OSDN Git Service

* Makefile.in: Add support for new malloc.o and renamed malloc_wrapper.o. Use
authorcgf <cgf>
Fri, 16 Aug 2002 19:41:39 +0000 (19:41 +0000)
committercgf <cgf>
Fri, 16 Aug 2002 19:41:39 +0000 (19:41 +0000)
-fomit-frame-pointer for malloc.o compilation.
* malloc_wrapper.cc: New file.  Rename from malloc.cc.  Add support for more
malloc functions.  Eliminate export_* calls.  Just use straight malloc names.
Remove unused argument from malloc lock functions.
* cygwin.din: Just export straight malloc names.  Add malloc_stats,
malloc_trim, malloc_usable_size, mallopt, memalign, valloc.
* dcrt0.cc (__cygwin_user): Eliminate export_* malloc entries.
* fork.cc (fork_parent): Remove unused argument from malloc_lock argument.
* malloc.cc: New file.  Doug Lea's malloc v2.7.1.
* cygmalloc.h: New file.
* include/cygwin/version.h: Bump API_MINOR.
* sync.h (muto::acquire): Use appropriate number for regparm attribute.
(muto::reset): Ditto.
(muto::release): Ditto.

winsup/cygwin/ChangeLog
winsup/cygwin/Makefile.in
winsup/cygwin/cygmalloc.h [new file with mode: 0644]
winsup/cygwin/cygwin.din
winsup/cygwin/dcrt0.cc
winsup/cygwin/fork.cc
winsup/cygwin/include/cygwin/version.h
winsup/cygwin/malloc.cc [new file with mode: 0644]
winsup/cygwin/sync.h
winsup/cygwin/winsup.h

index 19b0030..577f0f1 100644 (file)
@@ -1,3 +1,23 @@
+2002-08-16  Christopher Faylor  <cgf@redhat.com>
+
+       * Makefile.in: Add support for new malloc.o and renamed
+       malloc_wrapper.o.  Use -fomit-frame-pointer for malloc.o compilation.
+       * malloc_wrapper.cc: New file.  Rename from malloc.cc.  Add support for
+       more malloc functions.  Eliminate export_* calls.  Just use straight
+       malloc names.  Remove unused argument from malloc lock functions.
+       * cygwin.din: Just export straight malloc names.  Add malloc_stats,
+       malloc_trim, malloc_usable_size, mallopt, memalign, valloc.
+       * dcrt0.cc (__cygwin_user): Eliminate export_* malloc entries.
+       * fork.cc (fork_parent): Remove unused argument from malloc_lock
+       argument.
+       * malloc.cc: New file.  Doug Lea's malloc v2.7.1.
+       * cygmalloc.h: New file.
+       * include/cygwin/version.h: Bump API_MINOR.
+
+       * sync.h (muto::acquire): Use appropriate number for regparm attribute.
+       (muto::reset): Ditto.
+       (muto::release): Ditto.
+
 2002-08-16  Pavel Tsekov  <ptsekov@gmx.net>
 
        * exceptions.cc (interrupt_setup): Ensure that the previous signal mask
index 9774fdc..dbba110 100644 (file)
@@ -129,13 +129,13 @@ DLL_OFILES:=assert.o autoload.o cygheap.o cygserver_client.o \
        fhandler_socket.o fhandler_tape.o fhandler_termios.o fhandler_tty.o \
        fhandler_virtual.o fhandler_windows.o fhandler_zero.o fnmatch.o fork.o \
        glob.o grp.o heap.o init.o ioctl.o ipc.o localtime.o malloc.o \
-       miscfuncs.o mmap.o net.o ntea.o passwd.o path.o pinfo.o pipe.o poll.o \
-       pthread.o regcomp.o regerror.o regexec.o regfree.o registry.o \
-       resource.o scandir.o sched.o sec_acl.o sec_helper.o security.o \
-       select.o shared.o shm.o shortcut.o signal.o sigproc.o smallprint.o \
-       spawn.o strace.o strsep.o sync.o syscalls.o sysconf.o syslog.o \
-       termios.o thread.o times.o tty.o uinfo.o uname.o v8_regexp.o \
-       v8_regerror.o v8_regsub.o wait.o wincap.o window.o \
+       malloc_wrapper.o miscfuncs.o mmap.o net.o ntea.o passwd.o path.o \
+       pinfo.o pipe.o poll.o pthread.o regcomp.o regerror.o regexec.o \
+       regfree.o registry.o resource.o scandir.o sched.o sec_acl.o \
+       sec_helper.o security.o select.o shared.o shm.o shortcut.o signal.o \
+       sigproc.o smallprint.o spawn.o strace.o strsep.o sync.o syscalls.o \
+       sysconf.o syslog.o termios.o thread.o times.o tty.o uinfo.o uname.o \
+       v8_regexp.o v8_regerror.o v8_regsub.o wait.o wincap.o window.o \
        $(EXTRA_DLL_OFILES) $(EXTRA_OFILES) $(MALLOC_OFILES) $(MT_SAFE_OBJECTS)
 
 GMON_OFILES:=gmon.o mcount.o profil.o
@@ -311,6 +311,9 @@ winver_stamp: mkvers.sh include/cygwin/version.h winver.rc $(DLL_OFILES)
        $(COMPILE_CXX) -o version.o version.cc && \
        touch $@
 
+malloc.o: malloc.cc
+       $(COMPILE_CXX) -fomit-frame-pointer -o $@ $<
+
 cygrun.exe : cygrun.o $(LIB_NAME) $(w32api_lib)/libuser32.a \
             $(w32api_lib)/libshell32.a $(w32api_lib)/libkernel32.a
        $(CC) -nodefaultlibs -o $@ $^ -lgcc -lcygwin
diff --git a/winsup/cygwin/cygmalloc.h b/winsup/cygwin/cygmalloc.h
new file mode 100644 (file)
index 0000000..818d56e
--- /dev/null
@@ -0,0 +1,28 @@
+/* cygmalloc.h: cygwin DLL malloc stuff
+
+   Copyright 2002 Red Hat, Inc.
+
+This file is part of Cygwin.
+
+This software is a copyrighted work licensed under the terms of the
+Cygwin license.  Please consult the file "CYGWIN_LICENSE" for
+details. */
+
+extern "C" void dlfree (void *p) __attribute__ ((regparm (1)));
+extern "C" void *dlmalloc (unsigned size) __attribute__ ((regparm (1)));
+extern "C" void *dlrealloc (void *p, unsigned size) __attribute__ ((regparm (2)));
+extern "C" void *dlcalloc (size_t nmemb, size_t size) __attribute__ ((regparm (2)));
+extern "C" void *dlmemalign (size_t alignment, size_t bytes) __attribute__ ((regparm (2)));
+extern "C" void *dlvalloc (size_t bytes) __attribute__ ((regparm (1)));
+extern "C" size_t dlmalloc_usable_size (void *p) __attribute__ ((regparm (1)));
+extern "C" int dlmalloc_trim (size_t) __attribute__ ((regparm (1)));
+extern "C" int dlmallopt (int p, int v) __attribute__ ((regparm (2)));
+extern "C" void dlmalloc_stats ();
+
+#ifndef __INSIDE_CYGWIN__
+# define USE_DL_PREFIX
+#else
+# define __malloc_lock() mallock->acquire ()
+# define __malloc_unlock() mallock->release ()
+extern muto *mallock;
+#endif
index 0af8f43..2ebfd1c 100644 (file)
@@ -84,8 +84,8 @@ cabs
 _cabs = cabs
 cabsf
 _cabsf = cabsf
-calloc = export_calloc
-_calloc = export_calloc
+calloc
+_calloc = calloc
 cbrt
 _cbrt = cbrt
 cbrtf
@@ -296,8 +296,8 @@ fputs
 _fputs = fputs
 fread
 _fread = fread
-free = export_free
-_free = export_free
+free
+_free = free
 freopen
 _freopen = freopen
 frexp
@@ -535,8 +535,12 @@ lseek64
 lstat = cygwin_lstat
 _lstat = cygwin_lstat
 lstat64
-malloc = export_malloc
-_malloc = export_malloc
+malloc
+_malloc = malloc
+malloc_stats
+malloc_trim
+malloc_usable_size
+mallopt
 matherr
 _matherr = matherr
 mblen
@@ -545,6 +549,7 @@ mbstowcs
 _mbstowcs = mbstowcs
 mbtowc
 _mbtowc = mbtowc
+memalign
 memchr
 _memchr = memchr
 memcmp
@@ -626,8 +631,8 @@ readlink
 _readlink = readlink
 readv
 _readv = readv
-realloc = export_realloc
-_realloc = export_realloc
+realloc
+_realloc = realloc
 posix_regcomp
 posix_regerror
 posix_regexec
@@ -917,6 +922,7 @@ utimes
 _utimes = utimes
 utmpname
 _utmpname = utmpname
+valloc
 vfiprintf
 _vfiprintf = vfiprintf
 vfork
index e13665d..ac2c7e0 100644 (file)
@@ -80,11 +80,6 @@ char NO_COPY almost_null[1];
 
 extern "C"
 {
-  void *export_malloc (unsigned int);
-  void export_free (void *);
-  void *export_realloc (void *, unsigned int);
-  void *export_calloc (unsigned int, unsigned int);
-
   /* This is an exported copy of environ which can be used by DLLs
      which use cygwin.dll.  */
   char **__cygwin_environ;
@@ -97,12 +92,12 @@ extern "C"
    /* dll_major */ CYGWIN_VERSION_DLL_MAJOR,
    /* dll_major */ CYGWIN_VERSION_DLL_MINOR,
    /* impure_ptr_ptr */ NULL, /* envptr */ NULL,
-   /* malloc */ export_malloc, /* free */ export_free,
-   /* realloc */ export_realloc,
+   /* malloc */ malloc, /* free */ free,
+   /* realloc */ realloc,
    /* fmode_ptr */ NULL, /* main */ NULL, /* ctors */ NULL,
    /* dtors */ NULL, /* data_start */ NULL, /* data_end */ NULL,
    /* bss_start */ NULL, /* bss_end */ NULL,
-   /* calloc */ export_calloc,
+   /* calloc */ calloc,
    /* premain */ {NULL, NULL, NULL, NULL},
    /* run_ctors_p */ 0,
    /* unused */ {0, 0, 0, 0, 0, 0, 0},
index d1b7fa9..81ed6e2 100644 (file)
@@ -27,6 +27,8 @@ details. */
 #include "perthread.h"
 #include "perprocess.h"
 #include "dll_init.h"
+#include "sync.h"
+#include "cygmalloc.h"
 
 #ifdef DEBUGGING
 static int npid;
@@ -456,7 +458,7 @@ fork_parent (HANDLE& hParent, dll *&first_dll,
   PSECURITY_ATTRIBUTES sec_attribs = sec_user_nih (sa_buf);
   syscall_printf ("CreateProcess (%s, %s, 0, 0, 1, %x, 0, 0, %p, %p)",
                  myself->progname, myself->progname, c_flags, &si, &pi);
-  __malloc_lock (_reent_clib ());
+  __malloc_lock ();
   void *newheap;
   newheap = cygheap_setup_for_child (&ch,cygheap->fdtab.need_fixup_before ());
   rc = CreateProcess (myself->progname, /* image to run */
@@ -555,7 +557,7 @@ fork_parent (HANDLE& hParent, dll *&first_dll,
                  dll_data_start, dll_data_end,
                  dll_bss_start, dll_bss_end, NULL);
 
-  __malloc_unlock (_reent_clib ());
+  __malloc_unlock ();
   MALLOC_CHECK;
   if (!rc)
     goto cleanup;
index e98462d..b68c528 100644 (file)
@@ -155,12 +155,14 @@ details. */
        55: Export fcloseall, fcloseall_r.
        56: Make ntsec on by default.
        57: Export setgroups.
+       58: Export memalign, valloc, malloc_trim, malloc_usable_size, mallopt,
+           malloc_stats
      */
 
      /* Note that we forgot to bump the api for ualarm, strtoll, strtoull */
 
 #define CYGWIN_VERSION_API_MAJOR 0
-#define CYGWIN_VERSION_API_MINOR 57
+#define CYGWIN_VERSION_API_MINOR 58
 
      /* There is also a compatibity version number associated with the
        shared memory regions.  It is incremented when incompatible
diff --git a/winsup/cygwin/malloc.cc b/winsup/cygwin/malloc.cc
new file mode 100644 (file)
index 0000000..45005fd
--- /dev/null
@@ -0,0 +1,5574 @@
+/*
+  This is a version (aka dlmalloc) of malloc/free/realloc written by
+  Doug Lea and released to the public domain.  Use, modify, and
+  redistribute this code without permission or acknowledgement in any
+  way you wish.  Send questions, comments, complaints, performance
+  data, etc to dl@cs.oswego.edu
+
+* VERSION 2.7.1 Thu Jul 25 10:58:03 2002  Doug Lea  (dl at gee)
+
+   Note: There may be an updated version of this malloc obtainable at
+          ftp://gee.cs.oswego.edu/pub/misc/malloc.c
+        Check before installing!
