OSDN Git Service

Initial version..
authorJaroslav Kysela <perex@perex.cz>
Wed, 1 Dec 1999 19:31:47 +0000 (19:31 +0000)
committerJaroslav Kysela <perex@perex.cz>
Wed, 1 Dec 1999 19:31:47 +0000 (19:31 +0000)
src/pcm/plugin/adpcm.c [new file with mode: 0644]

diff --git a/src/pcm/plugin/adpcm.c b/src/pcm/plugin/adpcm.c
new file mode 100644 (file)
index 0000000..ef6a1df
--- /dev/null
@@ -0,0 +1,929 @@
+/*
+ *  Ima-ADPCM conversion Plug-In Interface
+ *  Copyright (c) 1999 by Jaroslav Kysela <perex@suse.cz>
+ *                        Uros Bizjak <uros@kss-loka.si>
+ *
+ *  Based on reference implementation by Sun Microsystems, Inc.
+ *
+ *   This library is free software; you can redistribute it and/or modify
+ *   it under the terms of the GNU Library General Public License as
+ *   published by the Free Software Foundation; either version 2 of
+ *   the License, or (at your option) any later version.
+ *
+ *   This program is distributed in the hope that it will be useful,
+ *   but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ *   GNU Library General Public License for more details.
+ *
+ *   You should have received a copy of the GNU Library General Public
+ *   License along with this library; if not, write to the Free Software
+ *   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ */
+  
+#include <stdio.h>
+#include <stdlib.h>
+#include <unistd.h>
+#include <string.h>
+#include <errno.h>
+#include <endian.h>
+#include <byteswap.h>
+#include "../pcm_local.h"
+
+static short qtab_721[7] = { -124, 80, 178, 246, 300, 349, 400 };
+
+/*
+ * Maps G.721 code word to reconstructed scale factor normalized log
+ * magnitude values.
+ */
+static short _dqlntab[16] = { -2048, 4, 135, 213, 273, 323, 373, 425,
+       425, 373, 323, 273, 213, 135, 4, -2048
+};
+
+/* Maps G.721 code word to log of scale factor multiplier. */
+static short _witab[16] = { -12, 18, 41, 64, 112, 198, 355, 1122,
+       1122, 355, 198, 112, 64, 41, 18, -12
+};
+/*
+ * Maps G.721 code words to a set of values whose long and short
+ * term averages are computed and then compared to give an indication
+ * how stationary (steady state) the signal is.
+ */
+static short _fitab[16] = { 0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
+       0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0
+};
+
+
+static short power2[15] = { 1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
+       0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000
+};
+
+/*
+ * The following is the definition of the state structure
+ * used by the G.721/G.723 encoder and decoder to preserve their internal
+ * state between successive calls.  The meanings of the majority
+ * of the state structure fields are explained in detail in the
+ * CCITT Recommendation G.721.  The field names are essentially indentical
+ * to variable names in the bit level description of the coding algorithm
+ * included in this Recommendation.
+ */
+
+typedef struct g72x_state {
+       long yl;                /* Locked or steady state step size multiplier. */
+       short yu;               /* Unlocked or non-steady state step size multiplier. */
+       short dms;              /* Short term energy estimate. */
+       short dml;              /* Long term energy estimate. */
+       short ap;               /* Linear weighting coefficient of 'yl' and 'yu'. */
+
+       short a[2];             /* Coefficients of pole portion of prediction filter. */
+       short b[6];             /* Coefficients of zero portion of prediction filter. */
+       short pk[2];            /*
+                                * Signs of previous two samples of a partially
+                                * reconstructed signal.
+                                */
+       short dq[6];            /*
+                                * Previous 6 samples of the quantized difference
+                                * signal represented in an internal floating point
+                                * format.
+                                */
+       short sr[2];            /*
+                                * Previous 2 samples of the quantized difference
+                                * signal represented in an internal floating point
+                                * format.
+                                */
+       char td;                /* delayed tone detect, new in 1988 version */
+} g72x_state_t;
+
+/*
+ * quan()
+ *
+ * quantizes the input val against the table of size short integers.
+ * It returns i if table[i - 1] <= val < table[i].
+ *
+ * Using linear search for simple coding.
