectiveHandler.handlePragma(loc, name, value);
 }
 
 /////////////////////////////////////////////////////////////////////////////////
@@ -1008,142 +1184,187 @@ void TParseContext::handlePragmaDirective(int line, const char* name, const char
 //
 /////////////////////////////////////////////////////////////////////////////////
 
+const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location,
+       const TString *name,
+       const TSymbol *symbol)
+{
+       const TVariable *variable = nullptr;
+
+       if(!symbol)
+       {
+               error(location, "undeclared identifier", name->c_str());
+               recover();
+       }
+       else if(!symbol->isVariable())
+       {
+               error(location, "variable expected", name->c_str());
+               recover();
+       }
+       else
+       {
+               variable = static_cast<const TVariable*>(symbol);
+
+               if(symbolTable.findBuiltIn(variable->getName(), mShaderVersion))
+               {
+                       recover();
+               }
+
+               // Reject shaders using both gl_FragData and gl_FragColor
+               TQualifier qualifier = variable->getType().getQualifier();
+               if(qualifier == EvqFragData)
+               {
+                       mUsesFragData = true;
+               }
+               else if(qualifier == EvqFragColor)
+               {
+                       mUsesFragColor = true;
+               }
+
+               // This validation is not quite correct - it's only an error to write to
+               // both FragData and FragColor. For simplicity, and because users shouldn't
+               // be rewarded for reading from undefined variables, return an error
+               // if they are both referenced, rather than assigned.
+               if(mUsesFragData && mUsesFragColor)
+               {
+                       error(location, "cannot use both gl_FragData and gl_FragColor", name->c_str());
+                       recover();
+               }
+       }
+
+       if(!variable)
+       {
+               TType type(EbtFloat, EbpUndefined);
+               TVariable *fakeVariable = new TVariable(name, type);
+               symbolTable.declare(*fakeVariable);
+               variable = fakeVariable;
+       }
+
+       return variable;
+}
+
 //
 // Look up a function name in the symbol table, and make sure it is a function.
 //
 // Return the function symbol if found, otherwise 0.
 //
-const TFunction* TParseContext::findFunction(int line, TFunction* call, bool *builtIn)
+const TFunction* TParseContext::findFunction(const TSourceLoc &line, TFunction* call, bool *builtIn)
 {
-    // First find by unmangled name to check whether the function name has been
-    // hidden by a variable name or struct typename.
-    const TSymbol* symbol = symbolTable.find(call->getName(), shaderVersion, builtIn);
-    if (symbol == 0) {
-        symbol = symbolTable.find(call->getMangledName(), shaderVersion, builtIn);
-    }
+       // First find by unmangled name to check whether the function name has been
+       // hidden by a variable name or struct typename.
+       const TSymbol* symbol = symbolTable.find(call->getName(), mShaderVersion, builtIn);
+       if (symbol == 0) {
+               symbol = symbolTable.find(call->getMangledName(), mShaderVersion, builtIn);
+       }
 
-    if (symbol == 0) {
-        error(line, "no matching overloaded function found", call->getName().c_str());
-        return 0;
-    }
+       if (symbol == 0) {
+               error(line, "no matching overloaded function found", call->getName().c_str());
+               return nullptr;
+       }
 
-    if (!symbol->isFunction()) {
-        error(line, "function name expected", call->getName().c_str());
-        return 0;
-    }
+       if (!symbol->isFunction()) {
+               error(line, "function name expected", call->getName().c_str());
+               return nullptr;
+       }
 
-    return static_cast<const TFunction*>(symbol);
+       return static_cast<const TFunction*>(symbol);
 }
 
 //
 // Initializers show up in several places in the grammar.  Have one set of
 // code to handle them here.
 //
-bool TParseContext::executeInitializer(TSourceLoc line, TString& identifier, TPublicType& pType,
-                                       TIntermTyped* initializer, TIntermNode*& intermNode, TVariable* variable)
-{
-    TType type = TType(pType);
-
-    if (variable == 0) {
-        if (reservedErrorCheck(line, identifier))
-            return true;
-
-        if (voidErrorCheck(line, identifier, pType))
-            return true;
-
-        //
-        // add variable to symbol table
-        //
-        variable = new TVariable(&identifier, type);
-        if (! symbolTable.declare(*variable)) {
-            error(line, "redefinition", variable->getName().c_str());
-            return true;
-            // don't delete variable, it's used by error recovery, and the pool
-            // pop will take care of the memory
-        }
-    }
-
-    //
-    // identifier must be of type constant, a global, or a temporary
-    //
-    TQualifier qualifier = variable->getType().getQualifier();
-    if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConstExpr)) {
-        error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString());
-        return true;
-    }
-    //
-    // test for and propagate constant
-    //
-
-    if (qualifier == EvqConstExpr) {
-        if (qualifier != initializer->getType().getQualifier()) {
-            std::stringstream extraInfoStream;
-            extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
-            std::string extraInfo = extraInfoStream.str();
-            error(line, " assigning non-constant to", "=", extraInfo.c_str());
-            variable->getType().setQualifier(EvqTemporary);
-            return true;
-        }
-        if (type != initializer->getType()) {
-            error(line, " non-matching types for const initializer ",
-                variable->getType().getQualifierString());
-            variable->getType().setQualifier(EvqTemporary);
-            return true;
-        }
-        if (initializer->getAsConstantUnion()) {
-            ConstantUnion* unionArray = variable->getConstPointer();
-
-            if (type.getObjectSize() == 1 && type.getBasicType() != EbtStruct) {
-                *unionArray = (initializer->getAsConstantUnion()->getUnionArrayPointer())[0];
-            } else {
-                variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer());
-            }
-        } else if (initializer->getAsSymbolNode()) {
-            const TSymbol* symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol(), shaderVersion);
-            const TVariable* tVar = static_cast<const TVariable*>(symbol);
-
-            ConstantUnion* constArray = tVar->getConstPointer();
-            variable->shareConstPointer(constArray);
-        } else {
-            std::stringstream extraInfoStream;
-            extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
-            std::string extraInfo = extraInfoStream.str();
-            error(line, " cannot assign to", "=", extraInfo.c_str());
-            variable->getType().setQualifier(EvqTemporary);
-            return true;
-        }
-    }
-
-    if (qualifier != EvqConstExpr) {
-        TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), line);
-        intermNode = intermediate.addAssign(EOpInitialize, intermSymbol, initializer, line);
-        if (intermNode == 0) {
-            assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
-            return true;
-        }
-    } else
-        intermNode = 0;
-
-    return false;
-}
-
-bool TParseContext::areAllChildConst(TIntermAggregate* aggrNode)
-{
-    ASSERT(aggrNode != NULL);
-    if (!aggrNode->isConstructor())
-        return false;
-
-    bool allConstant = true;
-
-    // check if all the child nodes are constants so that they can be inserted into
-    // the parent node
-    TIntermSequence &sequence = aggrNode->getSequence() ;
-    for (TIntermSequence::iterator p = sequence.begin(); p != sequence.end(); ++p) {
-        if (!(*p)->getAsTyped()->getAsConstantUnion())
-            return false;
-    }
-
-    return allConstant;
+bool TParseContext::executeInitializer(const TSourceLoc& line, const TString& identifier, const TPublicType& pType,
+                                                                          TIntermTyped *initializer, TIntermNode **intermNode)
+{
+       ASSERT(intermNode != nullptr);
+       TType type = TType(pType);
+
+       if(type.isUnsizedArray())
+       {
+               // We have not checked yet whether the initializer actually is an array or not.
+               if(initializer->isArray())
+               {
+                       type.setArraySize(initializer->getArraySize());
+               }
+               else
+               {
+                       // Having a non-array initializer for an unsized array will result in an error later,
+                       // so we don't generate an error message here.
+                       type.setArraySize(1u);
+               }
+       }
+
+       TVariable *variable = nullptr;
+       if(!declareVariable(line, identifier, type, &variable))
+       {
+               return true;
+       }
+
+       bool globalInitWarning = false;
+       if(symbolTable.atGlobalLevel() && !ValidateGlobalInitializer(initializer, this, &globalInitWarning))
+       {
+               // Error message does not completely match behavior with ESSL 1.00, but
+               // we want to steer developers towards only using constant expressions.
+               error(line, "global variable initializers must be constant expressions", "=");
+               return true;
+       }
+       if(globalInitWarning)
+       {
+               warning(line, "global variable initializers should be constant expressions "
+                       "(uniforms and globals are allowed in global initializers for legacy compatibility)", "=");
+       }
+
+       //
+       // identifier must be of type constant, a global, or a temporary
+       //
+       TQualifier qualifier = type.getQualifier();
+       if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConstExpr)) {
+               error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString());
+               return true;
+       }
+       //
+       // test for and propagate constant
+       //
+
+       if (qualifier == EvqConstExpr) {
+               if (qualifier != initializer->getQualifier()) {
+                       std::stringstream extraInfoStream;
+                       extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
+                       std::string extraInfo = extraInfoStream.str();
+                       error(line, " assigning non-constant to", "=", extraInfo.c_str());
+                       variable->getType().setQualifier(EvqTemporary);
+                       return true;
+               }
+
+               if (type != initializer->getType()) {
+                       error(line, " non-matching types for const initializer ",
+                               variable->getType().getQualifierString());
+                       variable->getType().setQualifier(EvqTemporary);
+                       return true;
+               }
+
+               if (initializer->getAsConstantUnion()) {
+                       variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer());
+               } else if (initializer->getAsSymbolNode()) {
+                       const TSymbol* symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol(), 0);
+                       const TVariable* tVar = static_cast<const TVariable*>(symbol);
+
+                       ConstantUnion* constArray = tVar->getConstPointer();
+                       variable->shareConstPointer(constArray);
+               }
+       }
+
+       if (!variable->isConstant()) {
+               TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), line);
+               *intermNode = createAssign(EOpInitialize, intermSymbol, initializer, line);
+               if(*intermNode == nullptr) {
+                       assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
+                       return true;
+               }
+       } else
+               *intermNode = nullptr;
+
+       return false;
 }
 
 TPublicType TParseContext::addFullySpecifiedType(TQualifier qualifier, bool invariant, TLayoutQualifier layoutQualifier, const TPublicType &typeSpecifier)
@@ -1160,8 +1381,14 @@ TPublicType TParseContext::addFullySpecifiedType(TQualifier qualifier, bool inva
                returnType.clearArrayness();
        }
 
-       if(shaderVersion < 300)
+       if(mShaderVersion < 300)
        {
+               if(typeSpecifier.array)
+               {
+                       error(typeSpecifier.line, "not supported", "first-class array");
+                       returnType.clearArrayness();
+               }
+
                if(qualifier == EvqAttribute && (typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt))
                {
                        error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier));
@@ -1177,386 +1404,2395 @@ TPublicType TParseContext::addFullySpecifiedType(TQualifier qualifier, bool inva
        }
        else
        {
-               switch(qualifier)
+               if(!returnType.layoutQualifier.isEmpty())
                {
-               case EvqSmoothIn:
-               case EvqSmoothOut:
-               case EvqVertexOut:
-               case EvqFragmentIn:
-               case EvqCentroidOut:
-               case EvqCentroidIn:
-                       if(typeSpecifier.type == EbtBool)
-                       {
-                               error(typeSpecifier.line, "cannot be bool", getQualifierString(qualifier));
-                               recover();
-                       }
-                       if(typeSpecifier.type == EbtInt || typeSpecifier.type == EbtUInt)
-                       {
-                               error(typeSpecifier.line, "must use 'flat' interpolation here", getQualifierString(qualifier));
-                               recover();
-                       }
-                       break;
-
-               case EvqVertexIn:
-               case EvqFragmentOut:
-               case EvqFlatIn:
-               case EvqFlatOut:
-                       if(typeSpecifier.type == EbtBool)
-                       {
-                               error(typeSpecifier.line, "cannot be bool", getQualifierString(qualifier));
-                               recover();
-                       }
-                       break;
+                       globalErrorCheck(typeSpecifier.line, symbolTable.atGlobalLevel(), "layout");
+               }
 