+
+* Quickstart
+
+  This library is all in one file to simplify the most common usage:
+  ftp it, compile it (-O), and link it into another program. All
+  of the compile-time options default to reasonable values for use on
+  most unix platforms. Compile -DWIN32 for reasonable defaults on windows.
+  You might later want to step through various compile-time and dynamic
+  tuning options.
+
+  For convenience, an include file for code using this malloc is at:
+     ftp://gee.cs.oswego.edu/pub/misc/malloc-2.7.1.h
+  You don't really need this .h file unless you call functions not
+  defined in your system include files.  The .h file contains only the
+  excerpts from this file needed for using this malloc on ANSI C/C++
+  systems, so long as you haven't changed compile-time options about
+  naming and tuning parameters.  If you do, then you can create your
+  own malloc.h that does include all settings by cutting at the point
+  indicated below.
+
+* Why use this malloc?
+
+  This is not the fastest, most space-conserving, most portable, or
+  most tunable malloc ever written. However it is among the fastest
+  while also being among the most space-conserving, portable and tunable.
+  Consistent balance across these factors results in a good general-purpose
+  allocator for malloc-intensive programs.
+
+  The main properties of the algorithms are:
+  * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
+    with ties normally decided via FIFO (i.e. least recently used).
+  * For small (<= 64 bytes by default) requests, it is a caching
+    allocator, that maintains pools of quickly recycled chunks.
+  * In between, and for combinations of large and small requests, it does
+    the best it can trying to meet both goals at once.
+  * For very large requests (>= 128KB by default), it relies on system
+    memory mapping facilities, if supported.
+
+  For a longer but slightly out of date high-level description, see
+     http://gee.cs.oswego.edu/dl/html/malloc.html
+
+  You may already by default be using a C library containing a malloc
+  that is  based on some version of this malloc (for example in
+  linux). You might still want to use the one in this file in order to
+  customize settings or to avoid overheads associated with library
+  versions.
+
+* Contents, described in more detail in "description of public routines" below.
+
+  Standard (ANSI/SVID/...)  functions:
+    malloc(size_t n);
+    calloc(size_t n_elements, size_t element_size);
+    free(Void_t* p);
+    realloc(Void_t* p, size_t n);
+    memalign(size_t alignment, size_t n);
+    valloc(size_t n);
+    mallinfo()
+    mallopt(int parameter_number, int parameter_value)
+
+  Additional functions:
+    independent_calloc(size_t n_elements, size_t size, Void_t* chunks[]);
+    independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
+    pvalloc(size_t n);
+    cfree(Void_t* p);
+    malloc_trim(size_t pad);
+    malloc_usable_size(Void_t* p);
+    malloc_stats();
+
+* Vital statistics:
+
+  Supported pointer representation:       4 or 8 bytes
+  Supported size_t  representation:       4 or 8 bytes
+       Note that size_t is allowed to be 4 bytes even if pointers are 8.
+       You can adjust this by defining INTERNAL_SIZE_T
+
+  Alignment:                              2 * sizeof(size_t) (default)
+       (i.e., 8 byte alignment with 4byte size_t). This suffices for
+       nearly all current machines and C compilers. However, you can
+       define MALLOC_ALIGNMENT to be wider than this if necessary.
+
+  Minimum overhead per allocated chunk:   4 or 8 bytes
+       Each malloced chunk has a hidden word of overhead holding size
+       and status information.
+
+  Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
+                         8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
+
+       When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
+       ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
+       needed; 4 (8) for a trailing size field and 8 (16) bytes for
+       free list pointers. Thus, the minimum allocatable size is
+       16/24/32 bytes.
+
+       Even a request for zero bytes (i.e., malloc(0)) returns a
+       pointer to something of the minimum allocatable size.
+
+       The maximum overhead wastage (i.e., number of extra bytes
+       allocated than were requested in malloc) is less than or equal
+       to the minimum size, except for requests >= mmap_threshold that
+       are serviced via mmap(), where the worst case wastage is 2 *
+       sizeof(size_t) bytes plus the remainder from a system page (the
+       minimal mmap unit); typically 4096 or 8192 bytes.
+
+  Maximum allocated size:  4-byte size_t: 2^32 minus about two pages
+                          8-byte size_t: 2^64 minus about two pages
+
+       It is assumed that (possibly signed) size_t values suffice to
+       represent chunk sizes. `Possibly signed' is due to the fact
+       that `size_t' may be defined on a system as either a signed or
+       an unsigned type. The ISO C standard says that it must be
+       unsigned, but a few systems are known not to adhere to this.
+       Additionally, even when size_t is unsigned, sbrk (which is by
+       default used to obtain memory from system) accepts signed
+       arguments, and may not be able to handle size_t-wide arguments
+       with negative sign bit.  Generally, values that would
+       appear as negative after accounting for overhead and alignment
+       are supported only via mmap(), which does not have this
+       limitation.
+
+       Requests for sizes outside the allowed range will perform an optional
+       failure action and then return null. (Requests may also
+       also fail because a system is out of memory.)
+
+  Thread-safety: NOT thread-safe unless USE_MALLOC_LOCK defined
+
+       When USE_MALLOC_LOCK is defined, wrappers are created to
+       surround every public call with either a pthread mutex or
+       a win32 spinlock (depending on WIN32). This is not
+       especially fast, and can be a major bottleneck.
+       It is designed only to provide minimal protection
+       in concurrent environments, and to provide a basis for
+       extensions.  If you are using malloc in a concurrent program,
+       you would be far better off obtaining ptmalloc, which is
+       derived from a version of this malloc, and is well-tuned for
+       concurrent programs. (See http://www.malloc.de) Note that
+       even when USE_MALLOC_LOCK is defined, you can can guarantee
+       full thread-safety only if no threads acquire memory through
+       direct calls to MORECORE or other system-level allocators.
+
+  Compliance: I believe it is compliant with the 1997 Single Unix Specification
+       (See http://www.opennc.org). Also SVID/XPG, ANSI C, and probably
+       others as well.
+
+* Synopsis of compile-time options:
+
+    People have reported using previous versions of this malloc on all
+    versions of Unix, sometimes by tweaking some of the defines
+    below. It has been tested most extensively on Solaris and
+    Linux. It is also reported to work on WIN32 platforms.
+    People also report using it in stand-alone embedded systems.
+
+    The implementation is in straight, hand-tuned ANSI C.  It is not
+    at all modular. (Sorry!)  It uses a lot of macros.  To be at all
+    usable, this code should be compiled using an optimizing compiler
+    (for example gcc -O3) that can simplify expressions and control
+    paths. (FAQ: some macros import variables as arguments rather than
+    declare locals because people reported that some debuggers
+    otherwise get confused.)
+
+    OPTION                     DEFAULT VALUE
+
+    Compilation Environment options:
+
+    __STD_C                    derived from C compiler defines
+    WIN32                      NOT defined
+    HAVE_MEMCPY                defined
+    USE_MEMCPY                 1 if HAVE_MEMCPY is defined
+    HAVE_MMAP                  defined as 1
+    MMAP_CLEARS                1
+    HAVE_MREMAP                0 unless linux defined
+    malloc_getpagesize         derived from system #includes, or 4096 if not
+    HAVE_USR_INCLUDE_MALLOC_H  NOT defined
+    LACKS_UNISTD_H             NOT defined unless WIN32
+    LACKS_SYS_PARAM_H          NOT defined unless WIN32
+    LACKS_SYS_MMAN_H           NOT defined unless WIN32
+    LACKS_FCNTL_H              NOT defined
+
+    Changing default word sizes:
+
+    INTERNAL_SIZE_T            size_t
+    MALLOC_ALIGNMENT           2 * sizeof(INTERNAL_SIZE_T)
+    PTR_UINT                   unsigned long
+    CHUNK_SIZE_T               unsigned long
+
+    Configuration and functionality options:
+
+    USE_DL_PREFIX              NOT defined
+    USE_PUBLIC_MALLOC_WRAPPERS NOT defined
+    USE_MALLOC_LOCK            NOT defined
+    DEBUG                      NOT defined
+    REALLOC_ZERO_BYTES_FREES   NOT defined
+    MALLOC_FAILURE_ACTION      errno = ENOMEM, if __STD_C defined, else no-op
+    TRIM_FASTBINS              0
+    FIRST_SORTED_BIN_SIZE      512
+
+    Options for customizing MORECORE:
+
+    MORECORE                   sbrk
+    MORECORE_CONTIGUOUS        1
+    MORECORE_CANNOT_TRIM       NOT defined
+    MMAP_AS_MORECORE_SIZE      (1024 * 1024)
+
+    Tuning options that are also dynamically changeable via mallopt:
+
+    DEFAULT_MXFAST             64
+    DEFAULT_TRIM_THRESHOLD     256 * 1024
+    DEFAULT_TOP_PAD            0
+    DEFAULT_MMAP_THRESHOLD     256 * 1024
+    DEFAULT_MMAP_MAX           65536
+
+    There are several other #defined constants and macros that you
+    probably don't want to touch unless you are extending or adapting malloc.
+*/
+
+/*
+  WIN32 sets up defaults for MS environment and compilers.
+  Otherwise defaults are for unix.
+*/
+
+/* #define WIN32 */
+
+#ifdef WIN32
+
+#define WIN32_LEAN_AND_MEAN
+#include <windows.h>
+
+/* Win32 doesn't supply or need the following headers */
+#define LACKS_UNISTD_H
+#define LACKS_SYS_PARAM_H
+#define LACKS_SYS_MMAN_H
+
+/* Use the supplied emulation of sbrk */
+#define MORECORE sbrk
+#define MORECORE_CONTIGUOUS 1
+#define MORECORE_FAILURE    ((void*)(-1))
+
+/* Use the supplied emulation of mmap and munmap */
+#define HAVE_MMAP 1
+#define MUNMAP_FAILURE  (-1)
+#define MMAP_CLEARS 1
+
+/* These values don't really matter in windows mmap emulation */
+#define MAP_PRIVATE 1
+#define MAP_ANONYMOUS 2
+#define PROT_READ 1
+#define PROT_WRITE 2
+
+/* Emulation functions defined at the end of this file */
+
+/* If USE_MALLOC_LOCK, use supplied critical-section-based lock functions */
+#ifdef USE_MALLOC_LOCK
+static int slwait(int *sl);
+static int slrelease(int *sl);
+#endif
+
+static long getpagesize(void);
+static long getregionsize(void);
+static void *sbrk(long size);
+static void *mmap(void *ptr, long size, long prot, long type, long handle, long arg);
+static long munmap(void *ptr, long size);
+
+static void vminfo (unsigned long*free, unsigned long*reserved, unsigned long*committed);
+static int cpuinfo (int whole, unsigned long*kernel, unsigned long*user);
+
+#endif
+
+/*
+  __STD_C should be nonzero if using ANSI-standard C compiler, a C++
+  compiler, or a C compiler sufficiently close to ANSI to get away
+  with it.
+*/
+
+#ifndef __STD_C
+#if defined(__STDC__) || defined(_cplusplus)
+#define __STD_C     1
+#else
+#define __STD_C     0
+#endif
+#endif /*__STD_C*/
+
+
+/*
+  Void_t* is the pointer type that malloc should say it returns
+*/
+
+#ifndef Void_t
+#if (__STD_C || defined(WIN32))
+#define Void_t      void
+#else
+#define Void_t      char
+#endif
+#endif /*Void_t*/
+
+#if __STD_C
+#include <stddef.h>   /* for size_t */
+#else
+#include <sys/types.h>
+#endif
+
+#include "cygmalloc.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* define LACKS_UNISTD_H if your system does not have a <unistd.h>. */
+
+/* #define  LACKS_UNISTD_H */
+
+#ifndef LACKS_UNISTD_H
+#include <unistd.h>
+#endif
+
+/* define LACKS_SYS_PARAM_H if your system does not have a <sys/param.h>. */
+
+/* #define  LACKS_SYS_PARAM_H */
+
+
+#include <stdio.h>    /* needed for malloc_stats */
+#include <errno.h>    /* needed for optional MALLOC_FAILURE_ACTION */
+
+
+/*
+  Debugging:
+
+  Because freed chunks may be overwritten with bookkeeping fields, this
+  malloc will often die when freed memory is overwritten by user
+  programs.  This can be very effective (albeit in an annoying way)
+  in helping track down dangling pointers.