+ */
+static inline int quan( int val, short *table, int size)
+{
+       int i;
+
+       for (i = 0; i < size; i++)
+               if (val < *table++)
+                       break;
+       return (i);
+}
+
+/*
+ * fmult()
+ *
+ * returns the integer product of the 14-bit integer "an" and
+ * "floating point" representation (4-bit exponent, 6-bit mantissa) "srn".
+ */
+static inline int fmult( int an, int srn)
+{
+       short anmag, anexp, anmant;
+       short wanexp, wanmant;
+       short retval;
+
+       anmag = (an > 0) ? an : ((-an) & 0x1FFF);
+       anexp = quan(anmag, power2, 15) - 6;
+       anmant = (anmag == 0) ? 32 :
+           (anexp >= 0) ? anmag >> anexp : anmag << -anexp;
+       wanexp = anexp + ((srn >> 6) & 0xF) - 13;
+
+       wanmant = (anmant * (srn & 077) + 0x30) >> 4;
+       retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
+           (wanmant >> -wanexp);
+
+       return (((an ^ srn) < 0) ? -retval : retval);
+}
+
+/*
+ * predictor_zero()
+ *
+ * computes the estimated signal from 6-zero predictor.
+ *
+ */
+static inline int predictor_zero(g72x_state_t *state_ptr)
+{
+       int i;
+       int sezi;
+
+       sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]);
+       for (i = 1; i < 6; i++) /* ACCUM */
+               sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
+       return (sezi);
+}
+
+/*
+ * predictor_pole()
+ *
+ * computes the estimated signal from 2-pole predictor.
+ *
+ */
+static inline int predictor_pole(g72x_state_t *state_ptr)
+{
+       return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
+               fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
+}
+
+/*
+ * step_size()
+ *
+ * computes the quantization step size of the adaptive quantizer.
+ *
+ */
+static inline int step_size(g72x_state_t *state_ptr)
+{
+       int y;
+       int dif;
+       int al;
+
+       if (state_ptr->ap >= 256)
+               return (state_ptr->yu);
+       else {
+               y = state_ptr->yl >> 6;
+               dif = state_ptr->yu - y;
+               al = state_ptr->ap >> 2;
+               if (dif > 0)
+                       y += (dif * al) >> 6;
+               else if (dif < 0)
+                       y += (dif * al + 0x3F) >> 6;
+               return (y);
+       }
+}
+
+/*
+ * quantize()
+ *
+ * Given a raw sample, 'd', of the difference signal and a
+ * quantization step size scale factor, 'y', this routine returns the
+ * ADPCM codeword to which that sample gets quantized.  The step
+ * size scale factor division operation is done in the log base 2 domain
+ * as a subtraction.
+ */
+static inline
+int quantize( int d,           /* Raw difference signal sample */
+            int y,             /* Step size multiplier */
+            short *table,      /* quantization table */
+            int size)
+{                              /* table size of short integers */
+       short dqm;              /* Magnitude of 'd' */
+       short exp;              /* Integer part of base 2 log of 'd' */
+       short mant;             /* Fractional part of base 2 log */
+       short dl;               /* Log of magnitude of 'd' */
+       short dln;              /* Step size scale factor normalized log */
+       int i;
+
+       /*
+        * LOG
+        *
+        * Compute base 2 log of 'd', and store in 'dl'.
+        */
+       dqm = abs(d);
+       exp = quan(dqm >> 1, power2, 15);
+       mant = ((dqm << 7) >> exp) & 0x7F;      /* Fractional portion. */
+       dl = (exp << 7) + mant;
+
+       /*
+        * SUBTB
+        *
+        * "Divide" by step size multiplier.
+        */
+       dln = dl - (y >> 2);
+
+       /*
+        * QUAN
+        *
+        * Obtain codword i for 'd'.
+        */
+       i = quan(dln, table, size);
+       if (d < 0)              /* take 1's complement of i */
+               return ((size << 1) + 1 - i);
+       else if (i == 0)        /* take 1's complement of 0 */
+               return ((size << 1) + 1);       /* new in 1988 */
+       else
+               return (i);
+}
+
+/*
+ * reconstruct()
+ *
+ * Returns reconstructed difference signal 'dq' obtained from
+ * codeword 'dqln' and quantization step size scale factor 'y'.
+ * Multiplication is performed in log base 2 domain as addition.