-               default: break;
+               if(IsVarying(returnType.qualifier) || returnType.qualifier == EvqVertexIn || returnType.qualifier == EvqFragmentOut)
+               {
+                       checkInputOutputTypeIsValidES3(returnType.qualifier, typeSpecifier, typeSpecifier.line);
                }
        }
 
        return returnType;
 }
 
-// This function is used to test for the correctness of the parameters passed to various constructor functions
-// and also convert them to the right datatype if it is allowed and required.
-//
-// Returns 0 for an error or the constructed node (aggregate or typed) for no error.
-//
-TIntermTyped* TParseContext::addConstructor(TIntermNode* arguments, const TType* type, TOperator op, TFunction* fnCall, TSourceLoc line)
+void TParseContext::checkInputOutputTypeIsValidES3(const TQualifier qualifier,
+                                                   const TPublicType &type,
+                                                   const TSourceLoc &qualifierLocation)
 {
-    TIntermAggregate *aggregateArguments = arguments->getAsAggregate();
-
-    if(!aggregateArguments)
-    {
-        aggregateArguments = new TIntermAggregate;
-        aggregateArguments->getSequence().push_back(arguments);
-    }
-
-    if(op == EOpConstructStruct)
-    {
-        const TFieldList &fields = type->getStruct()->fields();
-        TIntermSequence &args = aggregateArguments->getSequence();
-
-        for(size_t i = 0; i < fields.size(); i++)
-        {
-            if(args[i]->getAsTyped()->getType() != *fields[i]->type())
-            {
-                error(line, "Structure constructor arguments do not match structure fields", "Error");
-                recover();
+       // An input/output variable can never be bool or a sampler. Samplers are checked elsewhere.
+       if(type.type == EbtBool)
+       {
+               error(qualifierLocation, "cannot be bool", getQualifierString(qualifier));
+       }
 
-                return 0;
-            }
-        }
-    }
+       // Specific restrictions apply for vertex shader inputs and fragment shader outputs.
+       switch(qualifier)
+       {
+       case EvqVertexIn:
+               // ESSL 3.00 section 4.3.4
+               if(type.array)
+               {
+                       error(qualifierLocation, "cannot be array", getQualifierString(qualifier));
+               }
+               // Vertex inputs with a struct type are disallowed in singleDeclarationErrorCheck
+               return;
+       case EvqFragmentOut:
+               // ESSL 3.00 section 4.3.6
+               if(type.isMatrix())
+               {
+                       error(qualifierLocation, "cannot be matrix", getQualifierString(qualifier));
+               }
+               // Fragment outputs with a struct type are disallowed in singleDeclarationErrorCheck
+               return;
+       default:
+               break;
+       }
 
-    // Turn the argument list itself into a constructor
-    TIntermTyped *constructor = intermediate.setAggregateOperator(aggregateArguments, op, line);
-    TIntermTyped *constConstructor = foldConstConstructor(constructor->getAsAggregate(), *type);
-    if(constConstructor)
-    {
-        return constConstructor;
-    }
+       // Vertex shader outputs / fragment shader inputs have a different, slightly more lenient set of
+       // restrictions.
+       bool typeContainsIntegers = (type.type == EbtInt || type.type == EbtUInt ||
+                                   type.isStructureContainingType(EbtInt) ||
+                                   type.isStructureContainingType(EbtUInt));
+       if(typeContainsIntegers && qualifier != EvqFlatIn && qualifier != EvqFlatOut)
+       {
+               error(qualifierLocation, "must use 'flat' interpolation here", getQualifierString(qualifier));
+       }
 
-    return constructor;
+       if(type.type == EbtStruct)
+       {
+               // ESSL 3.00 sections 4.3.4 and 4.3.6.
+               // These restrictions are only implied by the ESSL 3.00 spec, but
+               // the ESSL 3.10 spec lists these restrictions explicitly.
+               if(type.array)
+               {
+                       error(qualifierLocation, "cannot be an array of structures", getQualifierString(qualifier));
+               }
+               if(type.isStructureContainingArrays())
+               {
+                       error(qualifierLocation, "cannot be a structure containing an array", getQualifierString(qualifier));
+               }
+               if(type.isStructureContainingType(EbtStruct))
+               {
+                       error(qualifierLocation, "cannot be a structure containing a structure", getQualifierString(qualifier));
+               }
+               if(type.isStructureContainingType(EbtBool))
+               {
+                       error(qualifierLocation, "cannot be a structure containing a bool", getQualifierString(qualifier));
+               }
+       }
 }
 
-TIntermTyped* TParseContext::foldConstConstructor(TIntermAggregate* aggrNode, const TType& type)
+TIntermAggregate *TParseContext::parseSingleDeclaration(TPublicType &publicType,
+       const TSourceLoc &identifierOrTypeLocation,
+       const TString &identifier)
 {
-    bool canBeFolded = areAllChildConst(aggrNode);
-    aggrNode->setType(type);
-    if (canBeFolded) {
-        bool returnVal = false;
-        ConstantUnion* unionArray = new ConstantUnion[type.getObjectSize()];
-        if (aggrNode->getSequence().size() == 1)  {
-            returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type, true);
-        }
-        else {
-            returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type);
-        }
-        if (returnVal)
-            return 0;
+       TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, TType(publicType), identifierOrTypeLocation);
 
-        return intermediate.addConstantUnion(unionArray, type, aggrNode->getLine());
-    }
+       bool emptyDeclaration = (identifier == "");
 
-    return 0;
-}
+       mDeferredSingleDeclarationErrorCheck = emptyDeclaration;
 
-//
-// This function returns the tree representation for the vector field(s) being accessed from contant vector.
-// If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is
-// returned, else an aggregate node is returned (for v.xy). The input to this function could either be the symbol
-// node or it could be the intermediate tree representation of accessing fields in a constant structure or column of 
-// a constant matrix.
-//
-TIntermTyped* TParseContext::addConstVectorNode(TVectorFields& fields, TIntermTyped* node, TSourceLoc line)
-{
-    TIntermTyped* typedNode;
-    TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
+       if(emptyDeclaration)
+       {
+               if(publicType.isUnsizedArray())
+               {
+                       // ESSL3 spec section 4.1.9: Array declaration which leaves the size unspecified is an error.
+                       // It is assumed that this applies to empty declarations as well.
+                       error(identifierOrTypeLocation, "empty array declaration needs to specify a size", identifier.c_str());
+               }
+       }
+       else
+       {
+               if(singleDeclarationErrorCheck(publicType, identifierOrTypeLocation))
+                       recover();
 
-    ConstantUnion *unionArray;
-    if (tempConstantNode) {
-        unionArray = tempConstantNode->getUnionArrayPointer();
+               if(nonInitErrorCheck(identifierOrTypeLocation, identifier, publicType))
+                       recover();
 
-        if (!unionArray) {
-            return node;
-        }
-    } else { // The node has to be either a symbol node or an aggregate node or a tempConstant node, else, its an error
-        error(line, "Cannot offset into the vector", "Error");
-        recover();
+               TVariable *variable = nullptr;
+               if(!declareVariable(identifierOrTypeLocation, identifier, TType(publicType), &variable))
+                       recover();
 
-        return 0;
-    }
+               if(variable && symbol)
+                       symbol->setId(variable->getUniqueId());
+       }
 
-    ConstantUnion* constArray = new ConstantUnion[fields.num];
+       return intermediate.makeAggregate(symbol, identifierOrTypeLocation);
+}
 
-    for (int i = 0; i < fields.num; i++) {
-        if (fields.offsets[i] >= node->getType().getObjectSize()) {
-            std::stringstream extraInfoStream;
-            extraInfoStream << "vector field selection out of range '" << fields.offsets[i] << "'";
-            std::string extraInfo = extraInfoStream.str();
-            error(line, "", "[", extraInfo.c_str());
-            recover();
-            fields.offsets[i] = 0;
-        }
+TIntermAggregate *TParseContext::parseSingleArrayDeclaration(TPublicType &publicType,
+       const TSourceLoc &identifierLocation,
+       const TString &identifier,
+       const TSourceLoc &indexLocation,
+       TIntermTyped *indexExpression)
+{
+       mDeferredSingleDeclarationErrorCheck = false;
 
-        constArray[i] = unionArray[fields.offsets[i]];
+       if(singleDeclarationErrorCheck(publicType, identifierLocation))
+               recover();
 
-    }
-    typedNode = intermediate.addConstantUnion(constArray, node->getType(), line);
-    return typedNode;
-}
+       if(nonInitErrorCheck(identifierLocation, identifier, publicType))
+               recover();
 
-//
-// This function returns the column being accessed from a constant matrix. The values are retrieved from
-// the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input
-// to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a
-// constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure)
-//
-TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, TSourceLoc line)
-{
-    TIntermTyped* typedNode;
-    TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
+       if(arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType))
+       {
+               recover();
+       }
+
+       TType arrayType(publicType);
 
-    if (index >= node->getType().getNominalSize()) {
-        std::stringstream extraInfoStream;
-        extraInfoStream << "matrix field selection out of range '" << index << "'";
-        std::string extraInfo = extraInfoStream.str();
-        error(line, "", "[", extraInfo.c_str());
-        recover();
-        index = 0;
-    }
+       int size;
+       if(arraySizeErrorCheck(identifierLocation, indexExpression, size))
+       {
+               recover();
+       }
+       // Make the type an array even if size check failed.
+       // This ensures useless error messages regarding the variable's non-arrayness won't follow.
+       arrayType.setArraySize(size);
 
-    if (tempConstantNode) {
-         ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
-         int size = tempConstantNode->getType().getNominalSize();
-         typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line);
-    } else {
-        error(line, "Cannot offset into the matrix", "Error");
-        recover();
+       TVariable *variable = nullptr;
+       if(!declareVariable(identifierLocation, identifier, arrayType, &variable))
+               recover();
 
-        return 0;
-    }
+       TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, arrayType, identifierLocation);
+       if(variable && symbol)
+               symbol->setId(variable->getUniqueId());
 
-    return typedNode;
+       return intermediate.makeAggregate(symbol, identifierLocation);
 }
 
+TIntermAggregate *TParseContext::parseSingleInitDeclaration(const TPublicType &publicType,
+       const TSourceLoc &identifierLocation,
+       const TString &identifier,
+       const TSourceLoc &initLocation,
+       TIntermTyped *initializer)
+{
+       mDeferredSingleDeclarationErrorCheck = false;
 
-//
-// This function returns an element of an array accessed from a constant array. The values are retrieved from
-// the symbol table and parse-tree is built for the type of the element. The input
-// to the function could either be a symbol node (a[0] where a is a constant array)that represents a
-// constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure)
-//
-TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, TSourceLoc line)
+       if(singleDeclarationErrorCheck(publicType, identifierLocation))
+               recover();
+
+       TIntermNode *intermNode = nullptr;
+       if(!executeInitializer(identifierLocation, identifier, publicType, initializer, &intermNode))
+       {
+               //
+               // Build intermediate representation
+               //
+               return intermNode ? intermediate.makeAggregate(intermNode, initLocation) : nullptr;
+       }
+       else
+       {
+               recover();
+               return nullptr;
+       }
+}
+
+TIntermAggregate *TParseContext::parseSingleArrayInitDeclaration(TPublicType &publicType,
+       const TSourceLoc &identifierLocation,
+       const TString &identifier,
+       const TSourceLoc &indexLocation,
+       TIntermTyped *indexExpression,
+       const TSourceLoc &initLocation,
+       TIntermTyped *initializer)
 {
-    TIntermTyped* typedNode;
-    TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
-    TType arrayElementType = node->getType();
-    arrayElementType.clearArrayness();
+       mDeferredSingleDeclarationErrorCheck = false;
 
-    if (index >= node->getType().getArraySize()) {
-        std::stringstream extraInfoStream;
-        extraInfoStream << "array field selection out of range '" << index << "'";
-        std::string extraInfo = extraInfoStream.str();
-        error(line, "", "[", extraInfo.c_str());
-        recover();
-        index = 0;
-    }
+       if(singleDeclarationErrorCheck(publicType, identifierLocation))
+               recover();
 
-    int arrayElementSize = arrayElementType.getObjectSize();
+       if(arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType))
+       {
+               recover();
+       }
 
-    if (tempConstantNode) {
-         ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
-         typedNode = intermediate.addConstantUnion(&unionArray[arrayElementSize * index], tempConstantNode->getType(), line);
-    } else {
-        error(line, "Cannot offset into the array", "Error");
-        recover();
+       TPublicType arrayType(publicType);
 
-        return 0;
-    }
+       int size = 0;
+       // If indexExpression is nullptr, then the array will eventually get its size implicitly from the initializer.
+       if(indexExpression != nullptr && arraySizeErrorCheck(identifierLocation, indexExpression, size))
+       {
+               recover();
+       }
+       // Make the type an array even if size check failed.
+       // This ensures useless error messages regarding the variable's non-arrayness won't follow.
+       arrayType.setArray(true, size);
 
-    return typedNode;
+       // initNode will correspond to the whole of "type b[n] = initializer".
+       TIntermNode *initNode = nullptr;
+       if(!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode))
+       {
+               return initNode ? intermediate.makeAggregate(initNode, initLocation) : nullptr;
+       }
+       else
+       {
+               recover();
+               return nullptr;
+       }
 }
 
+TIntermAggregate *TParseContext::parseInvariantDeclaration(const TSourceLoc &invariantLoc,
+       const TSourceLoc &identifierLoc,
+       const TString *identifier,
+       const TSymbol *symbol)
+{
+       // invariant declaration
+       if(globalErrorCheck(invariantLoc, symbolTable.atGlobalLevel(), "invariant varying"))
+       {
+               recover();
+       }
 