+
+  If you compile with -DDEBUG, a number of assertion checks are
+  enabled that will catch more memory errors. You probably won't be
+  able to make much sense of the actual assertion errors, but they
+  should help you locate incorrectly overwritten memory.  The
+  checking is fairly extensive, and will slow down execution
+  noticeably. Calling malloc_stats or mallinfo with DEBUG set will
+  attempt to check every non-mmapped allocated and free chunk in the
+  course of computing the summmaries. (By nature, mmapped regions
+  cannot be checked very much automatically.)
+
+  Setting DEBUG may also be helpful if you are trying to modify
+  this code. The assertions in the check routines spell out in more
+  detail the assumptions and invariants underlying the algorithms.
+
+  Setting DEBUG does NOT provide an automated mechanism for checking
+  that all accesses to malloced memory stay within their
+  bounds. However, there are several add-ons and adaptations of this
+  or other mallocs available that do this.
+*/
+
+#if DEBUG
+#include <assert.h>
+#else
+#define assert(x) ((void)0)
+#endif
+
+/*
+  The unsigned integer type used for comparing any two chunk sizes.
+  This should be at least as wide as size_t, but should not be signed.
+*/
+
+#ifndef CHUNK_SIZE_T
+#define CHUNK_SIZE_T unsigned long
+#endif
+
+/*
+  The unsigned integer type used to hold addresses when they are are
+  manipulated as integers. Except that it is not defined on all
+  systems, intptr_t would suffice.
+*/
+#ifndef PTR_UINT
+#define PTR_UINT unsigned long
+#endif
+
+
+/*
+  INTERNAL_SIZE_T is the word-size used for internal bookkeeping
+  of chunk sizes.
+
+  The default version is the same as size_t.
+
+  While not strictly necessary, it is best to define this as an
+  unsigned type, even if size_t is a signed type. This may avoid some
+  artificial size limitations on some systems.
+
+  On a 64-bit machine, you may be able to reduce malloc overhead by
+  defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' at the
+  expense of not being able to handle more than 2^32 of malloced
+  space. If this limitation is acceptable, you are encouraged to set
+  this unless you are on a platform requiring 16byte alignments. In
+  this case the alignment requirements turn out to negate any
+  potential advantages of decreasing size_t word size.
+
+  Implementors: Beware of the possible combinations of:
+     - INTERNAL_SIZE_T might be signed or unsigned, might be 32 or 64 bits,
+       and might be the same width as int or as long
+     - size_t might have different width and signedness as INTERNAL_SIZE_T
+     - int and long might be 32 or 64 bits, and might be the same width
+  To deal with this, most comparisons and difference computations
+  among INTERNAL_SIZE_Ts should cast them to CHUNK_SIZE_T, being
+  aware of the fact that casting an unsigned int to a wider long does
+  not sign-extend. (This also makes checking for negative numbers
+  awkward.) Some of these casts result in harmless compiler warnings
+  on some systems.
+*/
+
+#ifndef INTERNAL_SIZE_T
+#define INTERNAL_SIZE_T size_t
+#endif
+
+/* The corresponding word size */
+#define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
+
+
+
+/*
+  MALLOC_ALIGNMENT is the minimum alignment for malloc'ed chunks.
+  It must be a power of two at least 2 * SIZE_SZ, even on machines
+  for which smaller alignments would suffice. It may be defined as
+  larger than this though. Note however that code and data structures
+  are optimized for the case of 8-byte alignment.
+*/
+
+
+#ifndef MALLOC_ALIGNMENT
+#define MALLOC_ALIGNMENT       (2 * SIZE_SZ)
+#endif
+
+/* The corresponding bit mask value */
+#define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
+
+
+
+/*
+  REALLOC_ZERO_BYTES_FREES should be set if a call to
+  realloc with zero bytes should be the same as a call to free.
+  Some people think it should. Otherwise, since this malloc
+  returns a unique pointer for malloc(0), so does realloc(p, 0).
+*/
+
+/*   #define REALLOC_ZERO_BYTES_FREES */
+
+/*
+  TRIM_FASTBINS controls whether free() of a very small chunk can
+  immediately lead to trimming. Setting to true (1) can reduce memory
+  footprint, but will almost always slow down programs that use a lot
+  of small chunks.
+
+  Define this only if you are willing to give up some speed to more
+  aggressively reduce system-level memory footprint when releasing
+  memory in programs that use many small chunks.  You can get
+  essentially the same effect by setting MXFAST to 0, but this can
+  lead to even greater slowdowns in programs using many small chunks.
+  TRIM_FASTBINS is an in-between compile-time option, that disables
+  only those chunks bordering topmost memory from being placed in
+  fastbins.
+*/
+
+#ifndef TRIM_FASTBINS
+#define TRIM_FASTBINS  0
+#endif
+
+
+/*
+  USE_DL_PREFIX will prefix all public routines with the string 'dl'.
+  This is necessary when you only want to use this malloc in one part
+  of a program, using your regular system malloc elsewhere.
+*/
+
+/* #define USE_DL_PREFIX */
+
+
+/*
+  USE_MALLOC_LOCK causes wrapper functions to surround each
+  callable routine with pthread mutex lock/unlock.
+
+  USE_MALLOC_LOCK forces USE_PUBLIC_MALLOC_WRAPPERS to be defined
+*/
+
+
+/* #define USE_MALLOC_LOCK */
+
+
+/*
+  If USE_PUBLIC_MALLOC_WRAPPERS is defined, every public routine is
+  actually a wrapper function that first calls MALLOC_PREACTION, then
+  calls the internal routine, and follows it with
+  MALLOC_POSTACTION. This is needed for locking, but you can also use
+  this, without USE_MALLOC_LOCK, for purposes of interception,
+  instrumentation, etc. It is a sad fact that using wrappers often
+  noticeably degrades performance of malloc-intensive programs.
+*/
+
+#ifdef USE_MALLOC_LOCK
+#define USE_PUBLIC_MALLOC_WRAPPERS
+#else
+/* #define USE_PUBLIC_MALLOC_WRAPPERS */
+#endif
+
+
+/*
+   Two-phase name translation.
+   All of the actual routines are given mangled names.
+   When wrappers are used, they become the public callable versions.
+   When DL_PREFIX is used, the callable names are prefixed.
+*/
+
+#ifndef USE_PUBLIC_MALLOC_WRAPPERS
+#define cALLOc      public_cALLOc
+#define fREe        public_fREe
+#define cFREe       public_cFREe
+#define mALLOc      public_mALLOc
+#define mEMALIGn    public_mEMALIGn
+#define rEALLOc     public_rEALLOc
+#define vALLOc      public_vALLOc
+#define pVALLOc     public_pVALLOc
+#define mALLINFo    public_mALLINFo
+#define mALLOPt     public_mALLOPt
+#define mTRIm       public_mTRIm
+#define mSTATs      public_mSTATs
+#define mUSABLe     public_mUSABLe
+#define iCALLOc     public_iCALLOc
+#define iCOMALLOc   public_iCOMALLOc
+#endif
+
+#ifdef USE_DL_PREFIX
+#define public_cALLOc    dlcalloc
+#define public_fREe      dlfree
+#define public_cFREe     dlcfree
+#define public_mALLOc    dlmalloc
+#define public_mEMALIGn  dlmemalign
+#define public_rEALLOc   dlrealloc
+#define public_vALLOc    dlvalloc
+#define public_pVALLOc   dlpvalloc
+#define public_mALLINFo  dlmallinfo
+#define public_mALLOPt   dlmallopt
+#define public_mTRIm     dlmalloc_trim
+#define public_mSTATs    dlmalloc_stats
+#define public_mUSABLe   dlmalloc_usable_size
+#define public_iCALLOc   dlindependent_calloc
+#define public_iCOMALLOc dlindependent_comalloc
+#else /* USE_DL_PREFIX */
+#define public_cALLOc    calloc
+#define public_fREe      free
+#define public_cFREe     cfree
+#define public_mALLOc    malloc
+#define public_mEMALIGn  memalign
+#define public_rEALLOc   realloc
+#define public_vALLOc    valloc
+#define public_pVALLOc   pvalloc
+#define public_mALLINFo  mallinfo
+#define public_mALLOPt   mallopt
+#define public_mTRIm     malloc_trim
+#define public_mSTATs    malloc_stats
+#define public_mUSABLe   malloc_usable_size
+#define public_iCALLOc   independent_calloc
+#define public_iCOMALLOc independent_comalloc
+#endif /* USE_DL_PREFIX */
+
+
+/*
+  HAVE_MEMCPY should be defined if you are not otherwise using
+  ANSI STD C, but still have memcpy and memset in your C library
+  and want to use them in calloc and realloc. Otherwise simple
+  macro versions are defined below.
+
+  USE_MEMCPY should be defined as 1 if you actually want to
+  have memset and memcpy called. People report that the macro
+  versions are faster than libc versions on some systems.
+
+  Even if USE_MEMCPY is set to 1, loops to copy/clear small chunks
+  (of <= 36 bytes) are manually unrolled in realloc and calloc.
+*/
+
+#define HAVE_MEMCPY
+
+#ifndef USE_MEMCPY
+#ifdef HAVE_MEMCPY
+#define USE_MEMCPY 1
+#else
+#define USE_MEMCPY 0
+#endif
+#endif
+
+
+#if (__STD_C || defined(HAVE_MEMCPY))
+
+#ifdef WIN32
+/* On Win32 memset and memcpy are already declared in windows.h */
+#else
+#if __STD_C
+void* memset(void*, int, size_t);
+void* memcpy(void*, const void*, size_t);
+#else
+Void_t* memset();
+Void_t* memcpy();
+#endif
+#endif
+#endif
+
+/*
+  MALLOC_FAILURE_ACTION is the action to take before "return 0" when
+  malloc fails to be able to return memory, either because memory is
+  exhausted or because of illegal arguments.
+
+  By default, sets errno if running on STD_C platform, else does nothing.
+*/
+
+#ifndef MALLOC_FAILURE_ACTION
+#if __STD_C
+#define MALLOC_FAILURE_ACTION \
+   errno = ENOMEM;
+
+#else
+#define MALLOC_FAILURE_ACTION
+#endif
+#endif
+
+/*
+  MORECORE-related declarations. By default, rely on sbrk
+*/
+
+
+#ifdef LACKS_UNISTD_H
+#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
+#if __STD_C
+extern Void_t*     sbrk(ptrdiff_t);
+#else
+extern Void_t*     sbrk();
+#endif
+#endif
+#endif
+
+/*
+  MORECORE is the name of the routine to call to obtain more memory
+  from the system.  See below for general guidance on writing
+  alternative MORECORE functions, as well as a version for WIN32 and a
+  sample version for pre-OSX macos.
+*/
+
+#ifndef MORECORE
+#define MORECORE sbrk
+#endif
+
+/*
+  MORECORE_FAILURE is the value returned upon failure of MORECORE
+  as well as mmap. Since it cannot be an otherwise valid memory address,
+  and must reflect values of standard sys calls, you probably ought not
+  try to redefine it.
+*/
+
+#ifndef MORECORE_FAILURE
+#define MORECORE_FAILURE (-1)
+#endif
+
+/*
+  If MORECORE_CONTIGUOUS is true, take advantage of fact that
+  consecutive calls to MORECORE with positive arguments always return
+  contiguous increasing addresses.  This is true of unix sbrk.  Even
+  if not defined, when regions happen to be contiguous, malloc will
+  permit allocations spanning regions obtained from different
+  calls. But defining this when applicable enables some stronger
+  consistency checks and space efficiencies.
+*/
+
+#ifndef MORECORE_CONTIGUOUS
+#define MORECORE_CONTIGUOUS 1
+#endif
+
+/*
+  Define MORECORE_CANNOT_TRIM if your version of MORECORE
+  cannot release space back to the system when given negative
+  arguments. This is generally necessary only if you are using
+  a hand-crafted MORECORE function that cannot handle negative arguments.
+*/
+
+/* #define MORECORE_CANNOT_TRIM */
+
+
+/*
+  Define HAVE_MMAP as true to optionally make malloc() use mmap() to
+  allocate very large blocks.  These will be returned to the
+  operating system immediately after a free(). Also, if mmap
+  is available, it is used as a backup strategy in cases where
+  MORECORE fails to provide space from system.