+ */
+
+static inline
+int reconstruct( int sign,     /* 0 for non-negative value */
+               int dqln,       /* G.72x codeword */
+               int y)
+{                              /* Step size multiplier */
+       short dql;              /* Log of 'dq' magnitude */
+       short dex;              /* Integer part of log */
+       short dqt;
+       short dq;               /* Reconstructed difference signal sample */
+
+       dql = dqln + (y >> 2);  /* ADDA */
+
+       if (dql < 0) {
+               return ((sign) ? -0x8000 : 0);
+       } else {                /* ANTILOG */
+               dex = (dql >> 7) & 15;
+               dqt = 128 + (dql & 127);
+               dq = (dqt << 7) >> (14 - dex);
+               return ((sign) ? (dq - 0x8000) : dq);
+       }
+}
+
+
+/*
+ * update()
+ *
+ * updates the state variables for each output code
+ */
+static
+void update( int y,            /* quantizer step size */
+           int wi,             /* scale factor multiplier */
+           int fi,             /* for long/short term energies */
+           int dq,             /* quantized prediction difference */
+           int sr,             /* reconstructed signal */
+           int dqsez,          /* difference from 2-pole predictor */
+           g72x_state_t *state_ptr)
+{                              /* coder state pointer */
+       int cnt;
+       short mag, exp;         /* Adaptive predictor, FLOAT A */
+       short a2p = 0;          /* LIMC */
+       short a1ul;             /* UPA1 */
+       short pks1;             /* UPA2 */
+       short fa1;
+       char tr;                /* tone/transition detector */
+       short ylint, thr2, dqthr;
+       short ylfrac, thr1;
+       short pk0;
+
+       pk0 = (dqsez < 0) ? 1 : 0;      /* needed in updating predictor poles */
+
+       mag = dq & 0x7FFF;      /* prediction difference magnitude */
+       /* TRANS */
+       ylint = state_ptr->yl >> 15;    /* exponent part of yl */
+       ylfrac = (state_ptr->yl >> 10) & 0x1F;  /* fractional part of yl */
+       thr1 = (32 + ylfrac) << ylint;  /* threshold */
+       thr2 = (ylint > 9) ? 31 << 10 : thr1;   /* limit thr2 to 31 << 10 */
+       dqthr = (thr2 + (thr2 >> 1)) >> 1;      /* dqthr = 0.75 * thr2 */
+       if (state_ptr->td == 0) /* signal supposed voice */
+               tr = 0;
+       else if (mag <= dqthr)  /* supposed data, but small mag */
+               tr = 0;         /* treated as voice */
+       else                    /* signal is data (modem) */
+               tr = 1;
+
+       /*
+        * Quantizer scale factor adaptation.
+        */
+
+       /* FUNCTW & FILTD & DELAY */
+       /* update non-steady state step size multiplier */
+       state_ptr->yu = y + ((wi - y) >> 5);
+
+       /* LIMB */
+       if (state_ptr->yu < 544)        /* 544 <= yu <= 5120 */
+               state_ptr->yu = 544;
+       else if (state_ptr->yu > 5120)
+               state_ptr->yu = 5120;
+
+       /* FILTE & DELAY */
+       /* update steady state step size multiplier */
+       state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6);
+
+       /*
+        * Adaptive predictor coefficients.