-//
-// This function returns the value of a particular field inside a constant structure from the symbol table.
-// If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr
-// function and returns the parse-tree with the values of the embedded/nested struct.
-//
-TIntermTyped* TParseContext::addConstStruct(TString& identifier, TIntermTyped* node, TSourceLoc line)
+       if(!symbol)
+       {
+               error(identifierLoc, "undeclared identifier declared as invariant", identifier->c_str());
+               recover();
+               return nullptr;
+       }
+       else
+       {
+               const TString kGlFrontFacing("gl_FrontFacing");
+               if(*identifier == kGlFrontFacing)
+               {
+                       error(identifierLoc, "identifier should not be declared as invariant", identifier->c_str());
+                       recover();
+                       return nullptr;
+               }
+               symbolTable.addInvariantVarying(std::string(identifier->c_str()));
+               const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol);
+               ASSERT(variable);
+               const TType &type = variable->getType();
+               TIntermSymbol *intermSymbol = intermediate.addSymbol(variable->getUniqueId(),
+                       *identifier, type, identifierLoc);
+
+               TIntermAggregate *aggregate = intermediate.makeAggregate(intermSymbol, identifierLoc);
+               aggregate->setOp(EOpInvariantDeclaration);
+               return aggregate;
+       }
+}
+
+TIntermAggregate *TParseContext::parseDeclarator(TPublicType &publicType, TIntermAggregate *aggregateDeclaration,
+       const TSourceLoc &identifierLocation, const TString &identifier)
 {
-    const TFieldList &fields = node->getType().getStruct()->fields();
-    TIntermTyped *typedNode;
-    int instanceSize = 0;
-    unsigned int index = 0;
-    TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion();
+       // If the declaration starting this declarator list was empty (example: int,), some checks were not performed.
+       if(mDeferredSingleDeclarationErrorCheck)
+       {
+               if(singleDeclarationErrorCheck(publicType, identifierLocation))
+                       recover();
+               mDeferredSingleDeclarationErrorCheck = false;
+       }
 
-    for ( index = 0; index < fields.size(); ++index) {
-        if (fields[index]->name() == identifier) {
-            break;
-        } else {
-            instanceSize += fields[index]->type()->getObjectSize();
-        }
-    }
+       if(locationDeclaratorListCheck(identifierLocation, publicType))
+               recover();
 
-    if (tempConstantNode) {
-         ConstantUnion* constArray = tempConstantNode->getUnionArrayPointer();
+       if(nonInitErrorCheck(identifierLocation, identifier, publicType))
+               recover();
 
-         typedNode = intermediate.addConstantUnion(constArray+instanceSize, tempConstantNode->getType(), line); // type will be changed in the calling function
-    } else {
-        error(line, "Cannot offset into the structure", "Error");
-        recover();
+       TVariable *variable = nullptr;
+       if(!declareVariable(identifierLocation, identifier, TType(publicType), &variable))
+               recover();
 
-        return 0;
-    }
+       TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, TType(publicType), identifierLocation);
+       if(variable && symbol)
+               symbol->setId(variable->getUniqueId());
 
-    return typedNode;
+       return intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation);
 }
 
-TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc& qualifierTypeLine)
+TIntermAggregate *TParseContext::parseArrayDeclarator(TPublicType &publicType, TIntermAggregate *aggregateDeclaration,
+       const TSourceLoc &identifierLocation, const TString &identifier,
+       const TSourceLoc &arrayLocation, TIntermTyped *indexExpression)
 {
-    TLayoutQualifier qualifier;
+       // If the declaration starting this declarator list was empty (example: int,), some checks were not performed.
+       if(mDeferredSingleDeclarationErrorCheck)
+       {
+               if(singleDeclarationErrorCheck(publicType, identifierLocation))
+                       recover();
+               mDeferredSingleDeclarationErrorCheck = false;
+       }
 
-    qualifier.location = -1;
+       if(locationDeclaratorListCheck(identifierLocation, publicType))
+               recover();
 
-    if (qualifierType == "location")
-    {
-        error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "location requires an argument");
-        recover();
-    }
-    else
-    {
-        error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str());
-        recover();
-    }
+       if(nonInitErrorCheck(identifierLocation, identifier, publicType))
+               recover();
 
-    return qualifier;
-}
+       if(arrayTypeErrorCheck(arrayLocation, publicType) || arrayQualifierErrorCheck(arrayLocation, publicType))
+       {
+               recover();
+       }
+       else
+       {
+               TType arrayType = TType(publicType);
+               int size;
+               if(arraySizeErrorCheck(arrayLocation, indexExpression, size))
+               {
+                       recover();
+               }
+               arrayType.setArraySize(size);
 
-TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc& qualifierTypeLine, const TString &intValueString, int intValue, const TSourceLoc& intValueLine)
-{
-    TLayoutQualifier qualifier;
+               TVariable *variable = nullptr;
+               if(!declareVariable(identifierLocation, identifier, arrayType, &variable))
+                       recover();
 
-    qualifier.location = -1;
+               TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, arrayType, identifierLocation);
+               if(variable && symbol)
+                       symbol->setId(variable->getUniqueId());
 
-    if (qualifierType != "location")
-    {
-        error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "only location may have arguments");
-        recover();
-    }
-    else
-    {
-        // must check that location is non-negative
-        if (intValue < 0)
-        {
-            error(intValueLine, "out of range:", intValueString.c_str(), "location must be non-negative");
-            recover();
-        }
-        else
-        {
-            qualifier.location = intValue;
-        }
-    }
+               return intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation);
+       }
 
-    return qualifier;
+       return nullptr;
 }
 
-TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier, TLayoutQualifier rightQualifier)
+TIntermAggregate *TParseContext::parseInitDeclarator(const TPublicType &publicType, TIntermAggregate *aggregateDeclaration,
+       const TSourceLoc &identifierLocation, const TString &identifier,
+       const TSourceLoc &initLocation, TIntermTyped *initializer)
 {
-    TLayoutQualifier joinedQualifier = leftQualifier;
+       // If the declaration starting this declarator list was empty (example: int,), some checks were not performed.
+       if(mDeferredSingleDeclarationErrorCheck)
+       {
+               if(singleDeclarationErrorCheck(publicType, identifierLocation))
+                       recover();
+               mDeferredSingleDeclarationErrorCheck = false;
+       }
 
-    if (rightQualifier.location != -1)
-    {
-        joinedQualifier.location = rightQualifier.location;
-    }
+       if(locationDeclaratorListCheck(identifierLocation, publicType))
+               recover();
 
-    return joinedQualifier;
+       TIntermNode *intermNode = nullptr;
+       if(!executeInitializer(identifierLocation, identifier, publicType, initializer, &intermNode))
+       {
+               //
+               // build the intermediate representation
+               //
+               if(intermNode)
+               {
+                       return intermediate.growAggregate(aggregateDeclaration, intermNode, initLocation);
+               }
+               else
+               {
+                       return aggregateDeclaration;
+               }
+       }
+       else
+       {
+               recover();
+               return nullptr;
+       }
 }
 
+TIntermAggregate *TParseContext::parseArrayInitDeclarator(const TPublicType &publicType,
+       TIntermAggregate *aggregateDeclaration,
+       const TSourceLoc &identifierLocation,
+       const TString &identifier,
+       const TSourceLoc &indexLocation,
+       TIntermTyped *indexExpression,
+       const TSourceLoc &initLocation, TIntermTyped *initializer)
+{
+       // If the declaration starting this declarator list was empty (example: int,), some checks were not performed.
+       if(mDeferredSingleDeclarationErrorCheck)
+       {
+               if(singleDeclarationErrorCheck(publicType, identifierLocation))
+                       recover();
+               mDeferredSingleDeclarationErrorCheck = false;
+       }
+
+       if(locationDeclaratorListCheck(identifierLocation, publicType))
+               recover();
 
-TPublicType TParseContext::joinInterpolationQualifiers(const TSourceLoc &interpolationLoc, TQualifier interpolationQualifier,
-       const TSourceLoc &storageLoc, TQualifier storageQualifier)
+       if(arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType))
+       {
+               recover();
+       }
+
+       TPublicType arrayType(publicType);
+
+       int size = 0;
+       // If indexExpression is nullptr, then the array will eventually get its size implicitly from the initializer.
+       if(indexExpression != nullptr && arraySizeErrorCheck(identifierLocation, indexExpression, size))
+       {
+               recover();
+       }
+       // Make the type an array even if size check failed.
+       // This ensures useless error messages regarding the variable's non-arrayness won't follow.
+       arrayType.setArray(true, size);
+
+       // initNode will correspond to the whole of "b[n] = initializer".
+       TIntermNode *initNode = nullptr;
+       if(!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode))
+       {
+               if(initNode)
+               {
+                       return intermediate.growAggregate(aggregateDeclaration, initNode, initLocation);
+               }
+               else
+               {
+                       return aggregateDeclaration;
+               }
+       }
+       else
+       {
+               recover();
+               return nullptr;
+       }
+}
+
+void TParseContext::parseGlobalLayoutQualifier(const TPublicType &typeQualifier)
 {
-       TQualifier mergedQualifier = EvqSmoothIn;
+       if(mShaderVersion < 300)
+       {
+               error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 only", "layout");
+               recover();
+               return;
+       }
 
-       if(storageQualifier == EvqFragmentIn) {
-               if(interpolationQualifier == EvqSmooth)
-                       mergedQualifier = EvqSmoothIn;
-               else if(interpolationQualifier == EvqFlat)
-                       mergedQualifier = EvqFlatIn;
-               else UNREACHABLE();
+       if(typeQualifier.qualifier != EvqUniform)
+       {
+               error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "global layout must be uniform");
+               recover();
+               return;
        }
-       else if(storageQualifier == EvqCentroidIn) {
-               if(interpolationQualifier == EvqSmooth)
-                       mergedQualifier = EvqCentroidIn;
-               else if(interpolationQualifier == EvqFlat)
-                       mergedQualifier = EvqFlatIn;
-               else UNREACHABLE();
+
+       const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier;
+       ASSERT(!layoutQualifier.isEmpty());
+
+       if(layoutLocationErrorCheck(typeQualifier.line, typeQualifier.layoutQualifier))
+       {
+               recover();
+               return;
        }
-       else if(storageQualifier == EvqVertexOut) {
-               if(interpolationQualifier == EvqSmooth)
-                       mergedQualifier = EvqSmoothOut;
-               else if(interpolationQualifier == EvqFlat)
-                       mergedQualifier = EvqFlatOut;
-               else UNREACHABLE();
+
+       if(layoutQualifier.matrixPacking != EmpUnspecified)
+       {
+               mDefaultMatrixPacking = layoutQualifier.matrixPacking;
        }
-       else if(storageQualifier == EvqCentroidOut) {
-               if(interpolationQualifier == EvqSmooth)
-                       mergedQualifier = EvqCentroidOut;
-               else if(interpolationQualifier == EvqFlat)
-                       mergedQualifier = EvqFlatOut;
-               else UNREACHABLE();
+
+       if(layoutQualifier.blockStorage != EbsUnspecified)
+       {
+               mDefaultBlockStorage = layoutQualifier.blockStorage;
        }
-       else {
-               error(interpolationLoc, "interpolation qualifier requires a fragment 'in' or vertex 'out' storage qualifier", getQualifierString(interpolationQualifier));
+}
+
+TIntermAggregate *TParseContext::addFunctionPrototypeDeclaration(const TFunction &function, const TSourceLoc &location)
+{
+       // Note: symbolTableFunction could be the same as function if this is the first declaration.
+       // Either way the instance in the symbol table is used to track whether the function is declared
+       // multiple times.
+       TFunction *symbolTableFunction =
+               static_cast<TFunction *>(symbolTable.find(function.getMangledName(), getShaderVersion()));
+       if(symbolTableFunction->hasPrototypeDeclaration() && mShaderVersion == 100)
+       {
+               // ESSL 1.00.17 section 4.2.7.
+               // Doesn't apply to ESSL 3.00.4: see section 4.2.3.
+               error(location, "duplicate function prototype declarations are not allowed", "function");
                recover();
+       }
+       symbolTableFunction->setHasPrototypeDeclaration();
 
-               mergedQualifier = storageQualifier;
+       TIntermAggregate *prototype = new TIntermAggregate;
+       prototype->setType(function.getReturnType());
+       prototype->setName(function.getMangledName());
+
+       for(size_t i = 0; i < function.getParamCount(); i++)
+       {
+               const TParameter &param = function.getParam(i);
+               if(param.name != 0)
+               {
+                       TVariable variable(param.name, *param.type);
+
+                       TIntermSymbol *paramSymbol = intermediate.addSymbol(
+                               variable.getUniqueId(), variable.getName(), variable.getType(), location);
+                       prototype = intermediate.growAggregate(prototype, paramSymbol, location);
+               }
+               else
+               {
+                       TIntermSymbol *paramSymbol = intermediate.addSymbol(0, "", *param.type, location);
+                       prototype = intermediate.growAggregate(prototype, paramSymbol, location);
+               }
        }
 