+
+  This malloc is best tuned to work with mmap for large requests.
+  If you do not have mmap, operations involving very large chunks (1MB
+  or so) may be slower than you'd like.
+*/
+
+#ifndef HAVE_MMAP
+#define HAVE_MMAP 1
+#endif
+
+#if HAVE_MMAP
+/*
+   Standard unix mmap using /dev/zero clears memory so calloc doesn't
+   need to.
+*/
+
+#ifndef MMAP_CLEARS
+#define MMAP_CLEARS 1
+#endif
+
+#else /* no mmap */
+#ifndef MMAP_CLEARS
+#define MMAP_CLEARS 0
+#endif
+#endif
+
+
+/*
+   MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
+   sbrk fails, and mmap is used as a backup (which is done only if
+   HAVE_MMAP).  The value must be a multiple of page size.  This
+   backup strategy generally applies only when systems have "holes" in
+   address space, so sbrk cannot perform contiguous expansion, but
+   there is still space available on system.  On systems for which
+   this is known to be useful (i.e. most linux kernels), this occurs
+   only when programs allocate huge amounts of memory.  Between this,
+   and the fact that mmap regions tend to be limited, the size should
+   be large, to avoid too many mmap calls and thus avoid running out
+   of kernel resources.
+*/
+
+#ifndef MMAP_AS_MORECORE_SIZE
+#define MMAP_AS_MORECORE_SIZE (1024 * 1024)
+#endif
+
+/*
+  Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
+  large blocks.  This is currently only possible on Linux with
+  kernel versions newer than 1.3.77.
+*/
+
+#ifndef HAVE_MREMAP
+#ifdef linux
+#define HAVE_MREMAP 1
+#else
+#define HAVE_MREMAP 0
+#endif
+
+#endif /* HAVE_MMAP */
+
+
+/*
+  The system page size. To the extent possible, this malloc manages
+  memory from the system in page-size units.  Note that this value is
+  cached during initialization into a field of malloc_state. So even
+  if malloc_getpagesize is a function, it is only called once.
+
+  The following mechanics for getpagesize were adapted from bsd/gnu
+  getpagesize.h. If none of the system-probes here apply, a value of
+  4096 is used, which should be OK: If they don't apply, then using
+  the actual value probably doesn't impact performance.
+*/
+
+
+#ifndef malloc_getpagesize
+
+#ifndef LACKS_UNISTD_H
+#  include <unistd.h>
+#endif
+
+#  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
+#    ifndef _SC_PAGE_SIZE
+#      define _SC_PAGE_SIZE _SC_PAGESIZE
+#    endif
+#  endif
+
+#  ifdef _SC_PAGE_SIZE
+#    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
+#  else
+#    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
+       extern size_t getpagesize();
+#      define malloc_getpagesize getpagesize()
+#    else
+#      ifdef WIN32 /* use supplied emulation of getpagesize */
+#        define malloc_getpagesize getpagesize()
+#      else
+#        ifndef LACKS_SYS_PARAM_H
+#          include <sys/param.h>
+#        endif
+#        ifdef EXEC_PAGESIZE
+#          define malloc_getpagesize EXEC_PAGESIZE
+#        else
+#          ifdef NBPG
+#            ifndef CLSIZE
+#              define malloc_getpagesize NBPG
+#            else
+#              define malloc_getpagesize (NBPG * CLSIZE)
+#            endif
+#          else
+#            ifdef NBPC
+#              define malloc_getpagesize NBPC
+#            else
+#              ifdef PAGESIZE
+#                define malloc_getpagesize PAGESIZE
+#              else /* just guess */
+#                define malloc_getpagesize (4096)
+#              endif
+#            endif
+#          endif
+#        endif
+#      endif
+#    endif
+#  endif
+#endif
+
+/*
+  This version of malloc supports the standard SVID/XPG mallinfo
+  routine that returns a struct containing usage properties and
+  statistics. It should work on any SVID/XPG compliant system that has
+  a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
+  install such a thing yourself, cut out the preliminary declarations
+  as described above and below and save them in a malloc.h file. But
+  there's no compelling reason to bother to do this.)
+
+  The main declaration needed is the mallinfo struct that is returned
+  (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
+  bunch of fields that are not even meaningful in this version of
+  malloc.  These fields are are instead filled by mallinfo() with
+  other numbers that might be of interest.
+
+  HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
+  /usr/include/malloc.h file that includes a declaration of struct
+  mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
+  version is declared below.  These must be precisely the same for
+  mallinfo() to work.  The original SVID version of this struct,
+  defined on most systems with mallinfo, declares all fields as
+  ints. But some others define as unsigned long. If your system
+  defines the fields using a type of different width than listed here,
+  you must #include your system version and #define
+  HAVE_USR_INCLUDE_MALLOC_H.
+*/
+
+/* #define HAVE_USR_INCLUDE_MALLOC_H */
+
+#ifdef HAVE_USR_INCLUDE_MALLOC_H
+#include "/usr/include/malloc.h"
+#else
+
+/* SVID2/XPG mallinfo structure */
+
+struct mallinfo {
+  int arena;    /* non-mmapped space allocated from system */
+  int ordblks;  /* number of free chunks */
+  int smblks;   /* number of fastbin blocks */
+  int hblks;    /* number of mmapped regions */
+  int hblkhd;   /* space in mmapped regions */
+  int usmblks;  /* maximum total allocated space */
+  int fsmblks;  /* space available in freed fastbin blocks */
+  int uordblks; /* total allocated space */
+  int fordblks; /* total free space */
+  int keepcost; /* top-most, releasable (via malloc_trim) space */
+};
+
+/*
+  SVID/XPG defines four standard parameter numbers for mallopt,
+  normally defined in malloc.h.  Only one of these (M_MXFAST) is used
+  in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
+  so setting them has no effect. But this malloc also supports other
+  options in mallopt described below.
+*/
+#endif
+
+
+/* ---------- description of public routines ------------ */
+
+/*
+  malloc(size_t n)
+  Returns a pointer to a newly allocated chunk of at least n bytes, or null
+  if no space is available. Additionally, on failure, errno is
+  set to ENOMEM on ANSI C systems.
+
+  If n is zero, malloc returns a minumum-sized chunk. (The minimum
+  size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
+  systems.)  On most systems, size_t is an unsigned type, so calls
+  with negative arguments are interpreted as requests for huge amounts
+  of space, which will often fail. The maximum supported value of n
+  differs across systems, but is in all cases less than the maximum
+  representable value of a size_t.
+*/
+#if __STD_C
+Void_t*  public_mALLOc(size_t);
+#else
+Void_t*  public_mALLOc();
+#endif
+
+/*
+  free(Void_t* p)
+  Releases the chunk of memory pointed to by p, that had been previously
+  allocated using malloc or a related routine such as realloc.
+  It has no effect if p is null. It can have arbitrary (i.e., bad!)
+  effects if p has already been freed.
+
+  Unless disabled (using mallopt), freeing very large spaces will
+  when possible, automatically trigger operations that give
+  back unused memory to the system, thus reducing program footprint.
+*/
+#if __STD_C
+void     public_fREe(Void_t*);
+#else
+void     public_fREe();
+#endif
+
+/*
+  calloc(size_t n_elements, size_t element_size);
+  Returns a pointer to n_elements * element_size bytes, with all locations
+  set to zero.
+*/
+#if __STD_C
+Void_t*  public_cALLOc(size_t, size_t);
+#else
+Void_t*  public_cALLOc();
+#endif
+
+/*
+  realloc(Void_t* p, size_t n)
+  Returns a pointer to a chunk of size n that contains the same data
+  as does chunk p up to the minimum of (n, p's size) bytes, or null
+  if no space is available.
+
+  The returned pointer may or may not be the same as p. The algorithm
+  prefers extending p when possible, otherwise it employs the
+  equivalent of a malloc-copy-free sequence.
+
+  If p is null, realloc is equivalent to malloc.
+
+  If space is not available, realloc returns null, errno is set (if on
+  ANSI) and p is NOT freed.
+
+  if n is for fewer bytes than already held by p, the newly unused
+  space is lopped off and freed if possible.  Unless the #define
+  REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
+  zero (re)allocates a minimum-sized chunk.
+
+  Large chunks that were internally obtained via mmap will always
+  be reallocated using malloc-copy-free sequences unless
+  the system supports MREMAP (currently only linux).
+
+  The old unix realloc convention of allowing the last-free'd chunk
+  to be used as an argument to realloc is not supported.
+*/
+#if __STD_C
+Void_t*  public_rEALLOc(Void_t*, size_t);
+#else
+Void_t*  public_rEALLOc();
+#endif
+
+/*
+  memalign(size_t alignment, size_t n);
+  Returns a pointer to a newly allocated chunk of n bytes, aligned
+  in accord with the alignment argument.
+
+  The alignment argument should be a power of two. If the argument is
+  not a power of two, the nearest greater power is used.
+  8-byte alignment is guaranteed by normal malloc calls, so don't
+  bother calling memalign with an argument of 8 or less.
+
+  Overreliance on memalign is a sure way to fragment space.
+*/
+#if __STD_C
+Void_t*  public_mEMALIGn(size_t, size_t);
+#else
+Void_t*  public_mEMALIGn();
+#endif
+
+/*
+  valloc(size_t n);
+  Equivalent to memalign(pagesize, n), where pagesize is the page
+  size of the system. If the pagesize is unknown, 4096 is used.
+*/
+#if __STD_C
+Void_t*  public_vALLOc(size_t);
+#else
+Void_t*  public_vALLOc();
+#endif
+
+
+
+/*
+  mallopt(int parameter_number, int parameter_value)
+  Sets tunable parameters The format is to provide a
+  (parameter-number, parameter-value) pair.  mallopt then sets the
+  corresponding parameter to the argument value if it can (i.e., so
+  long as the value is meaningful), and returns 1 if successful else
+  0.  SVID/XPG/ANSI defines four standard param numbers for mallopt,
+  normally defined in malloc.h.  Only one of these (M_MXFAST) is used
+  in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
+  so setting them has no effect. But this malloc also supports four
+  other options in mallopt. See below for details.  Briefly, supported
+  parameters are as follows (listed defaults are for "typical"
+  configurations).
+
+  Symbol            param #   default    allowed param values
+  M_MXFAST          1         64         0-80  (0 disables fastbins)
+  M_TRIM_THRESHOLD -1         256*1024   any   (-1U disables trimming)
+  M_TOP_PAD        -2         0          any
+  M_MMAP_THRESHOLD -3         256*1024   any   (or 0 if no MMAP support)
+  M_MMAP_MAX       -4         65536      any   (0 disables use of mmap)
+*/
+#if __STD_C
+int      public_mALLOPt(int, int);
+#else
+int      public_mALLOPt();
+#endif
+
+
+/*
+  mallinfo()
+  Returns (by copy) a struct containing various summary statistics:
+
+  arena:     current total non-mmapped bytes allocated from system
+  ordblks:   the number of free chunks
+  smblks:    the number of fastbin blocks (i.e., small chunks that
+              have been freed but not use resused or consolidated)
+  hblks:     current number of mmapped regions
+  hblkhd:    total bytes held in mmapped regions
+  usmblks:   the maximum total allocated space. This will be greater
+               than current total if trimming has occurred.
+  fsmblks:   total bytes held in fastbin blocks
+  uordblks:  current total allocated space (normal or mmapped)
+  fordblks:  total free space
+  keepcost:  the maximum number of bytes that could ideally be released
+              back to system via malloc_trim. ("ideally" means that
+              it ignores page restrictions etc.)
+
+  Because these fields are ints, but internal bookkeeping may
+  be kept as longs, the reported values may wrap around zero and
+  thus be inaccurate.
+*/
+#if __STD_C
+struct mallinfo public_mALLINFo(void);
+#else
+struct mallinfo public_mALLINFo();
+#endif
+
+/*
+  independent_calloc(size_t n_elements, size_t element_size, Void_t* chunks[]);
+
+  independent_calloc is similar to calloc, but instead of returning a
+  single cleared space, it returns an array of pointers to n_elements
+  independent elements that can hold contents of size elem_size, each
+  of which starts out cleared, and can be independently freed,
+  realloc'ed etc. The elements are guaranteed to be adjacently
+  allocated (this is not guaranteed to occur with multiple callocs or
+  mallocs), which may also improve cache locality in some
+  applications.