+        */
+       if (tr == 1) {          /* reset a's and b's for modem signal */
+               state_ptr->a[0] = 0;
+               state_ptr->a[1] = 0;
+               state_ptr->b[0] = 0;
+               state_ptr->b[1] = 0;
+               state_ptr->b[2] = 0;
+               state_ptr->b[3] = 0;
+               state_ptr->b[4] = 0;
+               state_ptr->b[5] = 0;
+       } else {                /* update a's and b's */
+               pks1 = pk0 ^ state_ptr->pk[0];  /* UPA2 */
+
+               /* update predictor pole a[1] */
+               a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7);
+               if (dqsez != 0) {
+                       fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0];
+                       if (fa1 < -8191)        /* a2p = function of fa1 */
+                               a2p -= 0x100;
+                       else if (fa1 > 8191)
+                               a2p += 0xFF;
+                       else
+                               a2p += fa1 >> 5;
+
+                       if (pk0 ^ state_ptr->pk[1])
+                               /* LIMC */
+                               if (a2p <= -12160)
+                                       a2p = -12288;
+                               else if (a2p >= 12416)
+                                       a2p = 12288;
+                               else
+                                       a2p -= 0x80;
+                       else if (a2p <= -12416)
+                               a2p = -12288;
+                       else if (a2p >= 12160)
+                               a2p = 12288;
+                       else
+                               a2p += 0x80;
+               }
+
+               /* TRIGB & DELAY */
+               state_ptr->a[1] = a2p;
+
+               /* UPA1 */
+               /* update predictor pole a[0] */
+               state_ptr->a[0] -= state_ptr->a[0] >> 8;
+               if (dqsez != 0) {
+                       if (pks1 == 0) 
+                               state_ptr->a[0] += 192;
+                       else
+                               state_ptr->a[0] -= 192;
+               }
+
+               /* LIMD */
+               a1ul = 15360 - a2p;
+               if (state_ptr->a[0] < -a1ul)
+                       state_ptr->a[0] = -a1ul;
+               else if (state_ptr->a[0] > a1ul)
+                       state_ptr->a[0] = a1ul;
+
+               /* UPB : update predictor zeros b[6] */
+               for (cnt = 0; cnt < 6; cnt++) {
+                       state_ptr->b[cnt] -=
+                                   state_ptr->b[cnt] >> 8;
+                       if (dq & 0x7FFF) {      /* XOR */
+                               if ((dq ^ state_ptr->dq[cnt]) >= 0)
+                                       state_ptr->b[cnt] += 128;
+                               else
+                                       state_ptr->b[cnt] -= 128;
+                       }
+               }
+       }
+
+       for (cnt = 5; cnt > 0; cnt--)
+               state_ptr->dq[cnt] = state_ptr->dq[cnt - 1];
+       /* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
+       if (mag == 0) {
+               state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0xFC20;
+       } else {
+               exp = quan(mag, power2, 15);
+               state_ptr->dq[0] = (dq >= 0) ?
+                   (exp << 6) + ((mag << 6) >> exp) :
+                   (exp << 6) + ((mag << 6) >> exp) - 0x400;
+       }
+
+       state_ptr->sr[1] = state_ptr->sr[0];
+       /* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
+       if (sr == 0) {
+               state_ptr->sr[0] = 0x20;
+       } else if (sr > 0) {
+               exp = quan(sr, power2, 15);
+               state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp);
+       } else if (sr > -32768) {
+               mag = -sr;
+               exp = quan(mag, power2, 15);
+               state_ptr->sr[0] =
+                   (exp << 6) + ((mag << 6) >> exp) - 0x400;
+       } else
+               state_ptr->sr[0] = 0xFC20;
+
+       /* DELAY A */
+       state_ptr->pk[1] = state_ptr->pk[0];
+       state_ptr->pk[0] = pk0;
+
+       /* TONE */
+       if (tr == 1)            /* this sample has been treated as data */
+               state_ptr->td = 0;      /* next one will be treated as voice */
+       else if (a2p < -11776)  /* small sample-to-sample correlation */
+               state_ptr->td = 1;      /* signal may be data */
+       else                    /* signal is voice */
+               state_ptr->td = 0;
+
+       /*
+        * Adaptation speed control.
+        */
+       state_ptr->dms += (fi - state_ptr->dms) >> 5;   /* FILTA */
+       state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7);  /* FILTB */
+
+       if (tr == 1)
+               state_ptr->ap = 256;
+       else if (y < 1536)      /* SUBTC */
+               state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
+       else if (state_ptr->td == 1)
+               state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
+       else if (abs((state_ptr->dms << 2) - state_ptr->dml) >=
+                (state_ptr->dml >> 3))
+               state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
+       else
+               state_ptr->ap += (-state_ptr->ap) >> 4;
+}
+
+/*
+ * g72x_init_state()
+ *
+ * This routine initializes and/or resets the g72x_state structure
+ * pointed to by 'state_ptr'.
+ * All the initial state values are specified in the CCITT G.721 document.