-       TPublicType type;
-       type.setBasic(EbtVoid, mergedQualifier, storageLoc);
-       return type;
+       prototype->setOp(EOpPrototype);
+
+       symbolTable.pop();
+
+       if(!symbolTable.atGlobalLevel())
+       {
+               // ESSL 3.00.4 section 4.2.4.
+               error(location, "local function prototype declarations are not allowed", "function");
+               recover();
+       }
+
+       return prototype;
 }
 
-bool TParseContext::enterStructDeclaration(int line, const TString& identifier)
+TIntermAggregate *TParseContext::addFunctionDefinition(const TFunction &function, TIntermAggregate *functionPrototype, TIntermAggregate *functionBody, const TSourceLoc &location)
 {
-    ++structNestingLevel;
+       //?? Check that all paths return a value if return type != void ?
+       //   May be best done as post process phase on intermediate code
+       if(mCurrentFunctionType->getBasicType() != EbtVoid && !mFunctionReturnsValue)
+       {
+               error(location, "function does not return a value:", "", function.getName().c_str());
+               recover();
+       }
 
-    // Embedded structure definitions are not supported per GLSL ES spec.
-    // They aren't allowed in GLSL either, but we need to detect this here
-    // so we don't rely on the GLSL compiler to catch it.
-    if (structNestingLevel > 1) {
-        error(line, "", "Embedded struct definitions are not allowed");
-        return true;
-    }
+       TIntermAggregate *aggregate = intermediate.growAggregate(functionPrototype, functionBody, location);
+       intermediate.setAggregateOperator(aggregate, EOpFunction, location);
+       aggregate->setName(function.getMangledName().c_str());
+       aggregate->setType(function.getReturnType());
 
-    return false;
+       // store the pragma information for debug and optimize and other vendor specific
+       // information. This information can be queried from the parse tree
+       aggregate->setOptimize(pragma().optimize);
+       aggregate->setDebug(pragma().debug);
+
+       if(functionBody && functionBody->getAsAggregate())
+               aggregate->setEndLine(functionBody->getAsAggregate()->getEndLine());
+
+       symbolTable.pop();
+       return aggregate;
 }
 