+
+  The "chunks" argument is optional (i.e., may be null, which is
+  probably the most typical usage). If it is null, the returned array
+  is itself dynamically allocated and should also be freed when it is
+  no longer needed. Otherwise, the chunks array must be of at least
+  n_elements in length. It is filled in with the pointers to the
+  chunks.
+
+  In either case, independent_calloc returns this pointer array, or
+  null if the allocation failed.  If n_elements is zero and "chunks"
+  is null, it returns a chunk representing an array with zero elements
+  (which should be freed if not wanted).
+
+  Each element must be individually freed when it is no longer
+  needed. If you'd like to instead be able to free all at once, you
+  should instead use regular calloc and assign pointers into this
+  space to represent elements.  (In this case though, you cannot
+  independently free elements.)
+
+  independent_calloc simplifies and speeds up implementations of many
+  kinds of pools.  It may also be useful when constructing large data
+  structures that initially have a fixed number of fixed-sized nodes,
+  but the number is not known at compile time, and some of the nodes
+  may later need to be freed. For example:
+
+  struct Node { int item; struct Node* next; };
+
+  struct Node* build_list() {
+    struct Node** pool;
+    int n = read_number_of_nodes_needed();
+    if (n <= 0) return 0;
+    pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
+    if (pool == 0) die();
+    // organize into a linked list...
+    struct Node* first = pool[0];
+    for (i = 0; i < n-1; ++i)
+      pool[i]->next = pool[i+1];
+    free(pool);     // Can now free the array (or not, if it is needed later)
+    return first;
+  }
+*/
+#if __STD_C
+Void_t** public_iCALLOc(size_t, size_t, Void_t**);
+#else
+Void_t** public_iCALLOc();
+#endif
+
+/*
+  independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
+
+  independent_comalloc allocates, all at once, a set of n_elements
+  chunks with sizes indicated in the "sizes" array.    It returns
+  an array of pointers to these elements, each of which can be
+  independently freed, realloc'ed etc. The elements are guaranteed to
+  be adjacently allocated (this is not guaranteed to occur with
+  multiple callocs or mallocs), which may also improve cache locality
+  in some applications.
+
+  The "chunks" argument is optional (i.e., may be null). If it is null
+  the returned array is itself dynamically allocated and should also
+  be freed when it is no longer needed. Otherwise, the chunks array
+  must be of at least n_elements in length. It is filled in with the
+  pointers to the chunks.
+
+  In either case, independent_comalloc returns this pointer array, or
+  null if the allocation failed.  If n_elements is zero and chunks is
+  null, it returns a chunk representing an array with zero elements
+  (which should be freed if not wanted).
+
+  Each element must be individually freed when it is no longer
+  needed. If you'd like to instead be able to free all at once, you
+  should instead use a single regular malloc, and assign pointers at
+  particular offsets in the aggregate space. (In this case though, you
+  cannot independently free elements.)
+
+  independent_comallac differs from independent_calloc in that each
+  element may have a different size, and also that it does not
+  automatically clear elements.
+
+  independent_comalloc can be used to speed up allocation in cases
+  where several structs or objects must always be allocated at the
+  same time.  For example:
+
+  struct Head { ... }
+  struct Foot { ... }
+
+  void send_message(char* msg) {
+    int msglen = strlen(msg);
+    size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
+    void* chunks[3];
+    if (independent_comalloc(3, sizes, chunks) == 0)
+      die();
+    struct Head* head = (struct Head*)(chunks[0]);
+    char*        body = (char*)(chunks[1]);
+    struct Foot* foot = (struct Foot*)(chunks[2]);
+    // ...
+  }
+
+  In general though, independent_comalloc is worth using only for
+  larger values of n_elements. For small values, you probably won't
+  detect enough difference from series of malloc calls to bother.
+
+  Overuse of independent_comalloc can increase overall memory usage,
+  since it cannot reuse existing noncontiguous small chunks that
+  might be available for some of the elements.
+*/
+#if __STD_C
+Void_t** public_iCOMALLOc(size_t, size_t*, Void_t**);
+#else
+Void_t** public_iCOMALLOc();
+#endif
+
+
+/*
+  pvalloc(size_t n);
+  Equivalent to valloc(minimum-page-that-holds(n)), that is,
+  round up n to nearest pagesize.
+ */
+#if __STD_C
+Void_t*  public_pVALLOc(size_t);
+#else
+Void_t*  public_pVALLOc();
+#endif
+
+/*
+  cfree(Void_t* p);
+  Equivalent to free(p).
+
+  cfree is needed/defined on some systems that pair it with calloc,
+  for odd historical reasons (such as: cfree is used in example
+  code in the first edition of K&R).
+*/
+#if __STD_C
+void     public_cFREe(Void_t*);
+#else
+void     public_cFREe();
+#endif
+
+/*
+  malloc_trim(size_t pad);
+
+  If possible, gives memory back to the system (via negative
+  arguments to sbrk) if there is unused memory at the `high' end of
+  the malloc pool. You can call this after freeing large blocks of
+  memory to potentially reduce the system-level memory requirements
+  of a program. However, it cannot guarantee to reduce memory. Under
+  some allocation patterns, some large free blocks of memory will be
+  locked between two used chunks, so they cannot be given back to
+  the system.
+
+  The `pad' argument to malloc_trim represents the amount of free
+  trailing space to leave untrimmed. If this argument is zero,
+  only the minimum amount of memory to maintain internal data
+  structures will be left (one page or less). Non-zero arguments
+  can be supplied to maintain enough trailing space to service
+  future expected allocations without having to re-obtain memory
+  from the system.
+
+  Malloc_trim returns 1 if it actually released any memory, else 0.
+  On systems that do not support "negative sbrks", it will always
+  rreturn 0.
+*/
+#if __STD_C
+int      public_mTRIm(size_t);
+#else
+int      public_mTRIm();
+#endif
+
+/*
+  malloc_usable_size(Void_t* p);
+
+  Returns the number of bytes you can actually use in
+  an allocated chunk, which may be more than you requested (although
+  often not) due to alignment and minimum size constraints.
+  You can use this many bytes without worrying about
+  overwriting other allocated objects. This is not a particularly great
+  programming practice. malloc_usable_size can be more useful in
+  debugging and assertions, for example:
+
+  p = malloc(n);
+  assert(malloc_usable_size(p) >= 256);
+
+*/
+#if __STD_C
+size_t   public_mUSABLe(Void_t*);
+#else
+size_t   public_mUSABLe();
+#endif
+
+/*
+  malloc_stats();
+  Prints on stderr the amount of space obtained from the system (both
+  via sbrk and mmap), the maximum amount (which may be more than
+  current if malloc_trim and/or munmap got called), and the current
+  number of bytes allocated via malloc (or realloc, etc) but not yet
+  freed. Note that this is the number of bytes allocated, not the
+  number requested. It will be larger than the number requested
+  because of alignment and bookkeeping overhead. Because it includes
+  alignment wastage as being in use, this figure may be greater than
+  zero even when no user-level chunks are allocated.
+
+  The reported current and maximum system memory can be inaccurate if
+  a program makes other calls to system memory allocation functions
+  (normally sbrk) outside of malloc.
+
+  malloc_stats prints only the most commonly interesting statistics.
+  More information can be obtained by calling mallinfo.
+
+*/
+#if __STD_C
+void     public_mSTATs();
+#else
+void     public_mSTATs();
+#endif
+
+/* mallopt tuning options */
+
+/*
+  M_MXFAST is the maximum request size used for "fastbins", special bins
+  that hold returned chunks without consolidating their spaces. This
+  enables future requests for chunks of the same size to be handled
+  very quickly, but can increase fragmentation, and thus increase the
+  overall memory footprint of a program.
+
+  This malloc manages fastbins very conservatively yet still
+  efficiently, so fragmentation is rarely a problem for values less
+  than or equal to the default.  The maximum supported value of MXFAST
+  is 80. You wouldn't want it any higher than this anyway.  Fastbins
+  are designed especially for use with many small structs, objects or
+  strings -- the default handles structs/objects/arrays with sizes up
+  to 16 4byte fields, or small strings representing words, tokens,
+  etc. Using fastbins for larger objects normally worsens
+  fragmentation without improving speed.
+
+  M_MXFAST is set in REQUEST size units. It is internally used in
+  chunksize units, which adds padding and alignment.  You can reduce
+  M_MXFAST to 0 to disable all use of fastbins.  This causes the malloc
+  algorithm to be a closer approximation of fifo-best-fit in all cases,
+  not just for larger requests, but will generally cause it to be
+  slower.
+*/
+
+
+/* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
+#ifndef M_MXFAST
+#define M_MXFAST            1
+#endif
+
+#ifndef DEFAULT_MXFAST
+#define DEFAULT_MXFAST     64
+#endif
+
+
+/*
+  M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
+  to keep before releasing via malloc_trim in free().
+
+  Automatic trimming is mainly useful in long-lived programs.
+  Because trimming via sbrk can be slow on some systems, and can
+  sometimes be wasteful (in cases where programs immediately
+  afterward allocate more large chunks) the value should be high
+  enough so that your overall system performance would improve by
+  releasing this much memory.
+
+  The trim threshold and the mmap control parameters (see below)
+  can be traded off with one another. Trimming and mmapping are
+  two different ways of releasing unused memory back to the
+  system. Between these two, it is often possible to keep
+  system-level demands of a long-lived program down to a bare
+  minimum. For example, in one test suite of sessions measuring
+  the XF86 X server on Linux, using a trim threshold of 128K and a
+  mmap threshold of 192K led to near-minimal long term resource
+  consumption.
+
+  If you are using this malloc in a long-lived program, it should
+  pay to experiment with these values.  As a rough guide, you
+  might set to a value close to the average size of a process
+  (program) running on your system.  Releasing this much memory
+  would allow such a process to run in memory.  Generally, it's
+  worth it to tune for trimming rather tham memory mapping when a
+  program undergoes phases where several large chunks are
+  allocated and released in ways that can reuse each other's
+  storage, perhaps mixed with phases where there are no such
+  chunks at all.  And in well-behaved long-lived programs,
+  controlling release of large blocks via trimming versus mapping
+  is usually faster.
+
+  However, in most programs, these parameters serve mainly as
+  protection against the system-level effects of carrying around
+  massive amounts of unneeded memory. Since frequent calls to
+  sbrk, mmap, and munmap otherwise degrade performance, the default
+  parameters are set to relatively high values that serve only as
+  safeguards.
+
+  The trim value must be greater than page size to have any useful
+  effect.  To disable trimming completely, you can set to
+  (unsigned long)(-1)
+
+  Trim settings interact with fastbin (MXFAST) settings: Unless
+  TRIM_FASTBINS is defined, automatic trimming never takes place upon
+  freeing a chunk with size less than or equal to MXFAST. Trimming is
+  instead delayed until subsequent freeing of larger chunks. However,
+  you can still force an attempted trim by calling malloc_trim.
+
+  Also, trimming is not generally possible in cases where
+  the main arena is obtained via mmap.
+
+  Note that the trick some people use of mallocing a huge space and
+  then freeing it at program startup, in an attempt to reserve system
+  memory, doesn't have the intended effect under automatic trimming,
+  since that memory will immediately be returned to the system.
+*/
+
+#define M_TRIM_THRESHOLD       -1
+
+#ifndef DEFAULT_TRIM_THRESHOLD
+#define DEFAULT_TRIM_THRESHOLD (256 * 1024)
+#endif
+
+/*
+  M_TOP_PAD is the amount of extra `padding' space to allocate or
+  retain whenever sbrk is called. It is used in two ways internally:
+
+  * When sbrk is called to extend the top of the arena to satisfy
+  a new malloc request, this much padding is added to the sbrk
+  request.
+
+  * When malloc_trim is called automatically from free(),
+  it is used as the `pad' argument.
+
+  In both cases, the actual amount of padding is rounded
+  so that the end of the arena is always a system page boundary.
+
+  The main reason for using padding is to avoid calling sbrk so
+  often. Having even a small pad greatly reduces the likelihood
+  that nearly every malloc request during program start-up (or
+  after trimming) will invoke sbrk, which needlessly wastes
+  time.
+
+  Automatic rounding-up to page-size units is normally sufficient
+  to avoid measurable overhead, so the default is 0.  However, in
+  systems where sbrk is relatively slow, it can pay to increase
+  this value, at the expense of carrying around more memory than
+  the program needs.
+*/
+
+#define M_TOP_PAD              -2
+
+#ifndef DEFAULT_TOP_PAD
+#define DEFAULT_TOP_PAD        (0)
+#endif
+
+/*
+  M_MMAP_THRESHOLD is the request size threshold for using mmap()
+  to service a request. Requests of at least this size that cannot
+  be allocated using already-existing space will be serviced via mmap.
