OSDN Git Service

:bug: fix(vector): use boldsymbol
authorMargatroid <i@margatroid.xyz>
Fri, 13 Sep 2019 16:13:39 +0000 (00:13 +0800)
committerMargatroid <i@margatroid.xyz>
Fri, 13 Sep 2019 16:13:39 +0000 (00:13 +0800)
docs/math/vector.md

index 523f0dd..e729871 100644 (file)
@@ -7,23 +7,23 @@
 
 ### 定义及相关概念
 
- **向量** :既有大小又有方向的量称为向量。数学上研究的向量为 **自由向量** ,即只要不改变它的大小和方向,起点和终点可以任意平行移动的向量。记作 $\vec a$ 或 $\bm{a}$ 。
+ **向量** :既有大小又有方向的量称为向量。数学上研究的向量为 **自由向量** ,即只要不改变它的大小和方向,起点和终点可以任意平行移动的向量。记作 $\vec a$ 或 $\boldsymbol{a}$ 。
 
  **有向线段** :带有方向的线段称为有向线段。有向线段有三要素: **起点,方向,长度** ,知道了三要素,终点就唯一确定。我们用有向线段表示向量。
 
- **向量的模** :有向线段 $\overrightarrow{AB}$ 的长度称为向量的模,即为这个向量的大小。记为: $|\overrightarrow{AB}|$ 或 $|\bm{a}|$ 。
+ **向量的模** :有向线段 $\overrightarrow{AB}$ 的长度称为向量的模,即为这个向量的大小。记为: $|\overrightarrow{AB}|$ 或 $|\boldsymbol{a}|$ 。
 
- **零向量** :模为 $0$ 的向量。零向量的方向任意。记为: $\vec 0$ 或 $\bm{0}$ 。
+ **零向量** :模为 $0$ 的向量。零向量的方向任意。记为: $\vec 0$ 或 $\boldsymbol{0}$ 。
 
  **单位向量** :模为 $1$ 的向量称为该方向上的单位向量。
 
- **平行向量** :方向相同或相反的两个 **非零** 向量。记作: $\bm a\parallel \bm b$ 。对于多个互相平行的向量,可以任作一条直线与这些向量平行,那么任一组平行向量都可以平移到同一直线上,所以平行向量又叫 **共线向量** 。
+ **平行向量** :方向相同或相反的两个 **非零** 向量。记作: $\boldsymbol a\parallel \boldsymbol b$ 。对于多个互相平行的向量,可以任作一条直线与这些向量平行,那么任一组平行向量都可以平移到同一直线上,所以平行向量又叫 **共线向量** 。
 
  **相等向量** :模相等且方向相同的向量。
 
  **相反向量** :模相等且方向相反的向量。
 
- **向量的夹角** :已知两个非零向量 $\bm a,\bm b$ ,作 $\overrightarrow{OA}=\bm a,\overrightarrow{OB}=\bm b$ ,那么 $\theta=\angle AOB$ 就是向量 $\bm a$ 与向量 $\bm b$ 的夹角。记作: $\langle \bm a,\bm b\rangle$ 。显然当 $\theta=0$ 时两向量同向, $\theta=\pi$ 时两向量反向, $\theta=\frac{\pi}{2}$ 时我们说两向量垂直,记作 $\bm a\perp \bm b$ 。并且,我们规定 $\theta \in [0,\pi]$ 。
+ **向量的夹角** :已知两个非零向量 $\boldsymbol a,\boldsymbol b$ ,作 $\overrightarrow{OA}=\boldsymbol a,\overrightarrow{OB}=\boldsymbol b$ ,那么 $\theta=\angle AOB$ 就是向量 $\boldsymbol a$ 与向量 $\boldsymbol b$ 的夹角。记作: $\langle \boldsymbol a,\boldsymbol b\rangle$ 。显然当 $\theta=0$ 时两向量同向, $\theta=\pi$ 时两向量反向, $\theta=\frac{\pi}{2}$ 时我们说两向量垂直,记作 $\boldsymbol a\perp \boldsymbol b$ 。并且,我们规定 $\theta \in [0,\pi]$ 。
 
