X-Git-Url: http://git.osdn.net/view?a=blobdiff_plain;f=control.c;h=b8fdeaba797b36561dace3518e877a659ef35556;hb=89f2b9b7744f165a604e88fb9d7c805abb5924d5;hp=6d07c4530892a7a497d5ee4183fd9bc7b705975b;hpb=5caa6165af89d8fc4eebd70db25c868dbe820f4b;p=android-x86%2Fhardware-intel-libsensors.git diff --git a/control.c b/control.c index 6d07c45..b8fdeab 100644 --- a/control.c +++ b/control.c @@ -1,5 +1,5 @@ /* - * Copyright (C) 2014 Intel Corporation. + * Copyright (C) 2014-2015 Intel Corporation. */ #include @@ -7,26 +7,32 @@ #include #include #include +#include #include +#include #include #include #include +#include #include "control.h" #include "enumeration.h" #include "utils.h" #include "transform.h" #include "calibration.h" #include "description.h" +#include "filtering.h" /* Currently active sensors count, per device */ -static int poll_sensors_per_dev[MAX_DEVICES]; /* poll-mode sensors */ -static int trig_sensors_per_dev[MAX_DEVICES]; /* trigger, event based */ +static int poll_sensors_per_dev[MAX_DEVICES]; /* poll-mode sensors */ +static int trig_sensors_per_dev[MAX_DEVICES]; /* trigger, event based */ -static int device_fd[MAX_DEVICES]; /* fd on the /dev/iio:deviceX file */ +static int device_fd[MAX_DEVICES]; /* fd on the /dev/iio:deviceX file */ +static int events_fd[MAX_DEVICES]; /* fd on the /sys/bus/iio/devices/iio:deviceX/events/ file */ +static int has_iio_ts[MAX_DEVICES]; /* ts channel available on this iio dev */ +static int expected_dev_report_size[MAX_DEVICES]; /* expected iio scan len */ +static int poll_fd; /* epoll instance covering all enabled sensors */ -static int poll_fd; /* epoll instance covering all enabled sensors */ - -static int active_poll_sensors; /* Number of enabled poll-mode sensors */ +static int active_poll_sensors; /* Number of enabled poll-mode sensors */ /* We use pthread condition variables to get worker threads out of sleep */ static pthread_condattr_t thread_cond_attr [MAX_SENSORS]; @@ -34,46 +40,72 @@ static pthread_cond_t thread_release_cond [MAX_SENSORS]; static pthread_mutex_t thread_release_mutex [MAX_SENSORS]; /* - * We associate tags to each of our poll set entries. These tags have the - * following values: + * We associate tags to each of our poll set entries. These tags have the following values: * - a iio device number if the fd is a iio character device fd - * - THREAD_REPORT_TAG_BASE + sensor handle if the fd is the receiving end of a - * pipe used by a sysfs data acquisition thread - * */ -#define THREAD_REPORT_TAG_BASE 0x00010000 + * - THREAD_REPORT_TAG_BASE + sensor handle if the fd is the receiving end of a pipe used by a sysfs data acquisition thread + */ +#define THREAD_REPORT_TAG_BASE 1000 + +/* If buffer enable fails, we may want to retry a few times before giving up */ +#define ENABLE_BUFFER_RETRIES 3 +#define ENABLE_BUFFER_RETRY_DELAY_MS 10 -#define ENABLE_BUFFER_RETRIES 10 -#define ENABLE_BUFFER_RETRY_DELAY_MS 10 -static int enable_buffer(int dev_num, int enabled) +inline int is_enabled (int s) { - char sysfs_path[PATH_MAX]; - int ret, retries, millisec; - struct timespec req = {0}; + return sensor[s].directly_enabled || sensor[s].ref_count; +} - retries = ENABLE_BUFFER_RETRIES; - millisec = ENABLE_BUFFER_RETRY_DELAY_MS; - req.tv_sec = 0; - req.tv_nsec = millisec * 1000000L; - sprintf(sysfs_path, ENABLE_PATH, dev_num); +static int check_state_change (int s, int enabled, int from_virtual) +{ + if (enabled) { + if (sensor[s].directly_enabled) + return 0; /* We're being enabled but already were directly activated: no change. */ - while (retries--) { - /* Low level, non-multiplexed, enable/disable routine */ - ret = sysfs_write_int(sysfs_path, enabled); - if (ret > 0) - break; + if (!from_virtual) + sensor[s].directly_enabled = 1; /* We're being directly enabled */ + + if (sensor[s].ref_count) + return 0; /* We were already indirectly enabled */ - ALOGE("Failed enabling buffer, retrying"); - nanosleep(&req, (struct timespec *)NULL); + return 1; /* Do continue enabling this sensor */ } - if (ret < 0) { - ALOGE("Could not enable buffer\n"); - return -EIO; + if (!is_enabled(s)) + return 0; /* We are being disabled but already were: no change */ + + if (from_virtual && sensor[s].directly_enabled) + return 0; /* We're indirectly disabled but the base is still active */ + + sensor[s].directly_enabled = 0; /* We're now directly disabled */ + + if (!from_virtual && sensor[s].ref_count) + return 0; /* We still have ref counts */ + + return 1; /* Do continue disabling this sensor */ +} + + +static int enable_buffer (int dev_num, int enabled) +{ + char sysfs_path[PATH_MAX]; + int retries = ENABLE_BUFFER_RETRIES; + + sprintf(sysfs_path, ENABLE_PATH, dev_num); + + while (retries) { + /* Low