-void TParseContext::exitStructDeclaration()
+void TParseContext::parseFunctionPrototype(const TSourceLoc &location, TFunction *function, TIntermAggregate **aggregateOut)
+{
+       const TSymbol *builtIn = symbolTable.findBuiltIn(function->getMangledName(), getShaderVersion());
+
+       if(builtIn)
+       {
+               error(location, "built-in functions cannot be redefined", function->getName().c_str());
+               recover();
+       }
+
+       TFunction *prevDec = static_cast<TFunction *>(symbolTable.find(function->getMangledName(), getShaderVersion()));
+       //
+       // Note:  'prevDec' could be 'function' if this is the first time we've seen function
+       // as it would have just been put in the symbol table.  Otherwise, we're looking up
+       // an earlier occurance.
+       //
+       if(prevDec->isDefined())
+       {
+               // Then this function already has a body.
+               error(location, "function already has a body", function->getName().c_str());
+               recover();
+       }
+       prevDec->setDefined();
+       //
+       // Overload the unique ID of the definition to be the same unique ID as the declaration.
+       // Eventually we will probably want to have only a single definition and just swap the
+       // arguments to be the definition's arguments.
+       //
+       function->setUniqueId(prevDec->getUniqueId());
+
+       // Raise error message if main function takes any parameters or return anything other than void
+       if(function->getName() == "main")
+       {
+               if(function->getParamCount() > 0)
+               {
+                       error(location, "function cannot take any parameter(s)", function->getName().c_str());
+                       recover();
+               }
+               if(function->getReturnType().getBasicType() != EbtVoid)
+               {
+                       error(location, "", function->getReturnType().getBasicString(), "main function cannot return a value");
+                       recover();
+               }
+       }
+
+       //
+       // Remember the return type for later checking for RETURN statements.
+       //
+       mCurrentFunctionType = &(prevDec->getReturnType());
+       mFunctionReturnsValue = false;
+
+       //
+       // Insert parameters into the symbol table.
+       // If the parameter has no name, it's not an error, just don't insert it
+       // (could be used for unused args).
+       //
+       // Also, accumulate the list of parameters into the HIL, so lower level code
+       // knows where to find parameters.
+       //
+       TIntermAggregate *paramNodes = new TIntermAggregate;
+       for(size_t i = 0; i < function->getParamCount(); i++)
+       {
+               const TParameter &param = function->getParam(i);
+               if(param.name != 0)
+               {
+                       TVariable *variable = new TVariable(param.name, *param.type);
+                       //
+                       // Insert the parameters with name in the symbol table.
+                       //
+                       if(!symbolTable.declare(*variable))
+                       {
+                               error(location, "redefinition", variable->getName().c_str());
+                               recover();
+                               paramNodes = intermediate.growAggregate(
+                                       paramNodes, intermediate.addSymbol(0, "", *param.type, location), location);
+                               continue;
+                       }
+
+                       //
+                       // Add the parameter to the HIL
+                       //
+                       TIntermSymbol *symbol = intermediate.addSymbol(
+                               variable->getUniqueId(), variable->getName(), variable->getType(), location);
+
+                       paramNodes = intermediate.growAggregate(paramNodes, symbol, location);
+               }
+               else
+               {
+                       paramNodes = intermediate.growAggregate(
+                               paramNodes, intermediate.addSymbol(0, "", *param.type, location), location);
+               }
+       }
+       intermediate.setAggregateOperator(paramNodes, EOpParameters, location);
+       *aggregateOut = paramNodes;
+       setLoopNestingLevel(0);
+}
+
+TFunction *TParseContext::parseFunctionDeclarator(const TSourceLoc &location, TFunction *function)
+{
+       //
+       // We don't know at this point whether this is a function definition or a prototype.
+       // The definition production code will check for redefinitions.
+       // In the case of ESSL 1.00 the prototype production code will also check for redeclarations.
+       //
+       // Return types and parameter qualifiers must match in all redeclarations, so those are checked
+       // here.
+       //
+       TFunction *prevDec = static_cast<TFunction *>(symbolTable.find(function->getMangledName(), getShaderVersion()));
+       if(getShaderVersion() >= 300 && symbolTable.hasUnmangledBuiltIn(function->getName().c_str()))
+       {
+               // With ESSL 3.00, names of built-in functions cannot be redeclared as functions.
+               // Therefore overloading or redefining builtin functions is an error.
+               error(location, "Name of a built-in function cannot be redeclared as function", function->getName().c_str());
+       }
+       else if(prevDec)
+       {
+               if(prevDec->getReturnType() != function->getReturnType())
+               {
+                       error(location, "overloaded functions must have the same return type",
+                               function->getReturnType().getBasicString());
+                       recover();
+               }
+               for(size_t i = 0; i < prevDec->getParamCount(); ++i)
+               {
+                       if(prevDec->getParam(i).type->getQualifier() != function->getParam(i).type->getQualifier())
+                       {
+                               error(location, "overloaded functions must have the same parameter qualifiers",
+                                       function->getParam(i).type->getQualifierString());
+                               recover();
+                       }
+               }
+       }
+
+       //
+       // Check for previously declared variables using the same name.
+       //
+       TSymbol *prevSym = symbolTable.find(function->getName(), getShaderVersion());
+       if(prevSym)
+       {
+               if(!prevSym->isFunction())
+               {
+                       error(location, "redefinition", function->getName().c_str(), "function");
+                       recover();
+               }
+       }
+
+       // We're at the inner scope level of the function's arguments and body statement.
+       // Add the function prototype to the surrounding scope instead.
+       symbolTable.getOuterLevel()->insert(*function);
+
+       //
+       // If this is a redeclaration, it could also be a definition, in which case, we want to use the
+       // variable names from this one, and not the one that's
+       // being redeclared.  So, pass back up this declaration, not the one in the symbol table.
+       //
+       return function;
+}
+
+TFunction *TParseContext::addConstructorFunc(const TPublicType &publicTypeIn)
+{
+       TPublicType publicType = publicTypeIn;
+       TOperator op = EOpNull;
+       if(publicType.userDef)
+       {
+               op = EOpConstructStruct;
+       }
+       else
+       {
+               op = TypeToConstructorOperator(TType(publicType));
+               if(op == EOpNull)
+               {
+                       error(publicType.line, "cannot construct this type", getBasicString(publicType.type));
+                       recover();
+                       publicType.type = EbtFloat;
+                       op = EOpConstructFloat;
+               }
+       }
+
+       TString tempString;
+       TType type(publicType);
+       return new TFunction(&tempString, type, op);
+}
+
+// This function is used to test for the correctness of the parameters passed to various constructor functions
+// and also convert them to the right datatype if it is allowed and required.
+//
+// Returns 0 for an error or the constructed node (aggregate or typed) for no error.
+//
+TIntermTyped* TParseContext::addConstructor(TIntermNode* arguments, const TType* type, TOperator op, TFunction* fnCall, const TSourceLoc &line)
 {
-    --structNestingLevel;
+       TIntermAggregate *aggregateArguments = arguments->getAsAggregate();
+
+       if(!aggregateArguments)
+       {
+               aggregateArguments = new TIntermAggregate;
+               aggregateArguments->getSequence().push_back(arguments);
+       }
+
+       if(type->isArray())
+       {
+               // GLSL ES 3.00 section 5.4.4: Each argument must be the same type as the element type of
+               // the array.
+               for(TIntermNode *&argNode : aggregateArguments->getSequence())
+               {
+                       const TType &argType = argNode->getAsTyped()->getType();
+                       // It has already been checked that the argument is not an array.
+                       ASSERT(!argType.isArray());
+                       if(!argType.sameElementType(*type))
+                       {
+                               error(line, "Array constructor argument has an incorrect type", "Error");
+                               return nullptr;
+                       }
+               }
+       }
+       else if(op == EOpConstructStruct)
+       {
+               const TFieldList &fields = type->getStruct()->fields();
+               TIntermSequence &args = aggregateArguments->getSequence();
+
+               for(size_t i = 0; i < fields.size(); i++)
+               {
+                       if(args[i]->getAsTyped()->getType() != *fields[i]->type())
+                       {
+                               error(line, "Structure constructor arguments do not match structure fields", "Error");
+                               recover();
+
+                               return nullptr;
+                       }
+               }
+       }
+
+       // Turn the argument list itself into a constructor
+       TIntermAggregate *constructor = intermediate.setAggregateOperator(aggregateArguments, op, line);
+       TIntermTyped *constConstructor = foldConstConstructor(constructor, *type);
+       if(constConstructor)
+       {
+               return constConstructor;
+       }
+
+       return constructor;
+}
+
+TIntermTyped* TParseContext::foldConstConstructor(TIntermAggregate* aggrNode, const TType& type)
+{
+       aggrNode->setType(type);
+       if (aggrNode->isConstantFoldable()) {
+               bool returnVal = false;
+               ConstantUnion* unionArray = new ConstantUnion[type.getObjectSize()];
+               if (aggrNode->getSequence().size() == 1)  {
+                       returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type, true);
+               }
+               else {
+                       returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type);
+               }
+               if (returnVal)
+                       return nullptr;
+
+               return intermediate.addConstantUnion(unionArray, type, aggrNode->getLine());
+       }
+
+       return nullptr;
+}
+
+//
+// This function returns the tree representation for the vector field(s) being accessed from contant vector.
+// If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is
+// returned, else an aggregate node is returned (for v.xy). The input to this function could either be the symbol
+// node or it could be the intermediate tree representation of accessing fields in a constant structure or column of
+// a constant matrix.
+//
+TIntermTyped* TParseContext::addConstVectorNode(TVectorFields& fields, TIntermTyped* node, const TSourceLoc &line)
+{
+       TIntermTyped* typedNode;
+       TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
+
+       ConstantUnion *unionArray;
+       if (tempConstantNode) {
+               unionArray = tempConstantNode->getUnionArrayPointer();
+
+               if (!unionArray) {
+                       return node;
+               }
+       } else { // The node has to be either a symbol node or an aggregate node or a tempConstant node, else, its an error
+               error(line, "Cannot offset into the vector", "Error");
+               recover();
+
+               return nullptr;
+       }
+
+       ConstantUnion* constArray = new ConstantUnion[fields.num];
+
+       int objSize = static_cast<int>(node->getType().getObjectSize());
+       for (int i = 0; i < fields.num; i++) {
+               if (fields.offsets[i] >= objSize) {
+                       std::stringstream extraInfoStream;
+                       extraInfoStream << "vector field selection out of range '" << fields.offsets[i] << "'";
+                       std::string extraInfo = extraInfoStream.str();
+                       error(line, "", "[", extraInfo.c_str());
+                       recover();
+                       fields.offsets[i] = 0;
+               }
+
+               constArray[i] = unionArray[fields.offsets[i]];
+
+       }
+       typedNode = intermediate.addConstantUnion(constArray, node->getType(), line);
+       return typedNode;
+}
+
+//
+// This function returns the column being accessed from a constant matrix. The values are retrieved from
+// the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input
+// to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a
+// constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure)
+//
+TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, const TSourceLoc &line)
+{
+       TIntermTyped* typedNode;
+       TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
+
+       if (index >= node->getType().getNominalSize()) {
+               std::stringstream extraInfoStream;
+               extraInfoStream << "matrix field selection out of range '" << index << "'";
+               std::string extraInfo = extraInfoStream.str();
+               error(line, "", "[", extraInfo.c_str());
+               recover();
+               index = 0;
+       }
+
+       if (tempConstantNode) {
+                ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
+                int size = tempConstantNode->getType().getNominalSize();
+                typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line);
+       } else {
+               error(line, "Cannot offset into the matrix", "Error");
+               recover();
+
+               return nullptr;
+       }
+
+       return typedNode;
+}
+
+
+//
+// This function returns an element of an array accessed from a constant array. The values are retrieved from
+// the symbol table and parse-tree is built for the type of the element. The input
+// to the function could either be a symbol node (a[0] where a is a constant array)that represents a
+// constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure)
+//
+TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, const TSourceLoc &line)
+{
+       TIntermTyped* typedNode;
+       TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
+       TType arrayElementType = node->getType();
+       arrayElementType.clearArrayness();
+
+       if (index >= node->getType().getArraySize()) {
+               std::stringstream extraInfoStream;
+               extraInfoStream << "array field selection out of range '" << index << "'";
+               std::string extraInfo = extraInfoStream.str();
+               error(line, "", "[", extraInfo.c_str());
+               recover();
+               index = 0;
+       }
+
+       size_t arrayElementSize = arrayElementType.getObjectSize();
+
+       if (tempConstantNode) {
+                ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
+                typedNode = intermediate.addConstantUnion(&unionArray[arrayElementSize * index], tempConstantNode->getType(), line);
+       } else {
+               error(line, "Cannot offset into the array", "Error");
+               recover();
+
+               return nullptr;
+       }
+
+       return typedNode;
+}
+
+
+//
+// This function returns the value of a particular field inside a constant structure from the symbol table.
+// If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr
+// function and returns the parse-tree with the values of the embedded/nested struct.
+//
+TIntermTyped* TParseContext::addConstStruct(const TString& identifier, TIntermTyped* node, const TSourceLoc &line)
+{
+       const TFieldList &fields = node->getType().getStruct()->fields();
+       TIntermTyped *typedNode;
+       size_t instanceSize = 0;
+       TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion();
+
+       for(size_t index = 0; index < fields.size(); ++index) {
+               if (fields[index]->name() == identifier) {
+                       break;
+               } else {
+                       instanceSize += fields[index]->type()->getObjectSize();
+               }
+       }
+
+       if (tempConstantNode) {
+                ConstantUnion* constArray = tempConstantNode->getUnionArrayPointer();
+
+                typedNode = intermediate.addConstantUnion(constArray+instanceSize, tempConstantNode->getType(), line); // type will be changed in the calling function
+       } else {
+               error(line, "Cannot offset into the structure", "Error");
+               recover();
+
+               return nullptr;
+       }
+
+       return typedNode;
+}
+
+//
+// Interface/uniform blocks
+//
+TIntermAggregate* TParseContext::addInterfaceBlock(const TPublicType& typeQualifier, const TSourceLoc& nameLine, const TString& blockName, TFieldList* fieldList,
+                                                                                                  const TString* instanceName, const TSourceLoc& instanceLine, TIntermTyped* arrayIndex, const TSourceLoc& arrayIndexLine)
+{
+       if(reservedErrorCheck(nameLine, blockName))
+               recover();
+
+       if(typeQualifier.qualifier != EvqUniform)
+       {
+               error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "interface blocks must be uniform");
+               recover();
+       }
+
+       TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier;
+       if(layoutLocationErrorCheck(typeQualifier.line, blockLayoutQualifier))
+       {
+               recover();
+       }
+
+       if(blockLayoutQualifier.matrixPacking == EmpUnspecified)
+       {
+               blockLayoutQualifier.matrixPacking = mDefaultMatrixPacking;
+       }
+
+       if(blockLayoutQualifier.blockStorage == EbsUnspecified)
+       {
+               blockLayoutQualifier.blockStorage = mDefaultBlockStorage;
+       }
+
+       TSymbol* blockNameSymbol = new TSymbol(&blockName);
+       if(!symbolTable.declare(*blockNameSymbol)) {
+               error(nameLine, "redefinition", blockName.c_str(), "interface block name");
+               recover();
+       }
+
+       // check for sampler types and apply layout qualifiers
+       for(size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) {
+               TField* field = (*fieldList)[memberIndex];
+               TType* fieldType = field->type();
+               if(IsSampler(fieldType->getBasicType())) {
+                       error(field->line(), "unsupported type", fieldType->getBasicString(), "sampler types are not allowed in interface blocks");