 注意到平面向量具有方向性,我们并不能比较两个向量的大小(但可以比较两向量的模长)。但是两个向量可以相等。
 
@@ -44,7 +44,7 @@
 
 这样,向量的加法就具有了几何意义。并且可以验证,向量的加法满足 **交换律与结合律** 。
 
-因为实数的减法可以写成加上相反数的形式,我们考虑在向量做减法时也这么写。即: $\bm a-\bm b=\bm a+(-\bm b)$ 。
+因为实数的减法可以写成加上相反数的形式,我们考虑在向量做减法时也这么写。即: $\boldsymbol a-\boldsymbol b=\boldsymbol a+(-\boldsymbol b)$ 。
 
 这样,我们考虑共起点的向量,按照平行四边形法则做出它们的差,经过平移后可以发现 **「共起点向量的差向量」是由「减向量」指向「被减向量」的有向线段** 。
 
 
 #### 向量的数乘
 
-规定「实数 $\lambda$ 与向量 $\bm a$ 的积」为一个向量,这种运算就是向量的 **数乘运算** ,记作 $\lambda \bm a$ ,它的长度与方向规定如下:
+规定「实数 $\lambda$ 与向量 $\boldsymbol a$ 的积」为一个向量,这种运算就是向量的 **数乘运算** ,记作 $\lambda \boldsymbol a$ ,它的长度与方向规定如下:
 
-1.   $|\lambda \bm a|=|\lambda||\bm a|$ ;
-2.  当 $\lambda >0$ 时, $\lambda\bm a$ 与 $\bm a$ 同向,当 $\lambda =0$ 时, $\lambda \bm a=\bm 0$ ,当 $\lambda<0$ 时, $\lambda \bm a$ 与 $\bm a$ 方向相反。
+1.   $|\lambda \boldsymbol a|=|\lambda||\boldsymbol a|$ ;
+2.  当 $\lambda >0$ 时, $\lambda\boldsymbol a$ 与 $\boldsymbol a$ 同向,当 $\lambda =0$ 时, $\lambda \boldsymbol a=\boldsymbol 0$ ,当 $\lambda<0$ 时, $\lambda \boldsymbol a$ 与 $\boldsymbol a$ 方向相反。
 
 我们根据数乘的定义,可以验证有如下运算律:
 
 $$
-\lambda(\mu \bm a)=(\lambda \mu)\bm a\\
-(\lambda+\mu)\bm a=\lambda \bm a+\mu \bm a\\
-\lambda(\bm a+\bm b)=\lambda \bm a+\lambda \bm b
+\lambda(\mu \boldsymbol a)=(\lambda \mu)\boldsymbol a\\
+(\lambda+\mu)\boldsymbol a=\lambda \boldsymbol a+\mu \boldsymbol a\\
+\lambda(\boldsymbol a+\boldsymbol b)=\lambda \boldsymbol a+\lambda \boldsymbol b
 $$
 
 特别地,我们有:
 
 $$
-(-\lambda)\bm a=-(\lambda \bm a)=-\lambda(\bm a)\\
-\lambda(\bm a-\bm b)=\lambda \bm a-\lambda \bm b
+(-\lambda)\boldsymbol a=-(\lambda \boldsymbol a)=-\lambda(\boldsymbol a)\\
+\lambda(\boldsymbol a-\boldsymbol b)=\lambda \boldsymbol a-\lambda \boldsymbol b
 $$
 
 #### 判定两向量共线
 
-两个 **非零** 向量 $\bm a$ 与 $\bm b$ 共线 $\Leftrightarrow$ 有唯一实数 $\lambda$ ,使得 $\bm b=\lambda \bm a$ 。
+两个 **非零** 向量 $\boldsymbol a$ 与 $\boldsymbol b$ 共线 $\Leftrightarrow$ 有唯一实数 $\lambda$ ,使得 $\boldsymbol b=\lambda \boldsymbol a$ 。
 
