#include "llvm/IR/Metadata.h"
#include "llvm/IR/ValueHandle.h"
#include <utility>
+#include <unordered_map>
namespace llvm {
class MachineInstr;
class MachineBasicBlock;
class MachineFunction;
-class LexicalScope;
//===----------------------------------------------------------------------===//
/// InsnRange - This is used to track range of instructions with identical
typedef std::pair<const MachineInstr *, const MachineInstr *> InsnRange;
//===----------------------------------------------------------------------===//
+/// LexicalScope - This class is used to track scope information.
+///
+class LexicalScope {
+
+public:
+ LexicalScope(LexicalScope *P, const MDNode *D, const MDNode *I, bool A)
+ : Parent(P), Desc(D), InlinedAtLocation(I), AbstractScope(A),
+ LastInsn(nullptr), FirstInsn(nullptr), DFSIn(0), DFSOut(0) {
+ if (Parent)
+ Parent->addChild(this);
+ }
+
+ // Accessors.
+ LexicalScope *getParent() const { return Parent; }
+ const MDNode *getDesc() const { return Desc; }
+ const MDNode *getInlinedAt() const { return InlinedAtLocation; }
+ const MDNode *getScopeNode() const { return Desc; }
+ bool isAbstractScope() const { return AbstractScope; }
+ SmallVectorImpl<LexicalScope *> &getChildren() { return Children; }
+ SmallVectorImpl<InsnRange> &getRanges() { return Ranges; }
+
+ /// addChild - Add a child scope.
+ void addChild(LexicalScope *S) { Children.push_back(S); }
+
+ /// openInsnRange - This scope covers instruction range starting from MI.
+ void openInsnRange(const MachineInstr *MI) {
+ if (!FirstInsn)
+ FirstInsn = MI;
+
+ if (Parent)
+ Parent->openInsnRange(MI);
+ }
+
+ /// extendInsnRange - Extend the current instruction range covered by
+ /// this scope.
+ void extendInsnRange(const MachineInstr *MI) {
+ assert(FirstInsn && "MI Range is not open!");
+ LastInsn = MI;
+ if (Parent)
+ Parent->extendInsnRange(MI);
+ }
+
+ /// closeInsnRange - Create a range based on FirstInsn and LastInsn collected
+ /// until now. This is used when a new scope is encountered while walking
+ /// machine instructions.
+ void closeInsnRange(LexicalScope *NewScope = nullptr) {
+ assert(LastInsn && "Last insn missing!");
+ Ranges.push_back(InsnRange(FirstInsn, LastInsn));
+ FirstInsn = nullptr;
+ LastInsn = nullptr;
+ // If Parent dominates NewScope then do not close Parent's instruction
+ // range.
+ if (Parent && (!NewScope || !Parent->dominates(NewScope)))
+ Parent->closeInsnRange(NewScope);
+ }
+
+ /// dominates - Return true if current scope dominates given lexical scope.
+ bool dominates(const LexicalScope *S) const {
+ if (S == this)
+ return true;
+ if (DFSIn < S->getDFSIn() && DFSOut > S->getDFSOut())
+ return true;
+ return false;
+ }
+
+ // Depth First Search support to walk and manipulate LexicalScope hierarchy.
+ unsigned getDFSOut() const { return DFSOut; }
+ void setDFSOut(unsigned O) { DFSOut = O; }
+ unsigned getDFSIn() const { return DFSIn; }
+ void setDFSIn(unsigned I) { DFSIn = I; }
+
+ /// dump - print lexical scope.
+ void dump(unsigned Indent = 0) const;
+
+private:
+ LexicalScope *Parent; // Parent to this scope.
+ AssertingVH<const MDNode> Desc; // Debug info descriptor.
+ AssertingVH<const MDNode> InlinedAtLocation; // Location at which this
+ // scope is inlined.
+ bool AbstractScope; // Abstract Scope
+ SmallVector<LexicalScope *, 4> Children; // Scopes defined in scope.
+ // Contents not owned.
+ SmallVector<InsnRange, 4> Ranges;
+
+ const MachineInstr *LastInsn; // Last instruction of this scope.
+ const MachineInstr *FirstInsn; // First instruction of this scope.
+ unsigned DFSIn, DFSOut; // In & Out Depth use to determine
+ // scope nesting.
+};
+
+//===----------------------------------------------------------------------===//
/// LexicalScopes - This class provides interface to collect and use lexical
/// scoping information from machine instruction.
///
class LexicalScopes {
public:
LexicalScopes() : MF(nullptr), CurrentFnLexicalScope(nullptr) {}
- ~LexicalScopes();
/// initialize - Scan machine function and constuct lexical scope nest, resets
/// the instance if necessary.
return AbstractScopesList;
}
- /// findAbstractScope - Find an abstract scope or return NULL.
+ /// findAbstractScope - Find an abstract scope or return null.
LexicalScope *findAbstractScope(const MDNode *N) {
- return AbstractScopeMap.lookup(N);
+ auto I = AbstractScopeMap.find(N);
+ return I != AbstractScopeMap.end() ? &I->second : nullptr;
}
/// findInlinedScope - Find an inlined scope for the given DebugLoc or return
return InlinedLexicalScopeMap.lookup(DL);
}
- /// findLexicalScope - Find regular lexical scope or return NULL.