+ */
+static inline void g72x_init_state(g72x_state_t *state_ptr)
+{
+       int cnta;
+
+       state_ptr->yl = 34816;
+       state_ptr->yu = 544;
+       state_ptr->dms = 0;
+       state_ptr->dml = 0;
+       state_ptr->ap = 0;
+       for (cnta = 0; cnta < 2; cnta++) {
+               state_ptr->a[cnta] = 0;
+               state_ptr->pk[cnta] = 0;
+               state_ptr->sr[cnta] = 32;
+       }
+       for (cnta = 0; cnta < 6; cnta++) {
+               state_ptr->b[cnta] = 0;
+               state_ptr->dq[cnta] = 32;
+       }
+       state_ptr->td = 0;
+}
+
+/*
+ * g721_encoder()
+ *
+ * Encodes the input vale of linear PCM and returns the resulting code.
+ */
+static inline int g721_encoder( int sl, g72x_state_t *state_ptr)
+{
+       short sezi, se, sez;    /* ACCUM */
+       short d;                /* SUBTA */
+       short sr;               /* ADDB */
+       short y;                /* MIX */
+       short dqsez;            /* ADDC */
+       short dq, i;
+
+       sl >>= 2;               /* 14-bit dynamic range */
+
+       sezi = predictor_zero(state_ptr);
+       sez = sezi >> 1;
+       se = (sezi + predictor_pole(state_ptr)) >> 1;   /* estimated signal */
+
+       d = sl - se;            /* estimation difference */
+
+       /* quantize the prediction difference */
+       y = step_size(state_ptr);       /* quantizer step size */
+       i = quantize(d, y, qtab_721, 7);        /* i = ADPCM code */
+
+       dq = reconstruct(i & 8, _dqlntab[i], y);        /* quantized est diff */
+
+       sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq;   /* reconst. signal */
+
+       dqsez = sr + sez - se;  /* pole prediction diff. */
+
+       update(y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
+
+       return (i);
+}
+
+/*
+ * g721_decoder()
+ *
+ * Description:
+ *
+ * Decodes a 4-bit code of G.721 encoded data of i and
+ * returns the resulting linear PCM
+ */
+static inline int g721_decoder( int i, g72x_state_t *state_ptr)
+{
+       short sezi, sei, sez, se;       /* ACCUM */
+       short y;                /* MIX */
+       short sr;               /* ADDB */
+       short dq;
+       short dqsez;
+
+       i &= 0x0f;              /* mask to get proper bits */
+       sezi = predictor_zero(state_ptr);
+       sez = sezi >> 1;
+       sei = sezi + predictor_pole(state_ptr);
+       se = sei >> 1;          /* se = estimated signal */
+
+       y = step_size(state_ptr);       /* dynamic quantizer step size */
+
+       dq = reconstruct(i & 0x08, _dqlntab[i], y);     /* quantized diff. */
+
+       sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq; /* reconst. signal */
+
+       dqsez = sr - se + sez;  /* pole prediction diff. */
+
+       update(y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
+
+       return (sr << 2);       /* sr was 14-bit dynamic range */
+}
+
+/*
+ *  Basic Ima-ADPCM plugin
+ */
+
+typedef enum {
+       _S8_ADPCM,
+       _U8_ADPCM,
+       _S16LE_ADPCM,
+       _U16LE_ADPCM,
+       _S16BE_ADPCM,
+       _U16BE_ADPCM,
+       _ADPCM_S8,
+       _ADPCM_U8,
+       _ADPCM_S16LE,
+       _ADPCM_U16LE,
+       _ADPCM_S16BE,
+       _ADPCM_U16BE
+} combination_t; 
+struct adpcm_private_data {
+       combination_t cmd;
+       g72x_state_t state;
+};
+
+static void adpcm_conv_u8bit_adpcm(g72x_state_t *state_ptr, unsigned char *src_ptr,
+                                  unsigned char *dst_ptr, size_t size)
+{
+       unsigned int pcm;
+
+       while (size-- > 0) {
+               pcm = ((*src_ptr++) ^ 0x80) << 8;
+               *dst_ptr++ = g721_encoder((signed short)(pcm), state_ptr);
+       }
+}
+
+static void adpcm_conv_s8bit_adpcm(g72x_state_t *state_ptr, unsigned char *src_ptr,
+                                  unsigned char *dst_ptr, size_t size)
+{
+       unsigned int pcm;
+
+       while (size-- > 0) {
+               pcm = *src_ptr++ << 8;
+               *dst_ptr++ = g721_encoder((signed short)(pcm), state_ptr);
+       }
+}
+
+static void adpcm_conv_s16bit_adpcm(g72x_state_t *state_ptr, unsigned short *src_ptr,
+                                   unsigned char *dst_ptr, size_t size)