level, non-multiplexed, enable/disable routine */ + if (sysfs_write_int(sysfs_path, enabled) > 0) + return 0; + + ALOGE("Failed enabling buffer on dev%d, retrying", dev_num); + usleep(ENABLE_BUFFER_RETRY_DELAY_MS*1000); + retries--; } - return 0; + ALOGE("Could not enable buffer\n"); + return -EIO; } @@ -82,11 +114,10 @@ static int setup_trigger (int s, const char* trigger_val) char sysfs_path[PATH_MAX]; int ret = -1, attempts = 5; - sprintf(sysfs_path, TRIGGER_PATH, sensor_info[s].dev_num); + sprintf(sysfs_path, TRIGGER_PATH, sensor[s].dev_num); if (trigger_val[0] != '\n') - ALOGI("Setting S%d (%s) trigger to %s\n", s, - sensor_info[s].friendly_name, trigger_val); + ALOGI("Setting S%d (%s) trigger to %s\n", s, sensor[s].friendly_name, trigger_val); while (ret == -1 && attempts) { ret = sysfs_write_str(sysfs_path, trigger_val); @@ -94,27 +125,108 @@ static int setup_trigger (int s, const char* trigger_val) } if (ret != -1) - sensor_info[s].selected_trigger = trigger_val; + sensor[s].selected_trigger = trigger_val; else - ALOGE("Setting S%d (%s) trigger to %s FAILED.\n", s, - sensor_info[s].friendly_name, trigger_val); + ALOGE("Setting S%d (%s) trigger to %s FAILED.\n", s, sensor[s].friendly_name, trigger_val); return ret; } +static int enable_event(int dev_num, const char *name, int enabled) +{ + char sysfs_path[PATH_MAX]; -void build_sensor_report_maps(int dev_num) + sprintf(sysfs_path, EVENTS_PATH "%s", dev_num, name); + return sysfs_write_int(sysfs_path, enabled); +} + +static int enable_sensor(int dev_num, const char *tag, int enabled) +{ + char sysfs_path[PATH_MAX]; + + sprintf(sysfs_path, SENSOR_ENABLE_PATH, dev_num, tag); + return sysfs_write_int(sysfs_path, enabled); +} + +static void enable_iio_timestamp (int dev_num, int known_channels) +{ + /* Check if we have a dedicated iio timestamp channel */ + + char spec_buf[MAX_TYPE_SPEC_LEN]; + char sysfs_path[PATH_MAX]; + int n; + + sprintf(sysfs_path, CHANNEL_PATH "%s", dev_num, "in_timestamp_type"); + + n = sysfs_read_str(sysfs_path, spec_buf, sizeof(spec_buf)); + + if (n <= 0) + return; + + if (strcmp(spec_buf, "le:s64/64>>0")) + return; + + /* OK, type is int64_t as expected, in little endian representation */ + + sprintf(sysfs_path, CHANNEL_PATH"%s", dev_num, "in_timestamp_index"); + + if (sysfs_read_int(sysfs_path, &n)) + return; + + /* Check that the timestamp comes after the other fields we read */ + if (n != known_channels) + return; + + /* Try enabling that channel */ + sprintf(sysfs_path, CHANNEL_PATH "%s", dev_num, "in_timestamp_en"); + + sysfs_write_int(sysfs_path, 1); + + if (sysfs_read_int(sysfs_path, &n)) + return; + + if (n) { + ALOGI("Detected timestamp channel on iio device %d\n", dev_num); + has_iio_ts[dev_num] = 1; + } +} + + +static int decode_type_spec (const char type_buf[MAX_TYPE_SPEC_LEN], datum_info_t *type_info) +{ + /* Return size in bytes for this type specification, or -1 in error */ + char sign; + char endianness; + unsigned int realbits, storagebits, shift; + int tokens; + + /* Valid specs: "le:u10/16>>0", "le:s16/32>>0" or "le:s32/32>>0" */ + + tokens = sscanf(type_buf, "%ce:%c%u/%u>>%u", &endianness, &sign, &realbits, &storagebits, &shift); + + if (tokens != 5 || (endianness != 'b' && endianness != 'l') || (sign != 'u' && sign != 's') || + realbits > storagebits || (storagebits != 16 && storagebits != 32 && storagebits != 64)) { + ALOGE("Invalid iio channel type spec: %s\n", type_buf); + return -1; + } + + type_info->endianness = endianness; + type_info->sign = sign; + type_info->realbits = (short) realbits; + type_info->storagebits = (short) storagebits; + type_info->shift = (short) shift; + + return storagebits / 8; +} + + +void build_sensor_report_maps (int dev_num) { /* - * Read sysfs files from a iio device's scan_element directory, and - * build a couple of tables from that data. These tables will tell, for - * each sensor, where to gather relevant data in a device report, i.e. - * the structure that we read from the /dev/iio:deviceX file in order to - * sensor report, itself being the data that we return to Android when a - * sensor poll completes. The mapping should be straightforward in the - * case where we have a single sensor active per iio device but, this is - * not the general case. In general several sensors can be handled - * through a single iio device, and the _en, _index and _type syfs - * entries all concur to paint a picture of what the structure of the + * Read sysfs files from a iio device's scan_element directory, and build a couple of tables from that data. These tables will tell, for + * each sensor, where to gather relevant data in a device report, i.e. the structure that we read from the /dev/iio:deviceX file in order to + * sensor report, itself being the data that we return to Android when a sensor poll completes. The mapping should be straightforward in the + * case where we have a single sensor active per iio device but, this is not the general case. In general several sensors can be handled + * through a single iio device, and the _en, _index and _type syfs entries all concur to paint a picture of what the structure of the * device report is. */ @@ -125,7 +237,7 @@ void build_sensor_report_maps(int dev_num) int ch_index; char* ch_spec; char spec_buf[MAX_TYPE_SPEC_LEN]; - struct datum_info_t* ch_info; + datum_info_t* ch_info; int size; char sysfs_path[PATH_MAX]; int known_channels; @@ -138,48 +250,41 @@ void build_sensor_report_maps(int dev_num) /* For each sensor that is linked to this device */ for (s=0; s= MAX_SENSORS) { ALOGE("Index out of bounds!: %s\n", sysfs_path); @@ -200,10 +305,8 @@ void build_sensor_report_maps(int dev_num) setup_trigger(s, "\n"); /* Turn on channels we're aware of */ - for (c=0;c MAX_DEVICE_REPORT_SIZE) { + ALOGE("Unexpectedly large scan buffer on iio dev%d: %d bytes\n", dev_num, expected_dev_report_size[dev_num]); + + expected_dev_report_size[dev_num] = MAX_DEVICE_REPORT_SIZE; + } } -int adjust_counters (int s, int enabled) +int adjust_counters (int s, int enabled, int from_virtual) { /* * Adjust counters based on sensor enable action. Return values are: - * -1 if there's an inconsistency: abort action in this case * 0 if the operation was completed and we're all set * 1 if we toggled the state of the sensor and there's work left + * -1 in case of an error */ - int dev_num = sensor_info[s].dev_num; - int catalog_index = sensor_info[s].catalog_index; - int sensor_type = sensor_catalog[catalog_index].type; - - /* Refcount per sensor, in terms of enable count */ - if (enabled) { - ALOGI("Enabling sensor %d (iio device %d: %s)\n", - s, dev_num, sensor_info[s].friendly_name); + int dev_num = sensor[s].dev_num; - sensor_info[s].enable_count++; + if (!check_state_change(s, enabled, from_virtual)) + return 0; /* The state of the sensor remains the same: we're done */ - if (sensor_info[s].enable_count > 1) - return 0; /* The sensor was, and remains, in use */ + if (enabled) { + ALOGI("Enabling sensor %d (iio device %d: %s)\n", s, dev_num, sensor[s].friendly_name); - switch (sensor_type) { + switch (sensor[s].type) { case SENSOR_TYPE_MAGNETIC_FIELD: - compass_read_data(&sensor_info[s]); + compass_read_data(&sensor[s]); break; case SENSOR_TYPE_GYROSCOPE: - case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED: - gyro_cal_init(&sensor_info[s]); + gyro_cal_init(&sensor[s]); break; } } else { - if (sensor_info[s].enable_count == 0) - return -1; /* Spurious disable call */ - - ALOGI("Disabling sensor %d (iio device %d: %s)\n", s, dev_num, - sensor_info[s].friendly_name); - - sensor_info[s].enable_count--; - - if (sensor_info[s].enable_count > 0) - return 0; /* The sensor was, and remains, in use */ + ALOGI("Disabling sensor %d (iio device %d: %s)\n", s, dev_num, sensor[s].friendly_name); /* Sensor disabled, lower report available flag */ - sensor_info[s].report_pending = 0; + sensor[s].report_pending = 0; - if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD) - compass_store_data(&sensor_info[s]); - } + if (sensor[s].type == SENSOR_TYPE_MAGNETIC_FIELD) + compass_store_data(&sensor[s]); + if (sensor[s].type == SENSOR_TYPE_GYROSCOPE) + gyro_store_data(&sensor[s]); + } - /* If uncalibrated type and pair is already active don't adjust counters */ - if (sensor_type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED && - sensor_info[sensor_info[s].pair_idx].enable_count != 0) - return 0; - - /* We changed the state of a sensor - adjust per iio device counters */ - - /* If this is a regular event-driven sensor */ - if (sensor_info[s].num_channels) { + /* We changed the state of a sensor: adjust device ref counts */ - if (enabled) - trig_sensors_per_dev[dev_num]++; - else - trig_sensors_per_dev[dev_num]--; + switch(sensor[s].mode) { + case MODE_TRIGGER: + if (enabled) + trig_sensors_per_dev[dev_num]++; + else + trig_sensors_per_dev[dev_num]--; + return 1; + case MODE_POLL: + if (enabled) { + active_poll_sensors++; + poll_sensors_per_dev[dev_num]++; + return 1; + } else { + active_poll_sensors--; + poll_sensors_per_dev[dev_num]--; return 1; } - - if (enabled) { - active_poll_sensors++; - poll_sensors_per_dev[dev_num]++; + case MODE_EVENT: return 1; + default: + /* Invalid sensor mode */ + return -1; } - - active_poll_sensors--; - poll_sensors_per_dev[dev_num]--; - return 1; } -static int get_field_count (int s) +static int get_field_count (int s, size_t *field_size) { - int catalog_index = sensor_info[s].catalog_index; - int