+  (If enough normal freed space already exists it is used instead.)
+
+  Using mmap segregates relatively large chunks of memory so that
+  they can be individually obtained and released from the host
+  system. A request serviced through mmap is never reused by any
+  other request (at least not directly; the system may just so
+  happen to remap successive requests to the same locations).
+
+  Segregating space in this way has the benefits that:
+
+   1. Mmapped space can ALWAYS be individually released back
+      to the system, which helps keep the system level memory
+      demands of a long-lived program low.
+   2. Mapped memory can never become `locked' between
+      other chunks, as can happen with normally allocated chunks, which
+      means that even trimming via malloc_trim would not release them.
+   3. On some systems with "holes" in address spaces, mmap can obtain
+      memory that sbrk cannot.
+
+  However, it has the disadvantages that:
+
+   1. The space cannot be reclaimed, consolidated, and then
+      used to service later requests, as happens with normal chunks.
+   2. It can lead to more wastage because of mmap page alignment
+      requirements
+   3. It causes malloc performance to be more dependent on host
+      system memory management support routines which may vary in
+      implementation quality and may impose arbitrary
+      limitations. Generally, servicing a request via normal
+      malloc steps is faster than going through a system's mmap.
+
+  The advantages of mmap nearly always outweigh disadvantages for
+  "large" chunks, but the value of "large" varies across systems.  The
+  default is an empirically derived value that works well in most
+  systems.
+*/
+
+#define M_MMAP_THRESHOLD      -3
+
+#ifndef DEFAULT_MMAP_THRESHOLD
+#define DEFAULT_MMAP_THRESHOLD (256 * 1024)
+#endif
+
+/*
+  M_MMAP_MAX is the maximum number of requests to simultaneously
+  service using mmap. This parameter exists because
+. Some systems have a limited number of internal tables for
+  use by mmap, and using more than a few of them may degrade
+  performance.
+
+  The default is set to a value that serves only as a safeguard.
+  Setting to 0 disables use of mmap for servicing large requests.  If
+  HAVE_MMAP is not set, the default value is 0, and attempts to set it
+  to non-zero values in mallopt will fail.
+*/
+
+#define M_MMAP_MAX             -4
+
+#ifndef DEFAULT_MMAP_MAX
+#if HAVE_MMAP
+#define DEFAULT_MMAP_MAX       (65536)
+#else
+#define DEFAULT_MMAP_MAX       (0)
+#endif
+#endif
+
+#ifdef __cplusplus
+};  /* end of extern "C" */
+#endif
+
+/*
+  ========================================================================
+  To make a fully customizable malloc.h header file, cut everything
+  above this line, put into file malloc.h, edit to suit, and #include it
+  on the next line, as well as in programs that use this malloc.
+  ========================================================================
+*/
+
+/* #include "malloc.h" */
+
+/* --------------------- public wrappers ---------------------- */
+
+#ifdef USE_PUBLIC_MALLOC_WRAPPERS
+
+/* Declare all routines as internal */
+#if __STD_C
+static Void_t*  mALLOc(size_t);
+static void     fREe(Void_t*);
+static Void_t*  rEALLOc(Void_t*, size_t);
+static Void_t*  mEMALIGn(size_t, size_t);
+static Void_t*  vALLOc(size_t);
+static Void_t*  pVALLOc(size_t);
+static Void_t*  cALLOc(size_t, size_t);
+static Void_t** iCALLOc(size_t, size_t, Void_t**);
+static Void_t** iCOMALLOc(size_t, size_t*, Void_t**);
+static void     cFREe(Void_t*);
+static int      mTRIm(size_t);
+static size_t   mUSABLe(Void_t*);
+static void     mSTATs();
+static int      mALLOPt(int, int);
+static struct mallinfo mALLINFo(void);
+#else
+static Void_t*  mALLOc();
+static void     fREe();
+static Void_t*  rEALLOc();
+static Void_t*  mEMALIGn();
+static Void_t*  vALLOc();
+static Void_t*  pVALLOc();
+static Void_t*  cALLOc();
+static Void_t** iCALLOc();
+static Void_t** iCOMALLOc();
+static void     cFREe();
+static int      mTRIm();
+static size_t   mUSABLe();
+static void     mSTATs();
+static int      mALLOPt();
+static struct mallinfo mALLINFo();
+#endif
+
+/*
+  MALLOC_PREACTION and MALLOC_POSTACTION should be
+  defined to return 0 on success, and nonzero on failure.
+  The return value of MALLOC_POSTACTION is currently ignored
+  in wrapper functions since there is no reasonable default
+  action to take on failure.
+*/
+
+
+#ifdef USE_MALLOC_LOCK
+
+#ifdef WIN32
+
+static int mALLOC_MUTEx;
+#define MALLOC_PREACTION   slwait(&mALLOC_MUTEx)
+#define MALLOC_POSTACTION  slrelease(&mALLOC_MUTEx)
+
+#else
+
+#include <pthread.h>
+
+static pthread_mutex_t mALLOC_MUTEx = PTHREAD_MUTEX_INITIALIZER;
+
+#define MALLOC_PREACTION   pthread_mutex_lock(&mALLOC_MUTEx)
+#define MALLOC_POSTACTION  pthread_mutex_unlock(&mALLOC_MUTEx)
+
+#endif /* USE_MALLOC_LOCK */
+
+#else
+
+/* Substitute anything you like for these */
+
+#define MALLOC_PREACTION   __malloc_lock ()
+#define MALLOC_POSTACTION  __malloc_unlock ()
+
+#endif
+
+Void_t* public_mALLOc(size_t bytes) {
+  Void_t* m;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = mALLOc(bytes);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+}
+
+void public_fREe(Void_t* m) {
+  if (MALLOC_PREACTION != 0) {
+    return;
+  }
+  fREe(m);
+  if (MALLOC_POSTACTION != 0) {
+  }
+}
+
+Void_t* public_rEALLOc(Void_t* m, size_t bytes) {
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = rEALLOc(m, bytes);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+}
+
+Void_t* public_mEMALIGn(size_t alignment, size_t bytes) {
+  Void_t* m;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = mEMALIGn(alignment, bytes);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+}
+
+Void_t* public_vALLOc(size_t bytes) {
+  Void_t* m;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = vALLOc(bytes);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+}
+
+#ifdef NEED_PVALLOC
+Void_t* public_pVALLOc(size_t bytes) {
+  Void_t* m;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = pVALLOc(bytes);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+}
+#endif
+
+Void_t* public_cALLOc(size_t n, size_t elem_size) {
+  Void_t* m;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = cALLOc(n, elem_size);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+}
+
+
+Void_t** public_iCALLOc(size_t n, size_t elem_size, Void_t** chunks) {
+  Void_t** m;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = iCALLOc(n, elem_size, chunks);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+}
+
+Void_t** public_iCOMALLOc(size_t n, size_t sizes[], Void_t** chunks) {
+  Void_t** m;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = iCOMALLOc(n, sizes, chunks);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+}
+
+void public_cFREe(Void_t* m) {
+  if (MALLOC_PREACTION != 0) {
+    return;
+  }
+  cFREe(m);
+  if (MALLOC_POSTACTION != 0) {
+  }
+}
+
+int public_mTRIm(size_t s) {
+  int result;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  result = mTRIm(s);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return result;
+}
+
+size_t public_mUSABLe(Void_t* m) {
+  size_t result;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  result = mUSABLe(m);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return result;
+}
+
+void public_mSTATs() {
+  if (MALLOC_PREACTION != 0) {
+    return;
+  }
+  mSTATs();
+  if (MALLOC_POSTACTION != 0) {
+  }
+}
+
+struct mallinfo public_mALLINFo() {
+  struct mallinfo m;
+  if (MALLOC_PREACTION != 0) {
+    struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
+    return nm;
+  }
+  m = mALLINFo();
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+}
+
+int public_mALLOPt(int p, int v) {
+  int result;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  result = mALLOPt(p, v);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return result;
+}
+
+#endif
+
+
+
+/* ------------- Optional versions of memcopy ---------------- */
+
+
+#if USE_MEMCPY
+
+/*
+  Note: memcpy is ONLY invoked with non-overlapping regions,
+  so the (usually slower) memmove is not needed.
+*/
+
+#define MALLOC_COPY(dest, src, nbytes)  memcpy(dest, src, nbytes)
+#define MALLOC_ZERO(dest, nbytes)       memset(dest, 0,   nbytes)
+
+#else /* !USE_MEMCPY */
+
+/* Use Duff's device for good zeroing/copying performance. */
+
+#define MALLOC_ZERO(charp, nbytes)                                            \
+do {                                                                          \
+  INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
+  CHUNK_SIZE_T  mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T);                     \
+  long mcn;                                                                   \
+  if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
+  switch (mctmp) {                                                            \
+    case 0: for(;;) { *mzp++ = 0;                                             \
+    case 7:           *mzp++ = 0;                                             \
+    case 6:           *mzp++ = 0;                                             \
+    case 5:           *mzp++ = 0;                                             \
+    case 4:           *mzp++ = 0;                                             \
+    case 3:           *mzp++ = 0;                                             \
+    case 2:           *mzp++ = 0;                                             \
+    case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
+  }                                                                           \
+} while(0)
+
+#define MALLOC_COPY(dest,src,nbytes)                                          \
+do {                                                                          \
+  INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
+  INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
+  CHUNK_SIZE_T  mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T);                     \
+  long mcn;                                                                   \
+  if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
+  switch (mctmp) {                                                            \
+    case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
+    case 7:           *mcdst++ = *mcsrc++;                                    \
+    case 6:           *mcdst++ = *mcsrc++;                                    \
+    case 5:           *mcdst++ = *mcsrc++;                                    \
+    case 4:           *mcdst++ = *mcsrc++;                                    \
+    case 3:           *mcdst++ = *mcsrc++;                                    \
+    case 2:           *mcdst++ = *mcsrc++;                                    \
+    case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
+  }                                                                           \
+} while(0)
+
+#endif
+
+/* ------------------ MMAP support ------------------  */
+
+
+#if HAVE_MMAP
+
+#ifndef LACKS_FCNTL_H
+#include <fcntl.h>
+#endif
+
+#ifndef LACKS_SYS_MMAN_H
+#include <sys/mman.h>
+#endif
+
+#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
+#define MAP_ANONYMOUS MAP_ANON
+#endif
+
+/*
+   Nearly all versions of mmap support MAP_ANONYMOUS,
+   so the following is unlikely to be needed, but is
+   supplied just in case.
+*/
+
+#ifndef MAP_ANONYMOUS
+
+static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
+
+#define MMAP(addr, size, prot, flags) ((dev_zero_fd < 0) ? \
+ (dev_zero_fd = open("/dev/zero", O_RDWR), \
+  mmap((addr), (size), (prot), (flags), dev_zero_fd, 0)) : \
+   mmap((addr), (size), (prot), (flags), dev_zero_fd, 0))
+
+#else
+
+#define MMAP(addr, size, prot, flags) \
+ (mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS, -1, 0))
+
+#endif
+
+
+#endif /* HAVE_MMAP */
+
+
+/*
+  -----------------------  Chunk representations -----------------------
+*/
+
+
+/*
+  This struct declaration is misleading (but accurate and necessary).
+  It declares a "view" into memory allowing access to necessary
+  fields at known offsets from a given base. See explanation below.
+*/
+
+struct malloc_chunk {
+
+  INTERNAL_SIZE_T      prev_size;  /* Size of previous chunk (if free).  */
+  INTERNAL_SIZE_T      size;       /* Size in bytes, including overhead. */
+
+  struct malloc_chunk* fd;         /* double links -- used only if free. */
+  struct malloc_chunk* bk;
+};
+
+
+typedef struct malloc_chunk* mchunkptr;
+
+/*
+   malloc_chunk details:
+
+    (The following includes lightly edited explanations by Colin Plumb.)
+
+    Chunks of memory are maintained using a `boundary tag' method as
+    described in e.g., Knuth or Standish.  (See the paper by Paul
+    Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
+    survey of such techniques.)  Sizes of free chunks are stored both
+    in the front of each chunk and at the end.  This makes
+    consolidating fragmented chunks into bigger chunks very fast.  The
+    size fields also hold bits representing whether chunks are free or
+    in use.
+
+    An allocated chunk looks like this:
+
+
+    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+           |             Size of previous chunk, if allocated            | |
+           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+           |             Size of chunk, in bytes                         |P|
+      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+           |             User data starts here...                          .