+ /// findLexicalScope - Find regular lexical scope or return null.
LexicalScope *findLexicalScope(const MDNode *N) {
- return LexicalScopeMap.lookup(N);
+ auto I = LexicalScopeMap.find(N);
+ return I != LexicalScopeMap.end() ? &I->second : nullptr;
}
/// dump - Print data structures to dbgs().
private:
const MachineFunction *MF;
- /// LexicalScopeMap - Tracks the scopes in the current function. Owns the
- /// contained LexicalScope*s.
- DenseMap<const MDNode *, LexicalScope *> LexicalScopeMap;
+ /// LexicalScopeMap - Tracks the scopes in the current function.
+ // Use an unordered_map to ensure value pointer validity over insertion.
+ std::unordered_map<const MDNode *, LexicalScope> LexicalScopeMap;
/// InlinedLexicalScopeMap - Tracks inlined function scopes in current
/// function.
DenseMap<DebugLoc, LexicalScope *> InlinedLexicalScopeMap;
/// AbstractScopeMap - These scopes are not included LexicalScopeMap.
- /// AbstractScopes owns its LexicalScope*s.
- DenseMap<const MDNode *, LexicalScope *> AbstractScopeMap;
+ // Use an unordered_map to ensure value pointer validity over insertion.
+ std::unordered_map<const MDNode *, LexicalScope> AbstractScopeMap;
/// AbstractScopesList - Tracks abstract scopes constructed while processing
/// a function.
LexicalScope *CurrentFnLexicalScope;
};
-//===----------------------------------------------------------------------===//
-/// LexicalScope - This class is used to track scope information.
-///
-class LexicalScope {
-
-public:
- LexicalScope(LexicalScope *P, const MDNode *D, const MDNode *I, bool A)
- : Parent(P), Desc(D), InlinedAtLocation(I), AbstractScope(A),
- LastInsn(nullptr), FirstInsn(nullptr), DFSIn(0), DFSOut(0) {
- if (Parent)
- Parent->addChild(this);
- }
-
- // Accessors.
- LexicalScope *getParent() const { return Parent; }
- const MDNode *getDesc() const { return Desc; }
- const MDNode *getInlinedAt() const { return InlinedAtLocation; }
- const MDNode *getScopeNode() const { return Desc; }
- bool isAbstractScope() const { return AbstractScope; }
- SmallVectorImpl<LexicalScope *> &getChildren() { return Children; }
- SmallVectorImpl<InsnRange> &getRanges() { return Ranges; }
-
- /// addChild - Add a child scope.
- void addChild(LexicalScope *S) { Children.push_back(S); }
-
- /// openInsnRange - This scope covers instruction range starting from MI.
- void openInsnRange(const MachineInstr *MI) {
- if (!FirstInsn)
- FirstInsn = MI;
-
- if (Parent)
- Parent->openInsnRange(MI);
- }
-
- /// extendInsnRange - Extend the current instruction range covered by
- /// this scope.
- void extendInsnRange(const MachineInstr *MI) {
- assert(FirstInsn && "MI Range is not open!");
- LastInsn = MI;
- if (Parent)
- Parent->extendInsnRange(MI);
- }
-
- /// closeInsnRange - Create a range based on FirstInsn and LastInsn collected
- /// until now. This is used when a new scope is encountered while walking
- /// machine instructions.
- void closeInsnRange(LexicalScope *NewScope = nullptr) {
- assert(LastInsn && "Last insn missing!");
- Ranges.push_back(InsnRange(FirstInsn, LastInsn));
- FirstInsn = nullptr;
- LastInsn = nullptr;
- // If Parent dominates NewScope then do not close Parent's instruction
- // range.
- if (Parent && (!NewScope || !Parent->dominates(NewScope)))
- Parent->closeInsnRange(NewScope);
- }
-
- /// dominates - Return true if current scope dominates given lexical scope.
- bool dominates(const LexicalScope *S) const {
- if (S == this)
- return true;
- if (DFSIn < S->getDFSIn() && DFSOut > S->getDFSOut())
- return true;
- return false;
- }
-
- // Depth First Search support to walk and manipulate LexicalScope hierarchy.
- unsigned getDFSOut() const { return DFSOut; }
- void setDFSOut(unsigned O) { DFSOut = O; }
- unsigned getDFSIn() const { return DFSIn; }
- void setDFSIn(unsigned I) { DFSIn = I; }
-
- /// dump - print lexical scope.
- void dump(unsigned Indent = 0) const;
-
-private:
- LexicalScope *Parent; // Parent to this scope.
- AssertingVH<const MDNode> Desc; // Debug info descriptor.
- AssertingVH<const MDNode> InlinedAtLocation; // Location at which this
- // scope is inlined.
- bool AbstractScope; // Abstract Scope
- SmallVector<LexicalScope *, 4> Children; // Scopes defined in scope.
- // Contents not owned.