sensor_type = sensor_catalog[catalog_index].type; - - switch (sensor_type) { + *field_size = sizeof(float); + switch (sensor[s].type) { case SENSOR_TYPE_ACCELEROMETER: /* m/s^2 */ case SENSOR_TYPE_MAGNETIC_FIELD: /* micro-tesla */ case SENSOR_TYPE_ORIENTATION: /* degrees */ @@ -342,111 +440,143 @@ static int get_field_count (int s) case SENSOR_TYPE_PROXIMITY: /* centimeters */ case SENSOR_TYPE_PRESSURE: /* hecto-pascal */ case SENSOR_TYPE_RELATIVE_HUMIDITY: /* percent */ + case SENSOR_TYPE_STEP_DETECTOR: /* event: always 1 */ return 1; case SENSOR_TYPE_ROTATION_VECTOR: - return 4; + return 4; + case SENSOR_TYPE_STEP_COUNTER: /* number of steps */ + *field_size = sizeof(uint64_t); + return 1; default: ALOGE("Unknown sensor type!\n"); return 0; /* Drop sample */ } } +/* + * CTS acceptable thresholds: + * EventGapVerification.java: (th <= 1.8) + * FrequencyVerification.java: (0.9)*(expected freq) => (th <= 1.1111) + */ +#define THRESHOLD 1.10 +#define MAX_DELAY 500000000 /* 500 ms */ + +void set_report_ts(int s, int64_t ts) +{ + int64_t maxTs, period; + /* + * A bit of a hack to please a bunch of cts tests. They + * expect the timestamp to be exacly according to the set-up + * frequency but if we're simply getting the timestamp at hal level + * this may not be the case. Perhaps we'll get rid of this when + * we'll be reading the timestamp from the iio channel for all sensors + */ + if (sensor[s].report_ts && sensor[s].sampling_rate && + REPORTING_MODE(sensor_desc[s].flags) == SENSOR_FLAG_CONTINUOUS_MODE) + { + period = (int64_t) (1000000000.0 / sensor[s].sampling_rate); + maxTs = sensor[s].report_ts + THRESHOLD * period; + /* If we're too far behind get back on track */ + if (ts - maxTs >= MAX_DELAY) + maxTs = ts; + sensor[s].report_ts = (ts < maxTs ? ts : maxTs); + } else { + sensor[s].report_ts = ts; + } +} static void* acquisition_routine (void* param) { /* - * Data acquisition routine run in a dedicated thread, covering a single - * sensor. This loop will periodically retrieve sampling data through - * sysfs, then package it as a sample and transfer it to our master poll - * loop through a report fd. Checks for a cancellation signal quite - * frequently, as the thread may be disposed of at any time. Note that - * Bionic does not provide pthread_cancel / pthread_testcancel... + * Data acquisition routine run in a dedicated thread, covering a single sensor. This loop will periodically retrieve sampling data through + * sysfs, then package it as a sample and transfer it to our master poll loop through a report fd. Checks for a cancellation signal quite + * frequently, as the thread may be disposed of at any time. Note that Bionic does not provide pthread_cancel / pthread_testcancel... */ int s = (int) (size_t) param; - int num_fields, sample_size; - struct sensors_event_t data = {0}; + int num_fields; + sensors_event_t data = {0}; int c; int ret; struct timespec target_time; - int64_t timestamp, period; + int64_t timestamp, period, start, stop; + size_t field_size; if (s < 0 || s >= sensor_count) { ALOGE("Invalid sensor handle!\n"); return NULL; } - ALOGI("Entering data acquisition thread S%d (%s): rate(%f), ts(%lld)\n", s, - sensor_info[s].friendly_name, sensor_info[s].sampling_rate, sensor_info[s].report_ts); + ALOGI("Entering S%d (%s) data acquisition thread: rate:%g\n", s, sensor[s].friendly_name, sensor[s].sampling_rate); - if (sensor_info[s].sampling_rate <= 0) { - ALOGE("Non-positive rate in acquisition routine for sensor %d: %f\n", - s, sensor_info[s].sampling_rate); + if (sensor[s].sampling_rate <= 0) { + ALOGE("Invalid rate in acquisition routine for sensor %d: %g\n", s, sensor[s].sampling_rate); return NULL; } - num_fields = get_field_count(s); - sample_size = num_fields * sizeof(float); + /* Initialize data fields that will be shared by all sensor reports */ + data.version = sizeof(sensors_event_t); + data.sensor = s; + data.type = sensor[s].type; + + num_fields = get_field_count(s, &field_size); /* - * Each condition variable is associated to a mutex that has to be - * locked by the thread that's waiting on it. We use these condition - * variables to get the acquisition threads out of sleep quickly after - * the sampling rate is adjusted, or the sensor is disabled. + * Each condition variable is associated to a mutex that has to be locked by the thread that's waiting on it. We use these condition + * variables to get the acquisition threads out of sleep quickly after the sampling rate is adjusted, or the sensor is disabled. */ pthread_mutex_lock(&thread_release_mutex[s]); /* Pinpoint the moment we start sampling */ - timestamp = get_timestamp(); + timestamp = get_timestamp_monotonic(); /* Check and honor termination requests */ - while (sensor_info[s].thread_data_fd[1] != -1) { + while (sensor[s].thread_data_fd[1] != -1) { + start = get_timestamp_boot(); /* Read values through sysfs */ for (c=0; c arbitrated_rate) /* If sensor i depends on sensor s */ + arbitrated_rate = sensor[i].requested_rate; + + /* If any of the currently active sensors we rely on is using a higher sampling rate, switch to this rate */ + for (vi = 0; vi < sensor[s].base_count; vi++) { + i = sensor[s].base[vi]; + if (is_enabled(i) && sensor[i].requested_rate > arbitrated_rate) + arbitrated_rate = sensor[i].requested_rate; + } + + return arbitrated_rate; +} + + +static int sensor_set_rate (int s, float requested_rate) +{ + /* Set the rate at which a specific sensor should report events. See Android sensors.h for indication on sensor trigger modes */ + + char sysfs_path[PATH_MAX]; + char avail_sysfs_path[PATH_MAX]; + int dev_num = sensor[s].dev_num; + int i = sensor[s].catalog_index; + const char *prefix = sensor_catalog[i].tag; + int per_sensor_sampling_rate; + int per_device_sampling_rate; + char freqs_buf[100]; + char* cursor; + int n; + float sr; + float group_max_sampling_rate; + float cur_sampling_rate; /* Currently used sampling rate */ + float arb_sampling_rate; /* Granted sampling rate after arbitration */ + + ALOGV("Sampling rate %g requested on sensor %d (%s)\n", requested_rate, s, sensor[s].friendly_name); + + sensor[s].requested_rate = requested_rate; + + arb_sampling_rate = requested_rate; + + if (arb_sampling_rate < sensor[s].min_supported_rate) { + ALOGV("Sampling rate %g too low for %s, using %g instead\n", arb_sampling_rate, sensor[s].friendly_name, sensor[s].min_supported_rate); + arb_sampling_rate = sensor[s].min_supported_rate; + } + + /* If one of the linked sensors uses a higher rate, adopt it */ + group_max_sampling_rate = get_group_max_sampling_rate(s); + + if (arb_sampling_rate < group_max_sampling_rate) { + ALOGV("Using %s sampling rate to %g too due to dependency\n", sensor[s].friendly_name, arb_sampling_rate); + arb_sampling_rate = group_max_sampling_rate; + } + + if (sensor[s].max_supported_rate && arb_sampling_rate > sensor[s].max_supported_rate) { + ALOGV("Sampling rate %g too high for %s, using %g instead\n", arb_sampling_rate, sensor[s].friendly_name, sensor[s].max_supported_rate); + arb_sampling_rate = sensor[s].max_supported_rate; + } + + sensor[s].sampling_rate = arb_sampling_rate; + + /* If the sensor is virtual, we're done */ + if (sensor[s].is_virtual) + return 0; + + /* If we're dealing with a poll-mode sensor */ + if (sensor[s].mode == MODE_POLL) { + if (is_enabled(s)) + pthread_cond_signal(&thread_release_cond[s]); /* Wake up thread so the new sampling rate gets used */ + return 0; + } + + sprintf(sysfs_path, SENSOR_SAMPLING_PATH, dev_num, prefix); + + if (sysfs_read_float(sysfs_path, &cur_sampling_rate) != -1) { + per_sensor_sampling_rate = 1; + per_device_sampling_rate = 0; + } else { + per_sensor_sampling_rate = 0; + + sprintf(sysfs_path, DEVICE_SAMPLING_PATH, dev_num); + + if (sysfs_read_float(sysfs_path, &cur_sampling_rate) != -1) + per_device_sampling_rate = 1; + else + per_device_sampling_rate = 0; + } + + if (!per_sensor_sampling_rate && !per_device_sampling_rate) { + ALOGE("No way to adjust sampling rate on sensor %d\n", s); + return -ENOSYS; + } + + /* Check if we have contraints on allowed sampling rates */ + + sprintf(avail_sysfs_path, DEVICE_AVAIL_FREQ_PATH, dev_num); + + if (sysfs_read_str(avail_sysfs_path, freqs_buf, sizeof(freqs_buf)) > 0) { + cursor = freqs_buf; + + /* Decode allowed sampling rates string, ex: "10 20 50 100" */ + + /* While we're not at the end of the string */ + while (*cursor && cursor[0]) { + + /* Decode a single value */ + sr = strtod(cursor, NULL); + + /* If this matches the selected rate, we're happy. Have some tolerance for rounding errors and avoid needless jumps to higher rates */ + if (fabs(arb_sampling_rate - sr) <= 0.001) { + arb_sampling_rate = sr; + break; + } + + /* + * If we reached a higher value than the desired rate, adjust selected rate so it matches the first higher available one and + * stop parsing - this makes the assumption that rates are sorted by increasing value in the allowed frequencies string. + */ + if (sr > arb_sampling_rate) { + arb_sampling_rate = sr; + break; + } + + /* Skip digits */ + while (cursor[0] && !isspace(cursor[0])) + cursor++; + + /* Skip spaces */ + while (cursor[0] && isspace(cursor[0])) + cursor++; + } + } + + if (sensor[s].max_supported_rate && + arb_sampling_rate > sensor[s].max_supported_rate) { + arb_sampling_rate = sensor[s].max_supported_rate; + } + + /* Record the rate that was agreed upon with the sensor taken in isolation ; this avoid uncontrolled ripple