+{
+       while (size-- > 0)
+               *dst_ptr++ = g721_encoder((signed short)(*src_ptr++), state_ptr);
+}
+
+static void adpcm_conv_s16bit_swap_adpcm(g72x_state_t *state_ptr, unsigned short *src_ptr,
+                                        unsigned char *dst_ptr, size_t size)
+{
+       while (size-- > 0)
+               *dst_ptr++ = g721_encoder((signed short)(bswap_16(*src_ptr++)), state_ptr);
+}
+
+static void adpcm_conv_u16bit_adpcm(g72x_state_t *state_ptr, unsigned short *src_ptr,
+                                   unsigned char *dst_ptr, size_t size)
+{
+       while (size-- > 0)
+               *dst_ptr++ = g721_encoder((signed short)((*src_ptr++) ^ 0x8000), state_ptr);
+}
+
+static void adpcm_conv_u16bit_swap_adpcm(g72x_state_t *state_ptr, unsigned short *src_ptr,
+                                        unsigned char *dst_ptr, size_t size)
+{
+       while (size-- > 0)
+               *dst_ptr++ = g721_encoder((signed short)(bswap_16((*src_ptr++) ^ 0x8000)), state_ptr);
+}
+
+static void adpcm_conv_adpcm_u8bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
+                                  unsigned char *dst_ptr, size_t size)
+{
+       while (size-- > 0)
+               *dst_ptr++ = g721_decoder((*src_ptr++) >> 8, state_ptr) ^ 0x80;
+}
+
+static void adpcm_conv_adpcm_s8bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
+                                  unsigned char *dst_ptr, size_t size)
+{
+       while (size-- > 0)
+               *dst_ptr++ = g721_decoder(*src_ptr++, state_ptr) >> 8;
+}
+
+static void adpcm_conv_adpcm_s16bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
+                                   unsigned short *dst_ptr, size_t size)
+{
+       while (size-- > 0)
+               *dst_ptr++ = g721_decoder(*src_ptr++, state_ptr);
+}
+
+static void adpcm_conv_adpcm_swap_s16bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
+                                        unsigned short *dst_ptr, size_t size)
+{
+       while (size-- > 0)
+               *dst_ptr++ = bswap_16(g721_decoder(*src_ptr++, state_ptr));
+}
+
+static void adpcm_conv_adpcm_u16bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
+                                   unsigned short *dst_ptr, size_t size)
+{
+       while (size-- > 0)
+               *dst_ptr++ = g721_decoder(*src_ptr++, state_ptr) ^ 0x8000;
+}
+
+static void adpcm_conv_adpcm_swap_u16bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
+                                        unsigned short *dst_ptr, size_t size)
+{
+       while (size-- > 0)
+               *dst_ptr++ = bswap_16(g721_decoder(*src_ptr++, state_ptr) ^ 0x8000);
+}
+
+static ssize_t adpcm_transfer(snd_pcm_plugin_t *plugin,
+                             char *src_ptr, size_t src_size,
+                             char *dst_ptr, size_t dst_size)
+{
+       struct adpcm_private_data *data;
+
+       if (plugin == NULL || src_ptr == NULL || src_size < 0 ||
+                             dst_ptr == NULL || dst_size < 0)
+               return -EINVAL;
+       if (src_size == 0)
+               return 0;
+       data = (struct adpcm_private_data *)snd_pcm_plugin_extra_data(plugin);
+       if (data == NULL)
+               return -EINVAL;
+       switch (data->cmd) {
+       case _U8_ADPCM:
+               if (dst_size < src_size)
+                       return -EINVAL;
+               adpcm_conv_u8bit_adpcm(&data->state, src_ptr, dst_ptr, src_size);
+               return src_size;
+       case _S8_ADPCM:
+               if (dst_size < src_size)
+                       return -EINVAL;
+               adpcm_conv_s8bit_adpcm(&data->state, src_ptr, dst_ptr, src_size);
+               return src_size;
+       case _S16LE_ADPCM:
+               if ((dst_size << 1) < src_size)
+                       return -EINVAL;
+#if __BYTE_ORDER == __LITTLE_ENDIAN
+               adpcm_conv_s16bit_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+#elif __BYTE_ORDER == __BIG_ENDIAN
+               adpcm_conv_s16bit_swap_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+#else
+#error "Have to be coded..."