+           .                                                               .
+           .             (malloc_usable_space() bytes)                     .
+           .                                                               |
+nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+           |             Size of chunk                                     |
+           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
+
+    Where "chunk" is the front of the chunk for the purpose of most of
+    the malloc code, but "mem" is the pointer that is returned to the
+    user.  "Nextchunk" is the beginning of the next contiguous chunk.
+
+    Chunks always begin on even word boundries, so the mem portion
+    (which is returned to the user) is also on an even word boundary, and
+    thus at least double-word aligned.
+
+    Free chunks are stored in circular doubly-linked lists, and look like this:
+
+    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+           |             Size of previous chunk                            |
+           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+    `head:' |             Size of chunk, in bytes                         |P|
+      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+           |             Forward pointer to next chunk in list             |
+           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+           |             Back pointer to previous chunk in list            |
+           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+           |             Unused space (may be 0 bytes long)                .
+           .                                                               .
+           .                                                               |
+nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+    `foot:' |             Size of chunk, in bytes                           |
+           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
+    The P (PREV_INUSE) bit, stored in the unused low-order bit of the
+    chunk size (which is always a multiple of two words), is an in-use
+    bit for the *previous* chunk.  If that bit is *clear*, then the
+    word before the current chunk size contains the previous chunk
+    size, and can be used to find the front of the previous chunk.
+    The very first chunk allocated always has this bit set,
+    preventing access to non-existent (or non-owned) memory. If
+    prev_inuse is set for any given chunk, then you CANNOT determine
+    the size of the previous chunk, and might even get a memory
+    addressing fault when trying to do so.
+
+    Note that the `foot' of the current chunk is actually represented
+    as the prev_size of the NEXT chunk. This makes it easier to
+    deal with alignments etc but can be very confusing when trying
+    to extend or adapt this code.
+
+    The two exceptions to all this are
+
+     1. The special chunk `top' doesn't bother using the
+       trailing size field since there is no next contiguous chunk
+       that would have to index off it. After initialization, `top'
+       is forced to always exist.  If it would become less than
+       MINSIZE bytes long, it is replenished.
+
+     2. Chunks allocated via mmap, which have the second-lowest-order
+       bit (IS_MMAPPED) set in their size fields.  Because they are
+       allocated one-by-one, each must contain its own trailing size field.
+
+*/
+
+/*
+  ---------- Size and alignment checks and conversions ----------
+*/
+
+/* conversion from malloc headers to user pointers, and back */
+
+#define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
+#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
+
+/* The smallest possible chunk */
+#define MIN_CHUNK_SIZE        (sizeof(struct malloc_chunk))
+
+/* The smallest size we can malloc is an aligned minimal chunk */
+
+#define MINSIZE  \
+  (CHUNK_SIZE_T)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
+
+/* Check if m has acceptable alignment */
+
+#define aligned_OK(m)  (((PTR_UINT)((m)) & (MALLOC_ALIGN_MASK)) == 0)
+
+
+/*
+   Check if a request is so large that it would wrap around zero when
+   padded and aligned. To simplify some other code, the bound is made
+   low enough so that adding MINSIZE will also not wrap around sero.
+*/
+
+#define REQUEST_OUT_OF_RANGE(req)                                 \
+  ((CHUNK_SIZE_T)(req) >=                                        \
+   (CHUNK_SIZE_T)(INTERNAL_SIZE_T)(-2 * MINSIZE))
+
+/* pad request bytes into a usable size -- internal version */
+
+#define request2size(req)                                         \
+  (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE)  ?             \
+   MINSIZE :                                                      \
+   ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
+
+/*  Same, except also perform argument check */
+
+#define checked_request2size(req, sz)                             \
+  if (REQUEST_OUT_OF_RANGE(req)) {                                \
+    MALLOC_FAILURE_ACTION;                                        \
+    return 0;                                                     \
+  }                                                               \
+  (sz) = request2size(req);
+
+/*
+  --------------- Physical chunk operations ---------------
+*/
+
+
+/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
+#define PREV_INUSE 0x1
+
+/* extract inuse bit of previous chunk */
+#define prev_inuse(p)       ((p)->size & PREV_INUSE)
+
+
+/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
+#define IS_MMAPPED 0x2
+
+/* check for mmap()'ed chunk */
+#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
+
+/*
+  Bits to mask off when extracting size
+
+  Note: IS_MMAPPED is intentionally not masked off from size field in
+  macros for which mmapped chunks should never be seen. This should
+  cause helpful core dumps to occur if it is tried by accident by
+  people extending or adapting this malloc.
+*/
+#define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
+
+/* Get size, ignoring use bits */
+#define chunksize(p)         ((p)->size & ~(SIZE_BITS))
+
+
+/* Ptr to next physical malloc_chunk. */
+#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
+
+/* Ptr to previous physical malloc_chunk */
+#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
+
+/* Treat space at ptr + offset as a chunk */
+#define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
+
+/* extract p's inuse bit */
+#define inuse(p)\
+((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
+
+/* set/clear chunk as being inuse without otherwise disturbing */
+#define set_inuse(p)\
+((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
+
+#define clear_inuse(p)\
+((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
+
+
+/* check/set/clear inuse bits in known places */
+#define inuse_bit_at_offset(p, s)\
+ (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
+
+#define set_inuse_bit_at_offset(p, s)\
+ (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
+
+#define clear_inuse_bit_at_offset(p, s)\
+ (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
+
+
+/* Set size at head, without disturbing its use bit */
+#define set_head_size(p, s)  ((p)->size = (((p)->size & PREV_INUSE) | (s)))
+
+/* Set size/use field */
+#define set_head(p, s)       ((p)->size = (s))
+
+/* Set size at footer (only when chunk is not in use) */
+#define set_foot(p, s)       (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
+
+
+/*
+  -------------------- Internal data structures --------------------
+
+   All internal state is held in an instance of malloc_state defined
+   below. There are no other static variables, except in two optional
+   cases:
+   * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
+   * If HAVE_MMAP is true, but mmap doesn't support
+     MAP_ANONYMOUS, a dummy file descriptor for mmap.
+
+   Beware of lots of tricks that minimize the total bookkeeping space
+   requirements. The result is a little over 1K bytes (for 4byte
+   pointers and size_t.)
+*/
+
+/*
+  Bins
+
+    An array of bin headers for free chunks. Each bin is doubly
+    linked.  The bins are approximately proportionally (log) spaced.
+    There are a lot of these bins (128). This may look excessive, but
+    works very well in practice.  Most bins hold sizes that are
+    unusual as malloc request sizes, but are more usual for fragments
+    and consolidated sets of chunks, which is what these bins hold, so
+    they can be found quickly.  All procedures maintain the invariant
+    that no consolidated chunk physically borders another one, so each
+    chunk in a list is known to be preceeded and followed by either
+    inuse chunks or the ends of memory.
+
+    Chunks in bins are kept in size order, with ties going to the
+    approximately least recently used chunk. Ordering isn't needed
+    for the small bins, which all contain the same-sized chunks, but
+    facilitates best-fit allocation for larger chunks. These lists
+    are just sequential. Keeping them in order almost never requires
+    enough traversal to warrant using fancier ordered data
+    structures.
+
+    Chunks of the same size are linked with the most
+    recently freed at the front, and allocations are taken from the
+    back.  This results in LRU (FIFO) allocation order, which tends
+    to give each chunk an equal opportunity to be consolidated with
+    adjacent freed chunks, resulting in larger free chunks and less
+    fragmentation.
+
+    To simplify use in double-linked lists, each bin header acts
+    as a malloc_chunk. This avoids special-casing for headers.
+    But to conserve space and improve locality, we allocate
+    only the fd/bk pointers of bins, and then use repositioning tricks
+    to treat these as the fields of a malloc_chunk*.
+*/
+
+typedef struct malloc_chunk* mbinptr;
+
+/* addressing -- note that bin_at(0) does not exist */
+#define bin_at(m, i) ((mbinptr)((char*)&((m)->bins[(i)<<1]) - (SIZE_SZ<<1)))
+
+/* analog of ++bin */
+#define next_bin(b)  ((mbinptr)((char*)(b) + (sizeof(mchunkptr)<<1)))
+
+/* Reminders about list directionality within bins */
+#define first(b)     ((b)->fd)
+#define last(b)      ((b)->bk)
+
+/* Take a chunk off a bin list */
+#define unlink(P, BK, FD) {                                            \
+  FD = P->fd;                                                          \
+  BK = P->bk;                                                          \
+  FD->bk = BK;                                                         \
+  BK->fd = FD;                                                         \
+}
+
+/*
+  Indexing
+
+    Bins for sizes < 512 bytes contain chunks of all the same size, spaced
+    8 bytes apart. Larger bins are approximately logarithmically spaced:
+
+    64 bins of size       8
+    32 bins of size      64
+    16 bins of size     512
+     8 bins of size    4096
+     4 bins of size   32768
+     2 bins of size  262144
+     1 bin  of size what's left
+
+    The bins top out around 1MB because we expect to service large
+    requests via mmap.
+*/
+
+#define NBINS              96
+#define NSMALLBINS         32
+#define SMALLBIN_WIDTH      8
+#define MIN_LARGE_SIZE    256
+
+#define in_smallbin_range(sz)  \
+  ((CHUNK_SIZE_T)(sz) < (CHUNK_SIZE_T)MIN_LARGE_SIZE)
+
+#define smallbin_index(sz)     (((unsigned)(sz)) >> 3)
+
+/*
+  Compute index for size. We expect this to be inlined when
+  compiled with optimization, else not, which works out well.
+*/
+static int largebin_index(unsigned int sz) {
+  unsigned int  x = sz >> SMALLBIN_WIDTH;
+  unsigned int m;            /* bit position of highest set bit of m */
+
+  if (x >= 0x10000) return NBINS-1;
+
+  /* On intel, use BSRL instruction to find highest bit */
+#if defined(__GNUC__) && defined(i386)
+
+  __asm__("bsrl %1,%0\n\t"
+         : "=r" (m)
+         : "g"  (x));
+
+#else
+  {
+    /*
+      Based on branch-free nlz algorithm in chapter 5 of Henry
+      S. Warren Jr's book "Hacker's Delight".
+    */
+
+    unsigned int n = ((x - 0x100) >> 16) & 8;
+    x <<= n;
+    m = ((x - 0x1000) >> 16) & 4;
+    n += m;
+    x <<= m;
+    m = ((x - 0x4000) >> 16) & 2;
+    n += m;
+    x = (x << m) >> 14;
+    m = 13 - n + (x & ~(x>>1));
+  }
+#endif
+
+  /* Use next 2 bits to create finer-granularity bins */
+  return NSMALLBINS + (m << 2) + ((sz >> (m + 6)) & 3);
+}
+
+#define bin_index(sz) \
+ ((in_smallbin_range(sz)) ? smallbin_index(sz) : largebin_index(sz))
+
+/*
+  FIRST_SORTED_BIN_SIZE is the chunk size corresponding to the
+  first bin that is maintained in sorted order. This must
+  be the smallest size corresponding to a given bin.
+
+  Normally, this should be MIN_LARGE_SIZE. But you can weaken
+  best fit guarantees to sometimes speed up malloc by increasing value.
+  Doing this means that malloc may choose a chunk that is
+  non-best-fitting by up to the width of the bin.
+
+  Some useful cutoff values:
+      512 - all bins sorted
+     2560 - leaves bins <=     64 bytes wide unsorted
+    12288 - leaves bins <=    512 bytes wide unsorted
+    65536 - leaves bins <=   4096 bytes wide unsorted
+   262144 - leaves bins <=  32768 bytes wide unsorted
+       -1 - no bins sorted (not recommended!)
+*/
+
+#define FIRST_SORTED_BIN_SIZE MIN_LARGE_SIZE
+/* #define FIRST_SORTED_BIN_SIZE 65536 */
+
+/*
+  Unsorted chunks
+
+    All remainders from chunk splits, as well as all returned chunks,
+    are first placed in the "unsorted" bin. They are then placed
+    in regular bins after malloc gives them ONE chance to be used before
+    binning. So, basically, the unsorted_chunks list acts as a queue,
+    with chunks being placed on it in free (and malloc_consolidate),
+    and taken off (to be either used or placed in bins) in malloc.