- SmallVector<InsnRange, 4> Ranges;
-
- const MachineInstr *LastInsn; // Last instruction of this scope.
- const MachineInstr *FirstInsn; // First instruction of this scope.
- unsigned DFSIn, DFSOut; // In & Out Depth use to determine
- // scope nesting.
-};
-
} // end llvm namespace
#endif
#define DEBUG_TYPE "lexicalscopes"
-/// ~LexicalScopes - final cleanup after ourselves.
-LexicalScopes::~LexicalScopes() { reset(); }
-
/// reset - Reset the instance so that it's prepared for another function.
void LexicalScopes::reset() {
MF = nullptr;
CurrentFnLexicalScope = nullptr;
- DeleteContainerSeconds(LexicalScopeMap);
- DeleteContainerSeconds(AbstractScopeMap);
+ LexicalScopeMap.clear();
+ AbstractScopeMap.clear();
InlinedLexicalScopeMap.clear();
AbstractScopesList.clear();
}
if (IA)
return InlinedLexicalScopeMap.lookup(DebugLoc::getFromDILocation(IA));
- return LexicalScopeMap.lookup(Scope);
+ return findLexicalScope(Scope);
}
/// getOrCreateLexicalScope - Find lexical scope for the given DebugLoc. If
D = DIDescriptor(Scope);
}
- LexicalScope *WScope = LexicalScopeMap.lookup(Scope);
- if (WScope)
- return WScope;
+ auto I = LexicalScopeMap.find(Scope);
+ if (I != LexicalScopeMap.end())
+ return &I->second;
LexicalScope *Parent = nullptr;
if (D.isLexicalBlock())
Parent = getOrCreateLexicalScope(DebugLoc::getFromDILexicalBlock(Scope));
- WScope = new LexicalScope(Parent, DIDescriptor(Scope), nullptr, false);
- LexicalScopeMap.insert(std::make_pair(Scope, WScope));
+ // FIXME: Use forward_as_tuple instead of make_tuple, once MSVC2012
+ // compatibility is no longer required.
+ I = LexicalScopeMap.emplace(std::piecewise_construct, std::make_tuple(Scope),
+ std::make_tuple(Parent, DIDescriptor(Scope),
+ nullptr, false)).first;
+
if (!Parent && DIDescriptor(Scope).isSubprogram() &&
DISubprogram(Scope).describes(MF->getFunction()))
- CurrentFnLexicalScope = WScope;
+ CurrentFnLexicalScope = &I->second;
- return WScope;
+ return &I->second;
}
/// getOrCreateInlinedScope - Find or create an inlined lexical scope.
LexicalScope *LexicalScopes::getOrCreateInlinedScope(MDNode *Scope,
MDNode *InlinedAt) {
- LexicalScope *InlinedScope = LexicalScopeMap.lookup(InlinedAt);
- if (InlinedScope)
- return InlinedScope;
+ auto I = LexicalScopeMap.find(InlinedAt);
+ if (I != LexicalScopeMap.end())
+ return &I->second;
DebugLoc InlinedLoc = DebugLoc::getFromDILocation(InlinedAt);
- InlinedScope = new LexicalScope(getOrCreateLexicalScope(InlinedLoc),
- DIDescriptor(Scope), InlinedAt, false);
- InlinedLexicalScopeMap[InlinedLoc] = InlinedScope;
- LexicalScopeMap[InlinedAt] = InlinedScope;
- return InlinedScope;
+ // FIXME: Use forward_as_tuple instead of make_tuple, once MSVC2012
+ // compatibility is no longer required.
+ I = LexicalScopeMap.emplace(
+ std::piecewise_construct, std::make_tuple(InlinedAt),
+ std::make_tuple(getOrCreateLexicalScope(InlinedLoc),
+ DIDescriptor(Scope), InlinedAt,
+ false)).first;
+ InlinedLexicalScopeMap[InlinedLoc] = &I->second;
+ return &I->second;
}
/// getOrCreateAbstractScope - Find or create an abstract lexical scope.
DIDescriptor Scope(N);
if (Scope.isLexicalBlockFile())
Scope = DILexicalBlockFile(Scope).getScope();
- LexicalScope *AScope = AbstractScopeMap.lookup(N);
- if (AScope)
- return AScope;
+ auto I = AbstractScopeMap.find(N);
+ if (I != AbstractScopeMap.end())
+ return &I->second;
LexicalScope *Parent = nullptr;
if (Scope.isLexicalBlock()) {
DIDescriptor ParentDesc = DB.getContext();
Parent = getOrCreateAbstractScope(ParentDesc);
}
- AScope = new LexicalScope(Parent, DIDescriptor(N), nullptr, true);
- AbstractScopeMap[N] = AScope;
+ I = AbstractScopeMap.emplace(std::piecewise_construct,
+ std::forward_as_tuple(N),
+ std::forward_as_tuple(Parent, DIDescriptor(N),
+ nullptr, true)).first;
if (DIDescriptor(N).isSubprogram())
- AbstractScopesList.push_back(AScope);
- return AScope;
+ AbstractScopesList.push_back(&I->second);
+ return &I->second;
}
/// constructScopeNest