+#endif
+               return src_size >> 1;
+       case _U16LE_ADPCM:
+               if ((dst_size << 1) < src_size)
+                       return -EINVAL;
+#if __BYTE_ORDER == __LITTLE_ENDIAN
+               adpcm_conv_u16bit_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+#elif __BYTE_ORDER == __BIG_ENDIAN
+               adpcm_conv_u16bit_swap_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+#else
+#error "Have to be coded..."
+#endif
+               return src_size >> 1;
+       case _S16BE_ADPCM:
+               if ((dst_size << 1) < src_size)
+                       return -EINVAL;
+#if __BYTE_ORDER == __LITTLE_ENDIAN
+               adpcm_conv_s16bit_swap_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+#elif __BYTE_ORDER == __BIG_ENDIAN
+               adpcm_conv_s16bit_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+#else
+#error "Have to be coded..."
+#endif
+               return src_size >> 1;
+       case _U16BE_ADPCM:
+               if ((dst_size << 1) < src_size)
+                       return -EINVAL;
+#if __BYTE_ORDER == __LITTLE_ENDIAN
+               adpcm_conv_u16bit_swap_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+#elif __BYTE_ORDER == __BIG_ENDIAN
+               adpcm_conv_u16bit_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+#else
+#error "Have to be coded..."
+#endif
+               return src_size >> 1;
+       case _ADPCM_U8:
+               if (dst_size < src_size)
+                       return -EINVAL;
+               adpcm_conv_adpcm_u8bit(&data->state, src_ptr, dst_ptr, src_size);
+               return src_size;
+       case _ADPCM_S8:
+               if (dst_size < src_size)
+                       return -EINVAL;
+               adpcm_conv_adpcm_s8bit(&data->state, src_ptr, dst_ptr, src_size);
+               return src_size;
+       case _ADPCM_S16LE:
+               if ((dst_size >> 1) < src_size)
+                       return -EINVAL;
+#if __BYTE_ORDER == __LITTLE_ENDIAN
+               adpcm_conv_adpcm_s16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+#elif __BYTE_ORDER == __BIG_ENDIAN
+               adpcm_conv_adpcm_swap_s16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+#else
+#error "Have to be coded..."
+#endif
+               return src_size << 1;
+       case _ADPCM_U16LE:
+               if ((dst_size >> 1) < src_size)
+                       return -EINVAL;
+#if __BYTE_ORDER == __LITTLE_ENDIAN
+               adpcm_conv_adpcm_u16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+#elif __BYTE_ORDER == __BIG_ENDIAN
+               adpcm_conv_adpcm_swap_u16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+#else
+#error "Have to be coded..."
+#endif
+               return src_size << 1;
+       case _ADPCM_S16BE:
+               if ((dst_size >> 1) < src_size)
+                       return -EINVAL;
+#if __BYTE_ORDER == __LITTLE_ENDIAN
+               adpcm_conv_adpcm_swap_s16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+#elif __BYTE_ORDER == __BIG_ENDIAN
+               adpcm_conv_adpcm_s16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+#else
+#error "Have to be coded..."
+#endif
+               return src_size << 1;
+       case _ADPCM_U16BE:
+               if ((dst_size >> 1) < src_size)
+                       return -EINVAL;
+#if __BYTE_ORDER == __LITTLE_ENDIAN
+               adpcm_conv_adpcm_swap_u16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+#elif __BYTE_ORDER == __BIG_ENDIAN
+               adpcm_conv_adpcm_u16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+#else
+#error "Have to be coded..."