effects between colocated sensor rates */ + sensor[s].semi_arbitrated_rate = arb_sampling_rate; + + /* Coordinate with others active sensors on the same device, if any */ + if (per_device_sampling_rate) + for (n=0; n arb_sampling_rate) { + ALOGV("Sampling rate shared between %s and %s, using %g instead of %g\n", sensor[s].friendly_name, sensor[n].friendly_name, + sensor[n].semi_arbitrated_rate, arb_sampling_rate); + arb_sampling_rate = sensor[n].semi_arbitrated_rate; + } + + sensor[s].sampling_rate = arb_sampling_rate; + + /* Update actual sampling rate field for this sensor and others which may be sharing the same sampling rate */ + if (per_device_sampling_rate) + for (n=0; n (th <= 1.1111) - */ -#define THRESHOLD 1.10 -void set_report_ts(int s, int64_t ts) +static void stamp_reports (int dev_num, int64_t ts) { - int64_t maxTs, period; - int catalog_index = sensor_info[s].catalog_index; - int is_accel = (sensor_catalog[catalog_index].type == SENSOR_TYPE_ACCELEROMETER); + int s; - /* - * A bit of a hack to please a bunch of cts tests. They - * expect the timestamp to be exacly according to the set-up - * frequency but if we're simply getting the timestamp at hal level - * this may not be the case. Perhaps we'll get rid of this when - * we'll be reading the timestamp from the iio channel for all sensors - */ - if (sensor_info[s].report_ts && sensor_info[s].sampling_rate && - REPORTING_MODE(sensor_desc[s].flags) == SENSOR_FLAG_CONTINUOUS_MODE) - { - period = (int64_t) (1000000000LL / sensor_info[s].sampling_rate); - maxTs = sensor_info[s].report_ts + (is_accel ? 1 : THRESHOLD) * period; - sensor_info[s].report_ts = (ts < maxTs ? ts : maxTs); - } else { - sensor_info[s].report_ts = ts; - } + for (s=0; s= MAX_DEVICES) { - ALOGE("Event reported on unexpected iio device %d\n", dev_num); - return -1; - } - - if (device_fd[dev_num] == -1) { + if (fd == -1) { ALOGE("Ignoring stale report on iio device %d\n", dev_num); return -1; } - len = read(device_fd[dev_num], buf, MAX_SENSOR_REPORT_SIZE); + len = read(fd, buf, expected_dev_report_size[dev_num]); if (len == -1) { - ALOGE("Could not read report from iio device %d (%s)\n", - dev_num, strerror(errno)); + ALOGE("Could not read report from iio device %d (%s)\n", dev_num, strerror(errno)); return -1; } @@ -806,106 +1194,212 @@ static int integrate_device_report(int dev_num) /* Map device report to sensor reports */ for (s=0; s= MAX_DEVICES) { + ALOGE("Event reported on unexpected iio device %d\n", dev_num); + return -1; + } + + if (events_fd[dev_num] != -1) { + ret = integrate_device_report_from_event(dev_num, events_fd[dev_num]); + if (ret < 0) + return ret; + } + + if (device_fd[dev_num] != -1) + ret = integrate_device_report_from_dev(dev_num, device_fd[dev_num]); + + return ret; +} + +static int propagate_vsensor_report (int s, sensors_event_t *data) +{ + /* There's a new report stored in sensor.sample for this sensor; transmit it */ + + memcpy(data, &sensor[s].sample, sizeof(sensors_event_t)); + + data->sensor = s; + data->type = sensor[s].type; + return 1; +} + -static int propagate_sensor_report(int s, struct sensors_event_t *data) +static int propagate_sensor_report (int s, sensors_event_t *data) { /* There's a sensor report pending for this sensor ; transmit it */ - int catalog_index = sensor_info[s].catalog_index; - int sensor_type = sensor_catalog[catalog_index].type; - int num_fields = get_field_count(s); + size_t field_size; + int num_fields = get_field_count(s, &field_size); int c; unsigned char* current_sample; + int ret; /* If there's nothing to return... we're done */ if (!num_fields) return 0; + ALOGV("Sample on sensor %d (type %d):\n", s, sensor[s].type); - /* Only return uncalibrated event if also gyro active */ - if (sensor_type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED && - sensor_info[sensor_info[s].pair_idx].enable_count != 0) + if (sensor[s].mode == MODE_POLL) { + /* We received a good sample but we're not directly enabled so we'll drop */ + if (!sensor[s].directly_enabled) return 0; + /* Use the data provided by the acquisition thread */ + ALOGV("Reporting data from worker thread for S%d\n", s); + memcpy(data, &sensor[s].sample, sizeof(sensors_event_t)); + data->timestamp = sensor[s].report_ts; + return 1; + } memset(data, 0, sizeof(sensors_event_t)); data->version = sizeof(sensors_event_t); data->sensor = s; - data->type = sensor_type; - data->timestamp = sensor_info[s].report_ts; - - ALOGV("Sample on sensor %d (type %d):\n", s, sensor_type); - - current_sample = sensor_info[s].report_buffer; - - /* If this is a poll sensor */ - if (!sensor_info[s].num_channels) { - /* Use the data provided by the acquisition thread */ - ALOGV("Reporting data from worker thread