+                       recover();
+               }
+
+               const TQualifier qualifier = fieldType->getQualifier();
+               switch(qualifier)
+               {
+               case EvqGlobal:
+               case EvqUniform:
+                       break;
+               default:
+                       error(field->line(), "invalid qualifier on interface block member", getQualifierString(qualifier));
+                       recover();
+                       break;
+               }
+
+               // check layout qualifiers
+               TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier();
+               if(layoutLocationErrorCheck(field->line(), fieldLayoutQualifier))
+               {
+                       recover();
+               }
+
+               if(fieldLayoutQualifier.blockStorage != EbsUnspecified)
+               {
+                       error(field->line(), "invalid layout qualifier:", getBlockStorageString(fieldLayoutQualifier.blockStorage), "cannot be used here");
+                       recover();
+               }
+
+               if(fieldLayoutQualifier.matrixPacking == EmpUnspecified)
+               {
+                       fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking;
+               }
+               else if(!fieldType->isMatrix())
+               {
+                       error(field->line(), "invalid layout qualifier:", getMatrixPackingString(fieldLayoutQualifier.matrixPacking), "can only be used on matrix types");
+                       recover();
+               }
+
+               fieldType->setLayoutQualifier(fieldLayoutQualifier);
+       }
+
+       // add array index
+       int arraySize = 0;
+       if(arrayIndex)
+       {
+               if(arraySizeErrorCheck(arrayIndexLine, arrayIndex, arraySize))
+                       recover();
+       }
+
+       TInterfaceBlock* interfaceBlock = new TInterfaceBlock(&blockName, fieldList, instanceName, arraySize, blockLayoutQualifier);
+       TType interfaceBlockType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier, arraySize);
+
+       TString symbolName = "";
+       int symbolId = 0;
+
+       if(!instanceName)
+       {
+               // define symbols for the members of the interface block
+               for(size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex)
+               {
+                       TField* field = (*fieldList)[memberIndex];
+                       TType* fieldType = field->type();
+
+                       // set parent pointer of the field variable
+                       fieldType->setInterfaceBlock(interfaceBlock);
+
+                       TVariable* fieldVariable = new TVariable(&field->name(), *fieldType);
+                       fieldVariable->setQualifier(typeQualifier.qualifier);
+
+                       if(!symbolTable.declare(*fieldVariable)) {
+                               error(field->line(), "redefinition", field->name().c_str(), "interface block member name");
+                               recover();
+                       }
+               }
+       }
+       else
+       {
+               // add a symbol for this interface block
+               TVariable* instanceTypeDef = new TVariable(instanceName, interfaceBlockType, false);
+               instanceTypeDef->setQualifier(typeQualifier.qualifier);
+
+               if(!symbolTable.declare(*instanceTypeDef)) {
+                       error(instanceLine, "redefinition", instanceName->c_str(), "interface block instance name");
+                       recover();
+               }
+
+               symbolId = instanceTypeDef->getUniqueId();
+               symbolName = instanceTypeDef->getName();
+       }
+
+       TIntermAggregate *aggregate = intermediate.makeAggregate(intermediate.addSymbol(symbolId, symbolName, interfaceBlockType, typeQualifier.line), nameLine);
+       aggregate->setOp(EOpDeclaration);
+
+       exitStructDeclaration();
+       return aggregate;
+}
+
+//
+// Parse an array index expression
+//
+TIntermTyped *TParseContext::addIndexExpression(TIntermTyped *baseExpression, const TSourceLoc &location, TIntermTyped *indexExpression)
+{
+       TIntermTyped *indexedExpression = nullptr;
+
+       if(!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector())
+       {
+               if(baseExpression->getAsSymbolNode())
+               {
+                       error(location, " left of '[' is not of type array, matrix, or vector ",
+                               baseExpression->getAsSymbolNode()->getSymbol().c_str());
+               }
+               else
+               {
+                       error(location, " left of '[' is not of type array, matrix, or vector ", "expression");
+               }
+               recover();
+       }
+
+       TIntermConstantUnion *indexConstantUnion = indexExpression->getAsConstantUnion();
+
+       if(indexExpression->getQualifier() == EvqConstExpr && indexConstantUnion)
+       {
+               int index = indexConstantUnion->getIConst(0);
+               if(index < 0)
+               {
+                       std::stringstream infoStream;
+                       infoStream << index;
+                       std::string info = infoStream.str();
+                       error(location, "negative index", info.c_str());
+                       recover();
+                       index = 0;
+               }
+               if(baseExpression->getType().getQualifier() == EvqConstExpr)
+               {
+                       if(baseExpression->isArray())
+                       {
+                               // constant folding for arrays
+                               indexedExpression = addConstArrayNode(index, baseExpression, location);
+                       }
+                       else if(baseExpression->isVector())
+                       {
+                               // constant folding for vectors
+                               TVectorFields fields;
+                               fields.num = 1;
+                               fields.offsets[0] = index; // need to do it this way because v.xy sends fields integer array
+                               indexedExpression = addConstVectorNode(fields, baseExpression, location);
+                       }
+                       else if(baseExpression->isMatrix())
+                       {
+                               // constant folding for matrices
+                               indexedExpression = addConstMatrixNode(index, baseExpression, location);
+                       }
+               }
+               else
+               {
+                       int safeIndex = -1;
+
+                       if(baseExpression->isArray())
+                       {
+                               if(index >= baseExpression->getType().getArraySize())
+                               {
+                                       std::stringstream extraInfoStream;
+                                       extraInfoStream << "array index out of range '" << index << "'";
+                                       std::string extraInfo = extraInfoStream.str();
+                                       error(location, "", "[", extraInfo.c_str());
+                                       recover();
+                                       safeIndex = baseExpression->getType().getArraySize() - 1;
+                               }
+                       }
+                       else if((baseExpression->isVector() || baseExpression->isMatrix()) &&
+                               baseExpression->getType().getNominalSize() <= index)
+                       {
+                               std::stringstream extraInfoStream;
+                               extraInfoStream << "field selection out of range '" << index << "'";
+                               std::string extraInfo = extraInfoStream.str();
+                               error(location, "", "[", extraInfo.c_str());
+                               recover();
+                               safeIndex = baseExpression->getType().getNominalSize() - 1;
+                       }
+
+                       // Don't modify the data of the previous constant union, because it can point
+                       // to builtins, like gl_MaxDrawBuffers. Instead use a new sanitized object.
+                       if(safeIndex != -1)
+                       {
+                               ConstantUnion *safeConstantUnion = new ConstantUnion();
+                               safeConstantUnion->setIConst(safeIndex);
+                               indexConstantUnion->replaceConstantUnion(safeConstantUnion);
+                       }
+
+                       indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, indexExpression, location);
+               }
+       }
+       else
+       {
+               if(baseExpression->isInterfaceBlock())
+               {
+                       error(location, "",
+                               "[", "array indexes for interface blocks arrays must be constant integral expressions");
+                       recover();
+               }
+               else if(baseExpression->getQualifier() == EvqFragmentOut)
+               {
+                       error(location, "", "[", "array indexes for fragment outputs must be constant integral expressions");
+                       recover();
+               }
+
+               indexedExpression = intermediate.addIndex(EOpIndexIndirect, baseExpression, indexExpression, location);
+       }
+
+       if(indexedExpression == 0)
+       {
+               ConstantUnion *unionArray = new ConstantUnion[1];
+               unionArray->setFConst(0.0f);
+               indexedExpression = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConstExpr), location);
+       }
+       else if(baseExpression->isArray())
+       {
+               const TType &baseType = baseExpression->getType();
+               if(baseType.getStruct())
+               {
+                       TType copyOfType(baseType.getStruct());
+                       indexedExpression->setType(copyOfType);
+               }
+               else if(baseType.isInterfaceBlock())
+               {
+                       TType copyOfType(baseType.getInterfaceBlock(), EvqTemporary, baseType.getLayoutQualifier(), 0);
+                       indexedExpression->setType(copyOfType);
+               }
+               else
+               {
+                       indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(),
+                               EvqTemporary, static_cast<unsigned char>(baseExpression->getNominalSize()),
+                               static_cast<unsigned char>(baseExpression->getSecondarySize())));
+               }
+
+               if(baseExpression->getType().getQualifier() == EvqConstExpr)
+               {
+                       indexedExpression->getTypePointer()->setQualifier(EvqConstExpr);
+               }
+       }
+       else if(baseExpression->isMatrix())
+       {
+               TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConstExpr ? EvqConstExpr : EvqTemporary;
+               indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(),
+                       qualifier, static_cast<unsigned char>(baseExpression->getSecondarySize())));
+       }
+       else if(baseExpression->isVector())
+       {
+               TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConstExpr ? EvqConstExpr : EvqTemporary;
+               indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), qualifier));
+       }
+       else
+       {
+               indexedExpression->setType(baseExpression->getType());
+       }
+
+       return indexedExpression;
+}
+
+TIntermTyped *TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression, const TSourceLoc &dotLocation,
+       const TString &fieldString, const TSourceLoc &fieldLocation)
+{
+       TIntermTyped *indexedExpression = nullptr;
+
+       if(baseExpression->isArray())
+       {
+               error(fieldLocation, "cannot apply dot operator to an array", ".");
+               recover();
+       }
+
+       if(baseExpression->isVector())
+       {
+               TVectorFields fields;
+               if(!parseVectorFields(fieldString, baseExpression->getNominalSize(), fields, fieldLocation))
+               {
+                       fields.num = 1;
+                       fields.offsets[0] = 0;
+                       recover();
+               }
+
+               if(baseExpression->getAsConstantUnion())
+               {
+                       // constant folding for vector fields
+                       indexedExpression = addConstVectorNode(fields, baseExpression, fieldLocation);
+                       if(indexedExpression == 0)
+                       {
+                               recover();
+                               indexedExpression = baseExpression;
+                       }
+                       else
+                       {
+                               indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(),
+                                       EvqConstExpr, (unsigned char)(fieldString).size()));
+                       }
+               }
+               else
+               {
+                       TString vectorString = fieldString;
+                       TIntermTyped *index = intermediate.addSwizzle(fields, fieldLocation);
+                       indexedExpression = intermediate.addIndex(EOpVectorSwizzle, baseExpression, index, dotLocation);
+                       indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(),
+                               baseExpression->getQualifier() == EvqConstExpr ? EvqConstExpr : EvqTemporary, (unsigned char)vectorString.size()));
+               }
+       }
+       else if(baseExpression->isMatrix())
+       {
+               TMatrixFields fields;
+               if(!parseMatrixFields(fieldString, baseExpression->getNominalSize(), baseExpression->getSecondarySize(), fields, fieldLocation))
+               {
+                       fields.wholeRow = false;
+                       fields.wholeCol = false;
+                       fields.row = 0;
+                       fields.col = 0;
+                       recover();
+               }
+
+               if(fields.wholeRow || fields.wholeCol)
+               {
+                       error(dotLocation, " non-scalar fields not implemented yet", ".");
+                       recover();
+                       ConstantUnion *unionArray = new ConstantUnion[1];
+                       unionArray->setIConst(0);
+                       TIntermTyped *index = intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConstExpr),
+                               fieldLocation);
+                       indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, index, dotLocation);
+                       indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(),
+                               EvqTemporary, static_cast<unsigned char>(baseExpression->getNominalSize()),
+                               static_cast<unsigned char>(baseExpression->getSecondarySize())));
+               }
+               else
+               {
+                       ConstantUnion *unionArray = new ConstantUnion[1];
+                       unionArray->setIConst(fields.col * baseExpression->getSecondarySize() + fields.row);
+                       TIntermTyped *index = intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConstExpr),
+                               fieldLocation);
+                       indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, index, dotLocation);
+                       indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision()));
+               }
+       }
+       else if(baseExpression->getBasicType() == EbtStruct)
+       {
+               bool fieldFound = false;
+               const TFieldList &fields = baseExpression->getType().getStruct()->fields();
+               if(fields.empty())
+               {
+                       error(dotLocation, "structure has no fields", "Internal Error");
+                       recover();
+                       indexedExpression = baseExpression;
+               }
+               else
+               {
+                       unsigned int i;
+                       for(i = 0; i < fields.size(); ++i)
+                       {
+                               if(fields[i]->name() == fieldString)
+                               {
+                                       fieldFound = true;
+                                       break;
+                               }
+                       }
+                       if(fieldFound)
+                       {
+                               if(baseExpression->getType().getQualifier() == EvqConstExpr)
+                               {
+                                       indexedExpression = addConstStruct(fieldString, baseExpression, dotLocation);
+                                       if(indexedExpression == 0)
+                                       {
+                                               recover();
+                                               indexedExpression = baseExpression;
+                                       }
+                                       else
+                                       {
+                                               indexedExpression->setType(*fields[i]->type());
+                                               // change the qualifier of the return type, not of the structure field
+                                               // as the structure definition is shared between various structures.
+                                               indexedExpression->getTypePointer()->setQualifier(EvqConstExpr);
+                                       }
+                               }
+                               else
+                               {
+                                       TIntermTyped *index = TIntermTyped::CreateIndexNode(i);
+                                       index->setLine(fieldLocation);
+                                       indexedExpression = intermediate.addIndex(EOpIndexDirectStruct, baseExpression, index, dotLocation);
+                                       indexedExpression->setType(*fields[i]->type());
+                               }
+                       }
+                       else
+                       {
+                               error(dotLocation, " no such field in structure", fieldString.c_str());
+                               recover();
+                               indexedExpression = baseExpression;
+                       }
+               }
+       }
+       else if(baseExpression->isInterfaceBlock())
+       {
+               bool fieldFound = false;
+               const TFieldList &fields = baseExpression->getType().getInterfaceBlock()->fields();
+               if(fields.empty())
+               {
+                       error(dotLocation, "interface block has no fields", "Internal Error");
+                       recover();
+                       indexedExpression = baseExpression;
+               }
+               else
+               {
+                       unsigned int i;
+                       for(i = 0; i < fields.size(); ++i)
+                       {
+                               if(fields[i]->name() == fieldString)
+                               {
+                                       fieldFound = true;