+#endif
+               return dst_size << 1;
+       default:
+               return -EIO;
+       }
+}
+
+static int adpcm_action(snd_pcm_plugin_t *plugin, snd_pcm_plugin_action_t action)
+{
+       struct adpcm_private_data *data;
+
+       if (plugin == NULL)
+               return -EINVAL;
+       data = (struct adpcm_private_data *)snd_pcm_plugin_extra_data(plugin);
+       if (action == PREPARE)
+               g72x_init_state(&data->state);
+       return 0;       /* silenty ignore other actions */
+}
+
+static ssize_t adpcm_src_size(snd_pcm_plugin_t *plugin, size_t size)
+{
+       struct adpcm_private_data *data;
+
+       if (!plugin || size <= 0)
+               return -EINVAL;
+       data = (struct adpcm_private_data *)snd_pcm_plugin_extra_data(plugin);
+       switch (data->cmd) {
+       case _U8_ADPCM:
+       case _S8_ADPCM:
+       case _ADPCM_U8:
+       case _ADPCM_S8:
+               return size;
+       case _U16LE_ADPCM:
+       case _S16LE_ADPCM:
+       case _U16BE_ADPCM:
+       case _S16BE_ADPCM:
+               return size * 2;
+       case _ADPCM_U16LE:
+       case _ADPCM_S16LE:
+       case _ADPCM_U16BE:
+       case _ADPCM_S16BE:
+               return size / 2;
+       default:
+               return -EIO;
+       }
+}
+
+static ssize_t adpcm_dst_size(snd_pcm_plugin_t *plugin, size_t size)
+{
+       struct adpcm_private_data *data;
+
+       if (!plugin || size <= 0)
+               return -EINVAL;
+       data = (struct adpcm_private_data *)snd_pcm_plugin_extra_data(plugin);
+       switch (data->cmd) {
+       case _U8_ADPCM:
+       case _S8_ADPCM:
+       case _ADPCM_U8:
+       case _ADPCM_S8:
+               return size;
+       case _U16LE_ADPCM:
+       case _S16LE_ADPCM:
+       case _U16BE_ADPCM:
+       case _S16BE_ADPCM:
+               return size / 2;
+       case _ADPCM_U16LE:
+       case _ADPCM_S16LE:
+       case _ADPCM_U16BE:
+       case _ADPCM_S16BE:
+               return size * 2;
+       default:
+               return -EIO;
+       }
+}
+int snd_pcm_plugin_build_adpcm(int src_format, int dst_format, snd_pcm_plugin_t **r_plugin)
+{
+       struct adpcm_private_data *data;
+       snd_pcm_plugin_t *plugin;
+       combination_t cmd;
+
+       if (!r_plugin)
+               return -EINVAL;
+       *r_plugin = NULL;
+       if (dst_format == SND_PCM_SFMT_IMA_ADPCM) {
+               switch (src_format) {
+               case SND_PCM_SFMT_U8:           cmd = _U8_ADPCM;        break;
+               case SND_PCM_SFMT_S8:           cmd = _S8_ADPCM;        break;
+               case SND_PCM_SFMT_U16_LE:       cmd = _U16LE_ADPCM;     break;
+               case SND_PCM_SFMT_S16_LE:       cmd = _S16LE_ADPCM;     break;
+               case SND_PCM_SFMT_U16_BE:       cmd = _U16BE_ADPCM;     break;
+               case SND_PCM_SFMT_S16_BE:       cmd = _S16BE_ADPCM;     break;
+               default:
+                       return -EINVAL;
+               }
+       } else if (src_format == SND_PCM_SFMT_IMA_ADPCM) {
+               switch (dst_format) {
+               case SND_PCM_SFMT_U8:           cmd = _ADPCM_U8;        break;
+               case SND_PCM_SFMT_S8:           cmd = _ADPCM_S8;        break;
+               case SND_PCM_SFMT_U16_LE:       cmd = _ADPCM_U16LE;     break;
+               case SND_PCM_SFMT_S16_LE:       cmd = _ADPCM_S16LE;     break;
+               case SND_PCM_SFMT_U16_BE:       cmd = _ADPCM_U16BE;     break;
+               case SND_PCM_SFMT_S16_BE:       cmd = _ADPCM_S16BE;     break;
+               default:
+                       return -EINVAL;
+               }
+       } else {
+               return -EINVAL;
+       }
+       plugin = snd_pcm_plugin_build("Ima-ADPCM<->linear conversion",
+                                     sizeof(struct adpcm_private_data));
+       if (plugin == NULL)
+               return -ENOMEM;
+       data = (struct adpcm_private_data *)snd_pcm_plugin_extra_data(plugin);
+       data->cmd = cmd;
+       plugin->transfer = adpcm_transfer;
+       plugin->src_size = adpcm_src_size;
+       plugin->dst_size = adpcm_dst_size;
+       plugin->action = adpcm_action;
+       *r_plugin = plugin;
+       return 0;
+}