-证明:由数乘的定义可知,对于 **非零** 向量 $\bm a$ ,如果存在实数 $\lambda$ ,使得 $\bm b=\lambda \bm a$ ,那么 $\bm a \parallel \bm b$ 。
+证明:由数乘的定义可知,对于 **非零** 向量 $\boldsymbol a$ ,如果存在实数 $\lambda$ ,使得 $\boldsymbol b=\lambda \boldsymbol a$ ,那么 $\boldsymbol a \parallel \boldsymbol b$ 。
 
-反过来,如果 $\bm a\parallel \bm b$ , $\bm a \not = \bm 0$ ,且 $|\bm b|=\mu |\bm a|$ ,那么当 $\bm a$ 与 $\bm b$ 同向时, $\bm b=\mu \bm a$ ,反向时 $\bm b=-\mu \bm a$ 。
+反过来,如果 $\boldsymbol a\parallel \boldsymbol b$ , $\boldsymbol a \not = \boldsymbol 0$ ,且 $|\boldsymbol b|=\mu |\boldsymbol a|$ ,那么当 $\boldsymbol a$ 与 $\boldsymbol b$ 同向时, $\boldsymbol b=\mu \boldsymbol a$ ,反向时 $\boldsymbol b=-\mu \boldsymbol a$ 。
 
 最后,向量的加,减,数乘统称为向量的线性运算。
 
@@ -88,7 +88,7 @@ $$
 
 #### 平面向量基本定理
 
-定理内容:如果两个向量 $\bm{e_1},\bm{e_2}$ 不共线,那么存在唯一实数对 $(x,y)$ ,使得与 $\bm{e_1},\bm{e_2}$ 共面的任意向量 $\bm p$ 满足 $\mathbf p=x\bm{e_1}+y\bm{e_2}$ 。
+定理内容:如果两个向量 $\boldsymbol{e_1},\boldsymbol{e_2}$ 不共线,那么存在唯一实数对 $(x,y)$ ,使得与 $\boldsymbol{e_1},\boldsymbol{e_2}$ 共面的任意向量 $\boldsymbol p$ 满足 $\mathbf p=x\boldsymbol{e_1}+y\boldsymbol{e_2}$ 。
 
 平面向量那么多,我们想用尽可能少的量表示出所有平面向量,怎么办呢?
 
@@ -104,7 +104,7 @@ $$
 
 如果取与横轴与纵轴方向相同的单位向量 $i,j$ 作为一组基底,根据平面向量基本定理,平面上的所有向量与有序实数对 $(x,y)$ 一一对应。
 
-而有序实数对 $(x,y)$ 与平面直角坐标系上的点一一对应,那么我们作 $\overrightarrow{OP}=\bm p$ ,那么终点 $P(x,y)$ 也是唯一确定的。由于我们研究的都是自由向量,可以自由平移起点,这样,在平面直角坐标系里,每一个向量都可以用有序实数对唯一表示。
+而有序实数对 $(x,y)$ 与平面直角坐标系上的点一一对应,那么我们作 $\overrightarrow{OP}=\boldsymbol p$ ,那么终点 $P(x,y)$ 也是唯一确定的。由于我们研究的都是自由向量,可以自由平移起点,这样,在平面直角坐标系里,每一个向量都可以用有序实数对唯一表示。
 
 ### 平面向量的坐标运算
 
@@ -112,12 +112,12 @@ $$
 
 由平面向量的线性运算,我们可以推导其坐标运算,主要方法是将坐标全部化为用基底表示,然后利用运算律进行合并,之后表示出运算结果的坐标形式。
 
-若两向量 $\bm a=(m,n)$ , $\bm b=(p,q)$ ,则:
+若两向量 $\boldsymbol a=(m,n)$ , $\boldsymbol b=(p,q)$ ,则:
 
 $$
-\bm a+\bm b=(m+p,n+q)\\
-\bm a-\bm b=(m-p,n-q)\\
-k\bm a=(km,kn)
+\boldsymbol a+\boldsymbol b=(m+p,n+q)\\
+\boldsymbol a-\boldsymbol b=(m-p,n-q)\\
+k\boldsymbol a=(km,kn)
 $$
 