+                                       break;
+                               }
+                       }
+                       if(fieldFound)
+                       {
+                               ConstantUnion *unionArray = new ConstantUnion[1];
+                               unionArray->setIConst(i);
+                               TIntermTyped *index = intermediate.addConstantUnion(unionArray, *fields[i]->type(), fieldLocation);
+                               indexedExpression = intermediate.addIndex(EOpIndexDirectInterfaceBlock, baseExpression, index,
+                                       dotLocation);
+                               indexedExpression->setType(*fields[i]->type());
+                       }
+                       else
+                       {
+                               error(dotLocation, " no such field in interface block", fieldString.c_str());
+                               recover();
+                               indexedExpression = baseExpression;
+                       }
+               }
+       }
+       else
+       {
+               if(mShaderVersion < 300)
+               {
+                       error(dotLocation, " field selection requires structure, vector, or matrix on left hand side",
+                               fieldString.c_str());
+               }
+               else
+               {
+                       error(dotLocation,
+                               " field selection requires structure, vector, matrix, or interface block on left hand side",
+                               fieldString.c_str());
+               }
+               recover();
+               indexedExpression = baseExpression;
+       }
+
+       return indexedExpression;
+}
+
+TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc& qualifierTypeLine)
+{
+       TLayoutQualifier qualifier;
+
+       qualifier.location = -1;
+       qualifier.matrixPacking = EmpUnspecified;
+       qualifier.blockStorage = EbsUnspecified;
+
+       if(qualifierType == "shared")
+       {
+               qualifier.blockStorage = EbsShared;
+       }
+       else if(qualifierType == "packed")
+       {
+               qualifier.blockStorage = EbsPacked;
+       }
+       else if(qualifierType == "std140")
+       {
+               qualifier.blockStorage = EbsStd140;
+       }
+       else if(qualifierType == "row_major")
+       {
+               qualifier.matrixPacking = EmpRowMajor;
+       }
+       else if(qualifierType == "column_major")
+       {
+               qualifier.matrixPacking = EmpColumnMajor;
+       }
+       else if(qualifierType == "location")
+       {
+               error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "location requires an argument");
+               recover();
+       }
+       else
+       {
+               error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str());
+               recover();
+       }
+
+       return qualifier;
+}
+
+TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc& qualifierTypeLine, const TString &intValueString, int intValue, const TSourceLoc& intValueLine)
+{
+       TLayoutQualifier qualifier;
+
+       qualifier.location = -1;
+       qualifier.matrixPacking = EmpUnspecified;
+       qualifier.blockStorage = EbsUnspecified;
+
+       if (qualifierType != "location")
+       {
+               error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "only location may have arguments");
+               recover();
+       }
+       else
+       {
+               // must check that location is non-negative
+               if (intValue < 0)
+               {
+                       error(intValueLine, "out of range:", intValueString.c_str(), "location must be non-negative");
+                       recover();
+               }
+               else
+               {
+                       qualifier.location = intValue;
+               }
+       }
+
+       return qualifier;
+}
+
+TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier, TLayoutQualifier rightQualifier)
+{
+       TLayoutQualifier joinedQualifier = leftQualifier;
+
+       if (rightQualifier.location != -1)
+       {
+               joinedQualifier.location = rightQualifier.location;
+       }
+       if(rightQualifier.matrixPacking != EmpUnspecified)
+       {
+               joinedQualifier.matrixPacking = rightQualifier.matrixPacking;
+       }
+       if(rightQualifier.blockStorage != EbsUnspecified)
+       {
+               joinedQualifier.blockStorage = rightQualifier.blockStorage;
+       }
+
+       return joinedQualifier;
+}
+
+
+TPublicType TParseContext::joinInterpolationQualifiers(const TSourceLoc &interpolationLoc, TQualifier interpolationQualifier,
+       const TSourceLoc &storageLoc, TQualifier storageQualifier)
+{
+       TQualifier mergedQualifier = EvqSmoothIn;
+
+       if(storageQualifier == EvqFragmentIn) {
+               if(interpolationQualifier == EvqSmooth)
+                       mergedQualifier = EvqSmoothIn;
+               else if(interpolationQualifier == EvqFlat)
+                       mergedQualifier = EvqFlatIn;
+               else UNREACHABLE(interpolationQualifier);
+       }
+       else if(storageQualifier == EvqCentroidIn) {
+               if(interpolationQualifier == EvqSmooth)
+                       mergedQualifier = EvqCentroidIn;
+               else if(interpolationQualifier == EvqFlat)
+                       mergedQualifier = EvqFlatIn;
+               else UNREACHABLE(interpolationQualifier);
+       }
+       else if(storageQualifier == EvqVertexOut) {
+               if(interpolationQualifier == EvqSmooth)
+                       mergedQualifier = EvqSmoothOut;
+               else if(interpolationQualifier == EvqFlat)
+                       mergedQualifier = EvqFlatOut;
+               else UNREACHABLE(interpolationQualifier);
+       }
+       else if(storageQualifier == EvqCentroidOut) {
+               if(interpolationQualifier == EvqSmooth)
+                       mergedQualifier = EvqCentroidOut;
+               else if(interpolationQualifier == EvqFlat)
+                       mergedQualifier = EvqFlatOut;
+               else UNREACHABLE(interpolationQualifier);
+       }
+       else {
+               error(interpolationLoc, "interpolation qualifier requires a fragment 'in' or vertex 'out' storage qualifier", getQualifierString(interpolationQualifier));
+               recover();
+
+               mergedQualifier = storageQualifier;
+       }
+
+       TPublicType type;
+       type.setBasic(EbtVoid, mergedQualifier, storageLoc);
+       return type;
+}
+
+TFieldList *TParseContext::addStructDeclaratorList(const TPublicType &typeSpecifier, TFieldList *fieldList)
+{
+       if(voidErrorCheck(typeSpecifier.line, (*fieldList)[0]->name(), typeSpecifier.type))
+       {
+               recover();
+       }
+
+       for(unsigned int i = 0; i < fieldList->size(); ++i)
+       {
+               //
+               // Careful not to replace already known aspects of type, like array-ness
+               //
+               TType *type = (*fieldList)[i]->type();
+               type->setBasicType(typeSpecifier.type);
+               type->setNominalSize(typeSpecifier.primarySize);
+               type->setSecondarySize(typeSpecifier.secondarySize);
+               type->setPrecision(typeSpecifier.precision);
+               type->setQualifier(typeSpecifier.qualifier);
+               type->setLayoutQualifier(typeSpecifier.layoutQualifier);
+
+               // don't allow arrays of arrays
+               if(type->isArray())
+               {
+                       if(arrayTypeErrorCheck(typeSpecifier.line, typeSpecifier))
+                               recover();
+               }
+               if(typeSpecifier.array)
+                       type->setArraySize(typeSpecifier.arraySize);
+               if(typeSpecifier.userDef)
+               {
+                       type->setStruct(typeSpecifier.userDef->getStruct());
+               }
+
+               if(structNestingErrorCheck(typeSpecifier.line, *(*fieldList)[i]))
+               {
+                       recover();
+               }
+       }
+
+       return fieldList;
+}
+
+TPublicType TParseContext::addStructure(const TSourceLoc &structLine, const TSourceLoc &nameLine,
+       const TString *structName, TFieldList *fieldList)
+{
+       TStructure *structure = new TStructure(structName, fieldList);
+       TType *structureType = new TType(structure);
+
+       // Store a bool in the struct if we're at global scope, to allow us to
+       // skip the local struct scoping workaround in HLSL.
+       structure->setUniqueId(TSymbolTableLevel::nextUniqueId());
+       structure->setAtGlobalScope(symbolTable.atGlobalLevel());
+
+       if(!structName->empty())
+       {
+               if(reservedErrorCheck(nameLine, *structName))
+               {
+                       recover();
+               }
+               TVariable *userTypeDef = new TVariable(structName, *structureType, true);
+               if(!symbolTable.declare(*userTypeDef))
+               {
+                       error(nameLine, "redefinition", structName->c_str(), "struct");
+                       recover();
+               }
+       }
+
+       // ensure we do not specify any storage qualifiers on the struct members
+       for(unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++)
+       {
+               const TField &field = *(*fieldList)[typeListIndex];
+               const TQualifier qualifier = field.type()->getQualifier();
+               switch(qualifier)
+               {
+               case EvqGlobal:
+               case EvqTemporary:
+                       break;
+               default:
+                       error(field.line(), "invalid qualifier on struct member", getQualifierString(qualifier));
+                       recover();
+                       break;
+               }
+       }
+
+       TPublicType publicType;
+       publicType.setBasic(EbtStruct, EvqTemporary, structLine);
+       publicType.userDef = structureType;
+       exitStructDeclaration();
+
+       return publicType;
+}
+
+bool TParseContext::enterStructDeclaration(const TSourceLoc &line, const TString& identifier)
+{
+       ++mStructNestingLevel;
+
+       // Embedded structure definitions are not supported per GLSL ES spec.
+       // They aren't allowed in GLSL either, but we need to detect this here
+       // so we don't rely on the GLSL compiler to catch it.
+       if (mStructNestingLevel > 1) {
+               error(line, "", "Embedded struct definitions are not allowed");
+               return true;
+       }
+
+       return false;
+}
+
+void TParseContext::exitStructDeclaration()
+{
+       --mStructNestingLevel;
+}
+
+bool TParseContext::structNestingErrorCheck(const TSourceLoc &line, const TField &field)
+{
+       static const int kWebGLMaxStructNesting = 4;
+
+       if(field.type()->getBasicType() != EbtStruct)
+       {
+               return false;
+       }
+
+       // We're already inside a structure definition at this point, so add
+       // one to the field's struct nesting.
+       if(1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting)
+       {
+               std::stringstream reasonStream;
+               reasonStream << "Reference of struct type "
+                       << field.type()->getStruct()->name().c_str()
+                       << " exceeds maximum allowed nesting level of "
+                       << kWebGLMaxStructNesting;
+               std::string reason = reasonStream.str();
+               error(line, reason.c_str(), field.name().c_str(), "");
+               return true;
+       }
+
+       return false;
+}
+
+TIntermTyped *TParseContext::createUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc, const TType *funcReturnType)
+{
+       if(child == nullptr)
+       {
+               return nullptr;
+       }
+
+       switch(op)
+       {
+       case EOpLogicalNot:
+               if(child->getBasicType() != EbtBool ||
+                       child->isMatrix() ||
+                       child->isArray() ||
+                       child->isVector())
+               {
+                       return nullptr;
+               }
+               break;
+       case EOpBitwiseNot:
+               if((child->getBasicType() != EbtInt && child->getBasicType() != EbtUInt) ||
+                       child->isMatrix() ||
+                       child->isArray())
+               {
+                       return nullptr;
+               }
+               break;
+       case EOpPostIncrement:
+       case EOpPreIncrement:
+       case EOpPostDecrement:
+       case EOpPreDecrement:
+       case EOpNegative:
+               if(child->getBasicType() == EbtStruct ||
+                       child->getBasicType() == EbtBool ||
+                       child->isArray())
+               {
+                       return nullptr;
+               }
+               // Operators for built-ins are already type checked against their prototype.
+       default:
+               break;
+       }
+
+       return intermediate.addUnaryMath(op, child, loc, funcReturnType);
+}
+
+TIntermTyped *TParseContext::addUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc)
+{
+       TIntermTyped *node = createUnaryMath(op, child, loc, nullptr);
+       if(node == nullptr)
+       {
+               unaryOpError(loc, getOperatorString(op), child->getCompleteString());
+               recover();
+               return child;
+       }
+       return node;
+}
+
+TIntermTyped *TParseContext::addUnaryMathLValue(TOperator op, TIntermTyped *child, const TSourceLoc &loc)
+{
+       if(lValueErrorCheck(loc, getOperatorString(op), child))
+               recover();
+       return addUnaryMath(op, child, loc);
+}
+
+bool TParseContext::binaryOpCommonCheck(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc)
+{
+       if(left->isArray() || right->isArray())
+       {
+               if(mShaderVersion < 300)
+               {
+                       error(loc, "Invalid operation for arrays", getOperatorString(op));
+                       return false;
+               }
+
+               if(left->isArray() != right->isArray())
+               {
+                       error(loc, "array / non-array mismatch", getOperatorString(op));
+                       return false;
+               }
+
+               switch(op)
+               {
+               case EOpEqual:
+               case EOpNotEqual:
+               case EOpAssign:
+               case EOpInitialize:
+                       break;
+               default:
+                       error(loc, "Invalid operation for arrays", getOperatorString(op));
+                       return false;
+               }
+               // At this point, size of implicitly sized arrays should be resolved.
+               if(left->getArraySize() != right->getArraySize())
+               {
+                       error(loc, "array size mismatch", getOperatorString(op));
+                       return false;
+               }
+       }
+
+       // Check ops which require integer / ivec parameters
+       bool isBitShift = false;
+       switch(op)
+       {
+       case EOpBitShiftLeft:
+       case EOpBitShiftRight:
+       case EOpBitShiftLeftAssign:
+       case EOpBitShiftRightAssign:
+               // Unsigned can be bit-shifted by signed and vice versa, but we need to
+               // check that the basic type is an integer type.
+               isBitShift = true;
+               if(!IsInteger(left->getBasicType()) || !IsInteger(right->getBasicType()))
+               {
+                       return false;
+               }
+               break;
+       case EOpBitwiseAnd:
+       case EOpBitwiseXor:
+       case EOpBitwiseOr:
+       case EOpBitwiseAndAssign:
+       case EOpBitwiseXorAssign:
+       case EOpBitwiseOrAssign:
+               // It is enough to check the type of only one operand, since later it
+               // is checked that the operand types match.
+               if(!IsInteger(left->getBasicType()))
+               {
+                       return false;
+               }
+               break;
+       default:
+               break;
+       }
+
+       // GLSL ES 1.00 and 3.00 do not support implicit type casting.
+       // So the basic type should usually match.
+       if(!isBitShift && left->getBasicType() != right->getBasicType())
+       {
+               return false;
+       }
+
+       // Check that type sizes match exactly on ops that require that.
+       // Also check restrictions for structs that contain arrays or samplers.
+       switch(op)
+       {
+       case EOpAssign:
+       case EOpInitialize:
+       case EOpEqual:
+       case EOpNotEqual:
+               // ESSL 1.00 sections 5.7, 5.8, 5.9
+               if(mShaderVersion < 300 && left->getType().isStructureContainingArrays())
+               {
+                       error(loc, "undefined operation for structs containing arrays", getOperatorString(op));
+                       return false;
+               }
+               // Samplers as l-values are disallowed also in ESSL 3.00, see section 4.1.7,
+               // we interpret the spec so that this extends to structs containing samplers,
+               // similarly to ESSL 1.00 spec.
+               if((mShaderVersion < 300 || op == EOpAssign || op == EOpInitialize) &&
+                       left->getType().isStructureContainingSamplers())
+               {
+                       error(loc, "undefined operation for structs containing samplers", getOperatorString(op));
+                       return false;
+               }
+       case EOpLessThan:
+       case EOpGreaterThan:
+       case EOpLessThanEqual:
+       case EOpGreaterThanEqual:
+               if((left->getNominalSize() != right->getNominalSize()) ||
+                       (left->getSecondarySize() != right->getSecondarySize()))
+               {
+                       return false;
+               }
+               break;
+       case EOpAdd:
+       case EOpSub:
+       case EOpDiv:
+       case EOpIMod:
+       case EOpBitShiftLeft:
+       case EOpBitShiftRight:
+       case EOpBitwiseAnd:
+       case EOpBitwiseXor:
+       case EOpBitwiseOr:
+       case EOpAddAssign:
+       case EOpSubAssign:
+       case EOpDivAssign:
+       case EOpIModAssign:
+       case EOpBitShiftLeftAssign:
+       case EOpBitShiftRightAssign:
+       case EOpBitwiseAndAssign:
+       case EOpBitwiseXorAssign:
+       case EOpBitwiseOrAssign:
+               if((left->isMatrix() && right->isVector()) || (left->isVector() && right->isMatrix()))
+               {
+                       return false;
+               }
+
+               // Are the sizes compatible?
+               if(left->getNominalSize() != right->getNominalSize() || left->getSecondarySize() != right->getSecondarySize())
+               {
+                       // If the nominal sizes of operands do not match:
+                       // One of them must be a scalar.
+                       if(!left->isScalar() && !right->isScalar())
+                               return false;
+
+                       // In the case of compound assignment other than multiply-assign,
+                       // the right side needs to be a scalar. Otherwise a vector/matrix
+                       // would be assigned to a scalar. A scalar can't be shifted by a
+                       // vector either.