for S%d\n", s); - memcpy(data->data, current_sample, num_fields * sizeof(float)); + data->type = sensor[s].type; + data->timestamp = sensor[s].report_ts; + + if (sensor[s].mode == MODE_EVENT) { + ALOGV("Reporting event\n"); + /* Android requires events to return 1.0 */ + data->data[0] = 1.0; + data->data[1] = 0.0; + data->data[2] = 0.0; return 1; } /* Convert the data into the expected Android-level format */ + + current_sample = sensor[s].report_buffer; + for (c=0; cdata[c] = sensor_info[s].ops.transform - (s, c, current_sample); + data->data[c] = sensor[s].ops.transform (s, c, current_sample); - ALOGV("\tfield %d: %f\n", c, data->data[c]); - current_sample += sensor_info[s].channel[c].size; + ALOGV("\tfield %d: %g\n", c, data->data[c]); + current_sample += sensor[s].channel[c].size; } - /* - * The finalize routine, in addition to its late sample processing duty, - * has the final say on whether or not the sample gets sent to Android. - */ - return sensor_info[s].ops.finalize(s, data); + ret = sensor[s].ops.finalize(s, data); + + /* We will drop samples if the sensor is not directly enabled */ + if (!sensor[s].directly_enabled) + return 0; + + /* The finalize routine, in addition to its late sample processing duty, has the final say on whether or not the sample gets sent to Android */ + return ret; } static void synthetize_duplicate_samples (void) { /* - * Some sensor types (ex: gyroscope) are defined as continuously firing - * by Android, despite the fact that we can be dealing with iio drivers - * that only report events for new samples. For these we generate - * reports periodically, duplicating the last data we got from the - * driver. This is not necessary for polling sensors. + * Some sensor types (ex: gyroscope) are defined as continuously firing by Android, despite the fact that + * we can be dealing with iio drivers that only report events for new samples. For these we generate reports + * periodically, duplicating the last data we got from the driver. This is not necessary for polling sensors. */ int s; @@ -916,35 +1410,34 @@ static void synthetize_duplicate_samples (void) for (s=0; sbias_x; - data[uncal_start + i].data[1] = data[returned_events + i].data[1] + gyro_data->bias_y; - data[uncal_start + i].data[2] = data[returned_events + i].data[2] + gyro_data->bias_z; + if (sensor[s].is_virtual) + event_count = propagate_vsensor_report(s, &data[returned_events]); + else + /* Report this event if it looks OK */ + event_count = propagate_sensor_report(s, &data[returned_events]); - data[uncal_start + i].uncalibrated_gyro.bias[0] = gyro_data->bias_x; - data[uncal_start + i].uncalibrated_gyro.bias[1] = gyro_data->bias_y; - data[uncal_start + i].uncalibrated_gyro.bias[2] = gyro_data->bias_z; - } - event_count <<= 1; - } - sensor_info[sensor_info[s].pair_idx].report_pending = 0; + /* Lower flag */ + sensor[s].report_pending = 0; returned_events += event_count; + /* - * If the sample was deemed invalid or unreportable, - * e.g. had the same value as the previously reported + * If the sample was deemed invalid or unreportable, e.g. had the same value as the previously reported * value for a 'on change' sensor, silently drop it. */ } - while (sensor_info[s].meta_data_pending) { + + while (sensor[s].meta_data_pending) { /* See sensors.h on these */ data[returned_events].version = META_DATA_VERSION; data[returned_events].sensor = 0; @@ -1084,9 +1542,10 @@ return_available_sensor_reports: data[returned_events].meta_data.sensor = s; data[returned_events].meta_data.what = META_DATA_FLUSH_COMPLETE; returned_events++; - sensor_info[s].meta_data_pending--; + sensor[s].meta_data_pending--; } } + if (returned_events) return returned_events; @@ -1127,180 +1586,52 @@ await_event: } -int sensor_set_delay(int s, int64_t ns) +int sensor_set_delay (int s, int64_t ns) { - /* Set the rate at which a specific sensor should report events */ - - /* See Android sensors.h for indication on sensor trigger modes */ - - char sysfs_path[PATH_MAX]; - char avail_sysfs_path[PATH_MAX]; - int dev_num = sensor_info[s].dev_num; - int i = sensor_info[s].catalog_index; - const char *prefix = sensor_catalog[i].tag; - float new_sampling_rate; /* Granted sampling rate after arbitration */ - float cur_sampling_rate; /* Currently used sampling rate */ - int per_sensor_sampling_rate; - int per_device_sampling_rate; - int32_t min_delay_us = sensor_desc[s].minDelay; - max_delay_t max_delay_us = sensor_desc[s].maxDelay; - float min_supported_rate = max_delay_us ? (1000000.0f / max_delay_us) : 1; - float max_supported_rate = - (min_delay_us && min_delay_us != -1) ? (1000000.0f / min_delay_us) : 0; - char freqs_buf[100]; - char* cursor; - int n; - float sr; + float requested_sampling_rate; if (ns <= 0) { - ALOGE("Rejecting non-positive delay request on sensor %d, required delay: %lld\n", s, ns); + ALOGE("Invalid delay requested on sensor %d: %lld\n", s, ns); return -EINVAL; } - new_sampling_rate = 1000000000LL/ns; + requested_sampling_rate = 1000000000.0 / ns; - ALOGV("Entering set delay S%d (%s): old rate(%f), new rate(%f)\n", - s, sensor_info[s].friendly_name, sensor_info[s].sampling_rate, - new_sampling_rate); + ALOGV("Entering set delay S%d (%s): current rate: %g, requested: %g\n", s, sensor[s].friendly_name, sensor[s].sampling_rate, requested_sampling_rate); /* - * Artificially limit ourselves to 1 Hz or higher. This is mostly to - * avoid setting up the stage for divisions by zero. + * Only try to adjust the low level sampling rate if it's different from the current one, as set by the HAL. This saves a few sysfs + * reads and writes as well as buffer enable/disable operations, since at the iio level most drivers require the buffer to be turned off + * in order to accept a sampling rate change. Of course that implies that this field has to be kept up to date and that only this library + * is changing the sampling rate. */ - if (new_sampling_rate < min_supported_rate) - new_sampling_rate = min_supported_rate; - - if (max_supported_rate && - new_sampling_rate > max_supported_rate) { - new_sampling_rate = max_supported_rate; - } - - sensor_info[s].sampling_rate = new_sampling_rate; - - /* If we're dealing with a poll-mode sensor */ - if (!sensor_info[s].num_channels) { - /* Interrupt current sleep so the new sampling gets used */ - pthread_cond_signal(&thread_release_cond[s]); - return 0; - } - - sprintf(sysfs_path, SENSOR_SAMPLING_PATH, dev_num, prefix); - - if (sysfs_read_float(sysfs_path, &cur_sampling_rate) != -1) { - per_sensor_sampling_rate = 1; - per_device_sampling_rate = 0; - } else { - per_sensor_sampling_rate = 0; - - sprintf(sysfs_path, DEVICE_SAMPLING_PATH, dev_num); - if (sysfs_read_float(sysfs_path, &cur_sampling_rate) != -1) - per_device_sampling_rate = 1; - else - per_device_sampling_rate = 0; - } - - if (!per_sensor_sampling_rate && !per_device_sampling_rate) { - ALOGE("No way to adjust sampling rate on sensor %d\n", s); - return -ENOSYS; - } - - /* Coordinate with others active sensors on the same device, if any */ - if (per_device_sampling_rate) - for (n=0; n new_sampling_rate) - new_sampling_rate= sensor_info[n].sampling_rate; - - /* Check if we have contraints on allowed sampling rates */ - - sprintf(avail_sysfs_path, DEVICE_AVAIL_FREQ_PATH, dev_num); - - if (sysfs_read_str(avail_sysfs_path, freqs_buf, sizeof(freqs_buf)) > 0){ - cursor = freqs_buf; - - /* Decode allowed sampling rates string, ex: "10 20 50 100" */ - - /* While we're not at the end of the string */ - while (*cursor && cursor[0]) { - - /* Decode a single value */ - sr = strtod(cursor, NULL); - - /* If this matches the selected rate, we're happy */ - if (new_sampling_rate == sr) - break; - - /* - * If we reached a higher value than the desired rate, - * adjust selected rate so it matches the first higher - * available one and stop parsing - this makes the - * assumption that rates are sorted by increasing value - * in the allowed frequencies string. - */ - if (sr > new_sampling_rate) { - new_sampling_rate = sr; - break; - } - - /* Skip digits */ - while (cursor[0] && !isspace(cursor[0])) - cursor++; - - /* Skip spaces */ - while (cursor[0] && isspace(cursor[0])) - cursor++; - } - } - - - if (max_supported_rate && - new_sampling_rate > max_supported_rate) { - new_sampling_rate = max_supported_rate; - } - - - /* If the desired rate is already active we're all set */ - if (new_sampling_rate == cur_sampling_rate) - return 0; - - ALOGI("Sensor %d sampling rate set to %g\n", s, new_sampling_rate); - - if (trig_sensors_per_dev[dev_num]) - enable_buffer(dev_num, 0); - - sysfs_write_float(sysfs_path, new_sampling_rate); - - /* Switch back to continuous sampling for accelerometer based games */ - if (is_fast_accelerometer(s) && sensor_info[s].selected_trigger != - sensor_info[s].init_trigger_name) - setup_trigger(s, sensor_info[s].init_trigger_name); - - if (trig_sensors_per_dev[dev_num]) - enable_buffer(dev_num, 1); + if (requested_sampling_rate != sensor[s].sampling_rate) + return sensor_set_rate(s, requested_sampling_rate); return 0; } + int sensor_flush (int s) { /* If one shot or not enabled return -EINVAL */ - if (sensor_desc[s].flags & SENSOR_FLAG_ONE_SHOT_MODE || - sensor_info[s].enable_count == 0) + if (sensor_desc[s].flags & SENSOR_FLAG_ONE_SHOT_MODE || !is_enabled(s)) return -EINVAL; - sensor_info[s].meta_data_pending++; + sensor[s].meta_data_pending++; return 0; } + int allocate_control_data (void) { int i; - for (i=0; i