 #### 求一个向量的坐标表示
@@ -134,13 +134,13 @@ $$
 
 ### 向量的数量积
 
-已知两个向量 $\bm a,\bm b$ ,它们的夹角为 $\theta$ ,那么:
+已知两个向量 $\boldsymbol a,\boldsymbol b$ ,它们的夹角为 $\theta$ ,那么:
 
 $$
-\bm a \cdot \bm b=|\bm a||\bm b|\cos \theta
+\boldsymbol a \cdot \boldsymbol b=|\boldsymbol a||\boldsymbol b|\cos \theta
 $$
 
-就是这两个向量的 **数量积** ,也叫 **点积** 或 **内积** 。其中称 $|\bm a|\cos \theta$ 为 $\bm a$ 在 $\bm b$ 方向上的投影。数量积的几何意义即为:数量积 $\bm a \cdot \bm b$ 等于 $\bm a$ 的模与 $\bm b$ 在 $\bm a$ 方向上的投影的乘积。
+就是这两个向量的 **数量积** ,也叫 **点积** 或 **内积** 。其中称 $|\boldsymbol a|\cos \theta$ 为 $\boldsymbol a$ 在 $\boldsymbol b$ 方向上的投影。数量积的几何意义即为:数量积 $\boldsymbol a \cdot \boldsymbol b$ 等于 $\boldsymbol a$ 的模与 $\boldsymbol b$ 在 $\boldsymbol a$ 方向上的投影的乘积。
 
 我们发现,这种运算得到的结果是一个实数,为标量,并不属于向量的线性运算。
 
@@ -148,23 +148,23 @@ $$
 
 #### 判定两向量垂直
 
- $\bm a \perp \bm b$  $\Leftrightarrow$  $\bm a\cdot \bm b=0$ 
+ $\boldsymbol a \perp \boldsymbol b$  $\Leftrightarrow$  $\boldsymbol a\cdot \boldsymbol b=0$
 
 #### 判定两向量共线
 
- $\bm a = \lambda \bm b$  $\Leftrightarrow$  $\bm a\cdot \bm b=|\bm a||\bm b|$ 
+ $\boldsymbol a = \lambda \boldsymbol b$  $\Leftrightarrow$  $\boldsymbol a\cdot \boldsymbol b=|\boldsymbol a||\boldsymbol b|$
 
 #### 数量积的坐标运算
 
-若 $\bm a=(m,n),\bm b=(p,q),$ 则 $\bm a\cdot \bm b=mp+nq$ 
+若 $\boldsymbol a=(m,n),\boldsymbol b=(p,q),$ 则 $\boldsymbol a\cdot \boldsymbol b=mp+nq$
 
 #### 向量的模
 
- $|\bm a|=\sqrt {m^2+n^2}$ 
+ $|\boldsymbol a|=\sqrt {m^2+n^2}$
 
 #### 两向量的夹角
 
- $\cos \theta=\cfrac{\bm a\cdot\bm b}{|\bm a||\bm b|}$ 
+ $\cos \theta=\cfrac{\boldsymbol a\cdot\boldsymbol b}{|\boldsymbol a||\boldsymbol b|}$
 
 ### 扩展
 
@@ -178,41 +178,41 @@ $$
 
 #### 向量积
 
-我们定义向量 $\bm a,\bm b$ 的向量积为一个向量,记为 $\bm a\times \bm b$ ,其模与方向定义如下:
+我们定义向量 $\boldsymbol a,\boldsymbol b$ 的向量积为一个向量,记为 $\boldsymbol a\times \boldsymbol b$ ,其模与方向定义如下:
 
-1.   $|\bm a\times \bm b|=|\bm a||\bm b|\sin \langle \bm a,\bm b\rangle$ ;
-2.   $\bm a\times \bm b$ 与 $\bm a,\bm b$ 都垂直,且 $\bm a,\bm b,\bm a\times \bm b$ 符合右手法则。
+1.   $|\boldsymbol a\times \boldsymbol b|=|\boldsymbol a||\boldsymbol b|\sin \langle \boldsymbol a,\boldsymbol b\rangle$ ;
+2.   $\boldsymbol a\times \boldsymbol b$ 与 $\boldsymbol a,\boldsymbol b$ 都垂直,且 $\boldsymbol a,\boldsymbol b,\boldsymbol a\times \boldsymbol b$ 符合右手法则。
 