+                       if(!right->isScalar() && (IsAssignment(op) || op == EOpBitShiftLeft || op == EOpBitShiftRight))
+                               return false;
+               }
+               break;
+       default:
+               break;
+       }
+
+       return true;
+}
+
+TIntermSwitch *TParseContext::addSwitch(TIntermTyped *init, TIntermAggregate *statementList, const TSourceLoc &loc)
+{
+       TBasicType switchType = init->getBasicType();
+       if((switchType != EbtInt && switchType != EbtUInt) ||
+          init->isMatrix() ||
+          init->isArray() ||
+          init->isVector())
+       {
+               error(init->getLine(), "init-expression in a switch statement must be a scalar integer", "switch");
+               recover();
+               return nullptr;
+       }
+
+       if(statementList)
+       {
+               if(!ValidateSwitch::validate(switchType, this, statementList, loc))
+               {
+                       recover();
+                       return nullptr;
+               }
+       }
+
+       TIntermSwitch *node = intermediate.addSwitch(init, statementList, loc);
+       if(node == nullptr)
+       {
+               error(loc, "erroneous switch statement", "switch");
+               recover();
+               return nullptr;
+       }
+       return node;
+}
+
+TIntermCase *TParseContext::addCase(TIntermTyped *condition, const TSourceLoc &loc)
+{
+       if(mSwitchNestingLevel == 0)
+       {
+               error(loc, "case labels need to be inside switch statements", "case");
+               recover();
+               return nullptr;
+       }
+       if(condition == nullptr)
+       {
+               error(loc, "case label must have a condition", "case");
+               recover();
+               return nullptr;
+       }
+       if((condition->getBasicType() != EbtInt && condition->getBasicType() != EbtUInt) ||
+          condition->isMatrix() ||
+          condition->isArray() ||
+          condition->isVector())
+       {
+               error(condition->getLine(), "case label must be a scalar integer", "case");
+               recover();
+       }
+       TIntermConstantUnion *conditionConst = condition->getAsConstantUnion();
+       if(conditionConst == nullptr)
+       {
+               error(condition->getLine(), "case label must be constant", "case");
+               recover();
+       }
+       TIntermCase *node = intermediate.addCase(condition, loc);
+       if(node == nullptr)
+       {
+               error(loc, "erroneous case statement", "case");
+               recover();
+               return nullptr;
+       }
+       return node;
+}
+
+TIntermCase *TParseContext::addDefault(const TSourceLoc &loc)
+{
+       if(mSwitchNestingLevel == 0)
+       {
+               error(loc, "default labels need to be inside switch statements", "default");
+               recover();
+               return nullptr;
+       }
+       TIntermCase *node = intermediate.addCase(nullptr, loc);
+       if(node == nullptr)
+       {
+               error(loc, "erroneous default statement", "default");
+               recover();
+               return nullptr;
+       }
+       return node;
+}
+TIntermTyped *TParseContext::createAssign(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc)
+{
+       if(binaryOpCommonCheck(op, left, right, loc))
+       {
+               return intermediate.addAssign(op, left, right, loc);
+       }
+       return nullptr;
+}
+
+TIntermTyped *TParseContext::addAssign(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc)
+{
+       TIntermTyped *node = createAssign(op, left, right, loc);
+       if(node == nullptr)
+       {
+               assignError(loc, "assign", left->getCompleteString(), right->getCompleteString());
+               recover();
+               return left;
+       }
+       return node;
+}
+
+TIntermTyped *TParseContext::addBinaryMathInternal(TOperator op, TIntermTyped *left, TIntermTyped *right,
+       const TSourceLoc &loc)
+{
+       if(!binaryOpCommonCheck(op, left, right, loc))
+               return nullptr;
+
+       switch(op)
+       {
+       case EOpEqual:
+       case EOpNotEqual:
+               break;
+       case EOpLessThan:
+       case EOpGreaterThan:
+       case EOpLessThanEqual:
+       case EOpGreaterThanEqual:
+               ASSERT(!left->isArray() && !right->isArray());
+               if(left->isMatrix() || left->isVector() ||
+                       left->getBasicType() == EbtStruct)
+               {
+                       return nullptr;
+               }
+               break;
+       case EOpLogicalOr:
+       case EOpLogicalXor:
+       case EOpLogicalAnd:
+               ASSERT(!left->isArray() && !right->isArray());
+               if(left->getBasicType() != EbtBool ||
+                       left->isMatrix() || left->isVector())
+               {
+                       return nullptr;
+               }
+               break;
+       case EOpAdd:
+       case EOpSub:
+       case EOpDiv:
+       case EOpMul:
+               ASSERT(!left->isArray() && !right->isArray());
+               if(left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool)
+               {
+                       return nullptr;
+               }
+               break;
+       case EOpIMod:
+               ASSERT(!left->isArray() && !right->isArray());
+               // Note that this is only for the % operator, not for mod()
+               if(left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool || left->getBasicType() == EbtFloat)
+               {
+                       return nullptr;
+               }
+               break;
+               // Note that for bitwise ops, type checking is done in promote() to
+               // share code between ops and compound assignment
+       default:
+               break;
+       }
+
+       return intermediate.addBinaryMath(op, left, right, loc);
+}
+
+TIntermTyped *TParseContext::addBinaryMath(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc)
+{
+       TIntermTyped *node = addBinaryMathInternal(op, left, right, loc);
+       if(node == 0)
+       {
+               binaryOpError(loc, getOperatorString(op), left->getCompleteString(), right->getCompleteString());
+               recover();
+               return left;
+       }
+       return node;
+}
+
+TIntermTyped *TParseContext::addBinaryMathBooleanResult(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc)
+{
+       TIntermTyped *node = addBinaryMathInternal(op, left, right, loc);
+       if(node == 0)
+       {
+               binaryOpError(loc, getOperatorString(op), left->getCompleteString(), right->getCompleteString());
+               recover();
+               ConstantUnion *unionArray = new ConstantUnion[1];
+               unionArray->setBConst(false);
+               return intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConstExpr), loc);
+       }
+       return node;
+}
+
+TIntermBranch *TParseContext::addBranch(TOperator op, const TSourceLoc &loc)
+{
+       switch(op)
+       {
+       case EOpContinue:
+               if(mLoopNestingLevel <= 0)
+               {
+                       error(loc, "continue statement only allowed in loops", "");
+                       recover();
+               }
+               break;
+       case EOpBreak:
+               if(mLoopNestingLevel <= 0 && mSwitchNestingLevel <= 0)
+               {
+                       error(loc, "break statement only allowed in loops and switch statements", "");
+                       recover();
+               }
+               break;
+       case EOpReturn:
+               if(mCurrentFunctionType->getBasicType() != EbtVoid)
+               {
+                       error(loc, "non-void function must return a value", "return");
+                       recover();
+               }
+               break;
+       default:
+               // No checks for discard
+               break;
+       }
+       return intermediate.addBranch(op, loc);
+}
+
+TIntermBranch *TParseContext::addBranch(TOperator op, TIntermTyped *returnValue, const TSourceLoc &loc)
+{
+       ASSERT(op == EOpReturn);
+       mFunctionReturnsValue = true;
+       if(mCurrentFunctionType->getBasicType() == EbtVoid)
+       {
+               error(loc, "void function cannot return a value", "return");
+               recover();
+       }
+       else if(*mCurrentFunctionType != returnValue->getType())
+       {
+               error(loc, "function return is not matching type:", "return");
+               recover();
+       }
+       return intermediate.addBranch(op, returnValue, loc);
+}
+
+TIntermTyped *TParseContext::addFunctionCallOrMethod(TFunction *fnCall, TIntermNode *paramNode, TIntermNode *thisNode, const TSourceLoc &loc, bool *fatalError)
+{
+       *fatalError = false;
+       TOperator op = fnCall->getBuiltInOp();
+       TIntermTyped *callNode = nullptr;
+
+       if(thisNode != nullptr)
+       {
+               ConstantUnion *unionArray = new ConstantUnion[1];
+               int arraySize = 0;
+               TIntermTyped *typedThis = thisNode->getAsTyped();
+               if(fnCall->getName() != "length")
+               {
+                       error(loc, "invalid method", fnCall->getName().c_str());
+                       recover();
+               }
+               else if(paramNode != nullptr)
+               {
+                       error(loc, "method takes no parameters", "length");
+                       recover();
+               }
+               else if(typedThis == nullptr || !typedThis->isArray())
+               {
+                       error(loc, "length can only be called on arrays", "length");
+                       recover();
+               }
+               else
+               {
+                       arraySize = typedThis->getArraySize();
+                       if(typedThis->getAsSymbolNode() == nullptr)
+                       {
+                               // This code path can be hit with expressions like these:
+                               // (a = b).length()
+                               // (func()).length()
+                               // (int[3](0, 1, 2)).length()
+                               // ESSL 3.00 section 5.9 defines expressions so that this is not actually a valid expression.
+                               // It allows "An array name with the length method applied" in contrast to GLSL 4.4 spec section 5.9
+                               // which allows "An array, vector or matrix expression with the length method applied".
+                               error(loc, "length can only be called on array names, not on array expressions", "length");
+                               recover();
+                       }
+               }
+               unionArray->setIConst(arraySize);
+               callNode = intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConstExpr), loc);
+       }
+       else if(op != EOpNull)
+       {
+               //
+               // Then this should be a constructor.
+               // Don't go through the symbol table for constructors.
+               // Their parameters will be verified algorithmically.
+               //
+               TType type(EbtVoid, EbpUndefined);  // use this to get the type back
+               if(!constructorErrorCheck(loc, paramNode, *fnCall, op, &type))
+               {
+                       //
+                       // It's a constructor, of type 'type'.
+                       //
+                       callNode = addConstructor(paramNode, &type, op, fnCall, loc);
+               }
+
+               if(callNode == nullptr)
+               {
+                       recover();
+                       callNode = intermediate.setAggregateOperator(nullptr, op, loc);
+               }
+       }
+       else
+       {
+               //
+               // Not a constructor.  Find it in the symbol table.
+               //
+               const TFunction *fnCandidate;
+               bool builtIn;
+               fnCandidate = findFunction(loc, fnCall, &builtIn);
+               if(fnCandidate)
+               {
+                       //
+                       // A declared function.
+                       //
+                       if(builtIn && !fnCandidate->getExtension().empty() &&
+                               extensionErrorCheck(loc, fnCandidate->getExtension()))
+                       {
+                               recover();
+                       }
+                       op = fnCandidate->getBuiltInOp();
+                       if(builtIn && op != EOpNull)
+                       {
+                               //
+                               // A function call mapped to a built-in operation.
+                               //
+                               if(fnCandidate->getParamCount() == 1)
+                               {
+                                       //
+                                       // Treat it like a built-in unary operator.
+                                       //
+                                       callNode = createUnaryMath(op, paramNode->getAsTyped(), loc, &fnCandidate->getReturnType());
+                                       if(callNode == nullptr)
+                                       {
+                                               std::stringstream extraInfoStream;
+                                               extraInfoStream << "built in unary operator function.  Type: "
+                                                       << static_cast<TIntermTyped*>(paramNode)->getCompleteString();
+                                               std::string extraInfo = extraInfoStream.str();
+                                               error(paramNode->getLine(), " wrong operand type", "Internal Error", extraInfo.c_str());
+                                               *fatalError = true;
+                                               return nullptr;
+                                       }
+                               }
+                               else
+                               {
+                                       TIntermAggregate *aggregate = intermediate.setAggregateOperator(paramNode, op, loc);
+                                       aggregate->setType(fnCandidate->getReturnType());
+
+                                       // Some built-in functions have out parameters too.
+                                       functionCallLValueErrorCheck(fnCandidate, aggregate);
+
+                                       callNode = aggregate;
+
+                                       if(fnCandidate->getParamCount() == 2)
+                                       {
+                                               TIntermSequence &parameters = paramNode->getAsAggregate()->getSequence();
+                                               TIntermTyped *left = parameters[0]->getAsTyped();
+                                               TIntermTyped *right = parameters[1]->getAsTyped();
+
+                                               TIntermConstantUnion *leftTempConstant = left->getAsConstantUnion();
+                                               TIntermConstantUnion *rightTempConstant = right->getAsConstantUnion();
+                                               if (leftTempConstant && rightTempConstant)
+                                               {
+                                                       TIntermTyped *typedReturnNode = leftTempConstant->fold(op, rightTempConstant, infoSink());
+
+                                                       if(typedReturnNode)
+                                                       {
+                                                               callNode = typedReturnNode;
+                                                       }
+                                               }
+                                       }
+                               }
+                       }
+                       else
+                       {
+                               // This is a real function call
+
+                               TIntermAggregate *aggregate = intermediate.setAggregateOperator(paramNode, EOpFunctionCall, loc);
+                               aggregate->setType(fnCandidate->getReturnType());
+
+                               // this is how we know whether the given function is a builtIn function or a user defined function
+                               // if builtIn == false, it's a userDefined -> could be an overloaded builtIn function also
+                               // if builtIn == true, it's definitely a builtIn function with EOpNull
+                               if(!builtIn)
+                                       aggregate->setUserDefined();
+                               aggregate->setName(fnCandidate->getMangledName());
+
+                               callNode = aggregate;
+
+                               functionCallLValueErrorCheck(fnCandidate, aggregate);
+                       }
+               }
+               else
+               {
+                       // error message was put out by findFunction()
+                       // Put on a dummy node for error recovery
+                       ConstantUnion *unionArray = new ConstantUnion[1];
+                       unionArray->setFConst(0.0f);
+                       callNode = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpUndefined, EvqConstExpr), loc);
+                       recover();
+               }
+       }
+       delete fnCall;
+       return callNode;
+}
+
+TIntermTyped *TParseContext::addTernarySelection(TIntermTyped *cond, TIntermTyped *trueBlock, TIntermTyped *falseBlock, const TSourceLoc &loc)
+{
+       if(boolErrorCheck(loc, cond))
+               recover();
+
+       if(trueBlock->getType() != falseBlock->getType())
+       {
+               binaryOpError(loc, ":", trueBlock->getCompleteString(), falseBlock->getCompleteString());
+               recover();
+               return falseBlock;
+       }
+       // ESSL1 sections 5.2 and 5.7:
+       // ESSL3 section 5.7:
+       // Ternary operator is not among the operators allowed for structures/arrays.
+       if(trueBlock->isArray() || trueBlock->getBasicType() == EbtStruct)
+       {
+               error(loc, "ternary operator is not allowed for structures or arrays", ":");
+               recover();
+               return falseBlock;
+       }
+       return intermediate.addSelection(cond, trueBlock, falseBlock, loc);
 }
 
 //
@@ -1565,20 +3801,20 @@ void TParseContext::exitStructDeclaration()
 // Returns 0 for success.
 //
 int PaParseStrings(int count, const char* const string[], const int length[],
-                   TParseContext* context) {
-    if ((count == 0) || (string == NULL))
-        return 1;
+                                  TParseContext* context) {
+       if ((count == 0) || !string)
+               return 1;
 
-    if (glslang_initialize(context))
-        return 1;
+       if (glslang_initialize(context))
+               return 1;
 
-    int error = glslang_scan(count, string, length, context);
-    if (!error)
-        error = glslang_parse(context);
+       int error = glslang_scan(count, string, length, context);
+       if (!error)
+               error = glslang_parse(context);
 
-    glslang_finalize(context);
+       glslang_finalize(context);
 
-    return (error == 0) && (context->numErrors() == 0) ? 0 : 1;
+       return (error == 0) && (context->numErrors() == 0) ? 0 : 1;
 }