 向量积也叫外积。
 
-由于向量积涉及到空间几何与线性代数知识,所以并未在高中课本中出现。然而注意到向量积的模,联想到三角形面积计算公式 $S=\frac{1}{2}ab\sin C$ ,我们可以发现向量积的几何意义是: ** $|\bm a\times \bm b|$ 是以 $\bm a,\bm b$ 为邻边的平行四边形的面积** 。
+由于向量积涉及到空间几何与线性代数知识,所以并未在高中课本中出现。然而注意到向量积的模,联想到三角形面积计算公式 $S=\frac{1}{2}ab\sin C$ ,我们可以发现向量积的几何意义是: ** $|\boldsymbol a\times \boldsymbol b|$ 是以 $\boldsymbol a,\boldsymbol b$ 为邻边的平行四边形的面积** 。
 
 知道这个,多边形面积就很好算了。
 
-我们有一个不完全的坐标表示:记 $\bm a=(m,n),\bm b=(p,q)$ ,那么两个向量的向量积的竖坐标为 $mq-np$ ,我们根据右手法则和竖坐标符号可以推断出 $\bm b$ 相对于 $\bm a$ 的方向,若在逆时针方向竖坐标为正值,反之为负值,简记为 **顺负逆正** 。
+我们有一个不完全的坐标表示:记 $\boldsymbol a=(m,n),\boldsymbol b=(p,q)$ ,那么两个向量的向量积的竖坐标为 $mq-np$ ,我们根据右手法则和竖坐标符号可以推断出 $\boldsymbol b$ 相对于 $\boldsymbol a$ 的方向,若在逆时针方向竖坐标为正值,反之为负值,简记为 **顺负逆正** 。
 
 #### 向量旋转
 
-设 $\bm a=(x,y)$ ,倾角为 $\theta$ ,长度为 $l=\sqrt{x^2+y^2}$ 。则 $x=l\cos \theta,y=l\sin\theta$ 。令其逆时针旋转 $\alpha$ 度角,得到向量 $\bm b=(l\cos(\theta+\alpha),l\sin(\theta+\alpha))$ 。
+设 $\boldsymbol a=(x,y)$ ,倾角为 $\theta$ ,长度为 $l=\sqrt{x^2+y^2}$ 。则 $x=l\cos \theta,y=l\sin\theta$ 。令其逆时针旋转 $\alpha$ 度角,得到向量 $\boldsymbol b=(l\cos(\theta+\alpha),l\sin(\theta+\alpha))$ 。
 
 ![](./images/misc1.png)
 
 由三角恒等变换得,
 
 $$
-\bm{b}=(l(\cos\theta\cos\alpha-\sin\theta\sin\alpha),l(\sin\theta\cos\alpha+\cos\theta\sin\alpha))
+\boldsymbol{b}=(l(\cos\theta\cos\alpha-\sin\theta\sin\alpha),l(\sin\theta\cos\alpha+\cos\theta\sin\alpha))
 $$
 
 化简,
 
 $$
-\bm b=(l\cos\theta\cos\alpha-l\sin\theta\sin\alpha,l\sin\theta\cos\alpha+l\cos\theta\sin\alpha)
+\boldsymbol b=(l\cos\theta\cos\alpha-l\sin\theta\sin\alpha,l\sin\theta\cos\alpha+l\cos\theta\sin\alpha)
 $$
 
 把上面的 $x,y$ 代回来得
 
 $$
-\bm b=(x\cos\alpha-y\sin\alpha,y\cos\alpha+x\sin\alpha)
+\boldsymbol b=(x\cos\alpha-y\sin\alpha,y\cos\alpha+x\sin\alpha)
 $$
 
 即使不知道三角恒等变换,这个式子也很容易记下来。