+*/
+
+/* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
+#define unsorted_chunks(M)          (bin_at(M, 1))
+
+/*
+  Top
+
+    The top-most available chunk (i.e., the one bordering the end of
+    available memory) is treated specially. It is never included in
+    any bin, is used only if no other chunk is available, and is
+    released back to the system if it is very large (see
+    M_TRIM_THRESHOLD).  Because top initially
+    points to its own bin with initial zero size, thus forcing
+    extension on the first malloc request, we avoid having any special
+    code in malloc to check whether it even exists yet. But we still
+    need to do so when getting memory from system, so we make
+    initial_top treat the bin as a legal but unusable chunk during the
+    interval between initialization and the first call to
+    sYSMALLOc. (This is somewhat delicate, since it relies on
+    the 2 preceding words to be zero during this interval as well.)
+*/
+
+/* Conveniently, the unsorted bin can be used as dummy top on first call */
+#define initial_top(M)              (unsorted_chunks(M))
+
+/*
+  Binmap
+
+    To help compensate for the large number of bins, a one-level index
+    structure is used for bin-by-bin searching.  `binmap' is a
+    bitvector recording whether bins are definitely empty so they can
+    be skipped over during during traversals.  The bits are NOT always
+    cleared as soon as bins are empty, but instead only
+    when they are noticed to be empty during traversal in malloc.
+*/
+
+/* Conservatively use 32 bits per map word, even if on 64bit system */
+#define BINMAPSHIFT      5
+#define BITSPERMAP       (1U << BINMAPSHIFT)
+#define BINMAPSIZE       (NBINS / BITSPERMAP)
+
+#define idx2block(i)     ((i) >> BINMAPSHIFT)
+#define idx2bit(i)       ((1U << ((i) & ((1U << BINMAPSHIFT)-1))))
+
+#define mark_bin(m,i)    ((m)->binmap[idx2block(i)] |=  idx2bit(i))
+#define unmark_bin(m,i)  ((m)->binmap[idx2block(i)] &= ~(idx2bit(i)))
+#define get_binmap(m,i)  ((m)->binmap[idx2block(i)] &   idx2bit(i))
+
+/*
+  Fastbins
+
+    An array of lists holding recently freed small chunks.  Fastbins
+    are not doubly linked.  It is faster to single-link them, and
+    since chunks are never removed from the middles of these lists,
+    double linking is not necessary. Also, unlike regular bins, they
+    are not even processed in FIFO order (they use faster LIFO) since
+    ordering doesn't much matter in the transient contexts in which
+    fastbins are normally used.
+
+    Chunks in fastbins keep their inuse bit set, so they cannot
+    be consolidated with other free chunks. malloc_consolidate
+    releases all chunks in fastbins and consolidates them with
+    other free chunks.
+*/
+
+typedef struct malloc_chunk* mfastbinptr;
+
+/* offset 2 to use otherwise unindexable first 2 bins */
+#define fastbin_index(sz)        ((((unsigned int)(sz)) >> 3) - 2)
+
+/* The maximum fastbin request size we support */
+#define MAX_FAST_SIZE     80
+
+#define NFASTBINS  (fastbin_index(request2size(MAX_FAST_SIZE))+1)
+
+/*
+  FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
+  that triggers automatic consolidation of possibly-surrounding
+  fastbin chunks. This is a heuristic, so the exact value should not
+  matter too much. It is defined at half the default trim threshold as a
+  compromise heuristic to only attempt consolidation if it is likely
+  to lead to trimming. However, it is not dynamically tunable, since
+  consolidation reduces fragmentation surrounding loarge chunks even
+  if trimming is not used.
+*/
+
+#define FASTBIN_CONSOLIDATION_THRESHOLD  \
+  ((unsigned long)(DEFAULT_TRIM_THRESHOLD) >> 1)
+
+/*
+  Since the lowest 2 bits in max_fast don't matter in size comparisons,
+  they are used as flags.
+*/
+
+/*
+  ANYCHUNKS_BIT held in max_fast indicates that there may be any
+  freed chunks at all. It is set true when entering a chunk into any
+  bin.
+*/
+
+#define ANYCHUNKS_BIT        (1U)
+
+#define have_anychunks(M)     (((M)->max_fast &  ANYCHUNKS_BIT))
+#define set_anychunks(M)      ((M)->max_fast |=  ANYCHUNKS_BIT)
+#define clear_anychunks(M)    ((M)->max_fast &= ~ANYCHUNKS_BIT)
+
+/*
+  FASTCHUNKS_BIT held in max_fast indicates that there are probably
+  some fastbin chunks. It is set true on entering a chunk into any
+  fastbin, and cleared only in malloc_consolidate.
+*/
+
+#define FASTCHUNKS_BIT        (2U)
+
+#define have_fastchunks(M)   (((M)->max_fast &  FASTCHUNKS_BIT))
+#define set_fastchunks(M)    ((M)->max_fast |=  (FASTCHUNKS_BIT|ANYCHUNKS_BIT))
+#define clear_fastchunks(M)  ((M)->max_fast &= ~(FASTCHUNKS_BIT))
+
+/*
+   Set value of max_fast.
+   Use impossibly small value if 0.
+*/
+
+#define set_max_fast(M, s) \
+  (M)->max_fast = (((s) == 0)? SMALLBIN_WIDTH: request2size(s)) | \
+  ((M)->max_fast &  (FASTCHUNKS_BIT|ANYCHUNKS_BIT))
+
+#define get_max_fast(M) \
+  ((M)->max_fast & ~(FASTCHUNKS_BIT | ANYCHUNKS_BIT))
+
+
+/*
+  morecore_properties is a status word holding dynamically discovered
+  or controlled properties of the morecore function
+*/
+
+#define MORECORE_CONTIGUOUS_BIT  (1U)
+
+#define contiguous(M) \
+       (((M)->morecore_properties &  MORECORE_CONTIGUOUS_BIT))
+#define noncontiguous(M) \
+       (((M)->morecore_properties &  MORECORE_CONTIGUOUS_BIT) == 0)
+#define set_contiguous(M) \
+       ((M)->morecore_properties |=  MORECORE_CONTIGUOUS_BIT)
+#define set_noncontiguous(M) \
+       ((M)->morecore_properties &= ~MORECORE_CONTIGUOUS_BIT)
+
+
+/*
+   ----------- Internal state representation and initialization -----------
+*/
+
+struct malloc_state {
+
+  /* The maximum chunk size to be eligible for fastbin */
+  INTERNAL_SIZE_T  max_fast;   /* low 2 bits used as flags */
+
+  /* Fastbins */
+  mfastbinptr      fastbins[NFASTBINS];
+
+  /* Base of the topmost chunk -- not otherwise kept in a bin */
+  mchunkptr        top;
+
+  /* The remainder from the most recent split of a small request */
+  mchunkptr        last_remainder;
+
+  /* Normal bins packed as described above */
+  mchunkptr        bins[NBINS * 2];
+
+  /* Bitmap of bins */
+  unsigned int     binmap[BINMAPSIZE];
+
+  /* Tunable parameters */
+  CHUNK_SIZE_T     trim_threshold;
+  INTERNAL_SIZE_T  top_pad;
+  INTERNAL_SIZE_T  mmap_threshold;
+
+  /* Memory map support */
+  int              n_mmaps;
+  int              n_mmaps_max;
+  int              max_n_mmaps;
+
+  /* Cache malloc_getpagesize */
+  unsigned int     pagesize;
+
+  /* Track properties of MORECORE */
+  unsigned int     morecore_properties;
+
+  /* Statistics */
+  INTERNAL_SIZE_T  mmapped_mem;
+  INTERNAL_SIZE_T  sbrked_mem;
+  INTERNAL_SIZE_T  max_sbrked_mem;
+  INTERNAL_SIZE_T  max_mmapped_mem;
+  INTERNAL_SIZE_T  max_total_mem;
+};
+
+typedef struct malloc_state *mstate;
+
+/*
+   There is exactly one instance of this struct in this malloc.
+   If you are adapting this malloc in a way that does NOT use a static
+   malloc_state, you MUST explicitly zero-fill it before using. This
+   malloc relies on the property that malloc_state is initialized to
+   all zeroes (as is true of C statics).
+*/
+
+static struct malloc_state av_;  /* never directly referenced */
+
+/*
+   All uses of av_ are via get_malloc_state().
+   At most one "call" to get_malloc_state is made per invocation of
+   the public versions of malloc and free, but other routines
+   that in turn invoke malloc and/or free may call more then once.
+   Also, it is called in check* routines if DEBUG is set.
+*/
+
+#define get_malloc_state() (&(av_))
+
+/*
+  Initialize a malloc_state struct.
+
+  This is called only from within malloc_consolidate, which needs
+  be called in the same contexts anyway.  It is never called directly
+  outside of malloc_consolidate because some optimizing compilers try
+  to inline it at all call points, which turns out not to be an
+  optimization at all. (Inlining it in malloc_consolidate is fine though.)
+*/
+
+#if __STD_C
+static void malloc_init_state(mstate av)
+#else
+static void malloc_init_state(av) mstate av;
+#endif
+{
+  int     i;
+  mbinptr bin;
+
+  /* Establish circular links for normal bins */
+  for (i = 1; i < NBINS; ++i) {
+    bin = bin_at(av,i);
+    bin->fd = bin->bk = bin;
+  }
+
+  av->top_pad        = DEFAULT_TOP_PAD;
+  av->n_mmaps_max    = DEFAULT_MMAP_MAX;
+  av->mmap_threshold = DEFAULT_MMAP_THRESHOLD;
+  av->trim_threshold = DEFAULT_TRIM_THRESHOLD;
+
+#if MORECORE_CONTIGUOUS
+  set_contiguous(av);
+#else
+  set_noncontiguous(av);
+#endif
+
+
+  set_max_fast(av, DEFAULT_MXFAST);
+
+  av->top            = initial_top(av);
+  av->pagesize       = malloc_getpagesize;
+}
+
+/*
+   Other internal utilities operating on mstates
+*/
+
+#if __STD_C
+static Void_t*  sYSMALLOc(INTERNAL_SIZE_T, mstate);
+static int      sYSTRIm(size_t, mstate);
+static void     malloc_consolidate(mstate);
+#ifdef NEED_INDEPENDENT
+static Void_t** iALLOc(size_t, size_t*, int, Void_t**);
+#endif
+#else
+static Void_t*  sYSMALLOc();
+static int      sYSTRIm();
+static void     malloc_consolidate();
+#ifdef NEED_INDEPENDENT
+static Void_t** iALLOc();
+#endif
+#endif
+
+/*
+  Debugging support
+
+  These routines make a number of assertions about the states
+  of data structures that should be true at all times. If any
+  are not true, it's very likely that a user program has somehow
+  trashed memory. (It's also possible that there is a coding error
+  in malloc. In which case, please report it!)
+*/
+
+#if ! DEBUG
+
+#define check_chunk(P)
+#define check_free_chunk(P)
+#define check_inuse_chunk(P)
+#define check_remalloced_chunk(P,N)
+#define check_malloced_chunk(P,N)
+#define check_malloc_state()
+
+#else
+#define check_chunk(P)              do_check_chunk(P)
+#define check_free_chunk(P)         do_check_free_chunk(P)
+#define check_inuse_chunk(P)        do_check_inuse_chunk(P)
+#define check_remalloced_chunk(P,N) do_check_remalloced_chunk(P,N)
+#define check_malloced_chunk(P,N)   do_check_malloced_chunk(P,N)
+#define check_malloc_state()        do_check_malloc_state()
+
+/*
+  Properties of all chunks
+*/
+
+#if __STD_C
+static void do_check_chunk(mchunkptr p)
+#else
+static void do_check_chunk(p) mchunkptr p;
+#endif
+{
+  mstate av = get_malloc_state();
+  CHUNK_SIZE_T  sz = chunksize(p);
+  /* min and max possible addresses assuming contiguous allocation */
+  char* max_address = (char*)(av->top) + chunksize(av->top);
+  char* min_address = max_address - av->sbrked_mem;
+
+  if (!chunk_is_mmapped(p)) {
+
+    /* Has legal address ... */
+    if (p != av->top) {
+      if (contiguous(av)) {
+       assert(((char*)p) >= min_address);
+       assert(((char*)p + sz) <= ((char*)(av->top)));
+      }
+    }
+    else {
+      /* top size is always at least MINSIZE */
+      assert((CHUNK_SIZE_T)(sz) >= MINSIZE);
+      /* top predecessor always marked inuse */
+      assert(prev_inuse(p));
+    }
+
+  }
+  else {
+#if HAVE_MMAP
+    /* address is outside main heap  */
+    if (contiguous(av) && av->top != initial_top(av)) {
+      assert(((char*)p) < min_address || ((char*)p) > max_address);
+    }
+    /* chunk is page-aligned */
+    assert(((p->prev_size + sz) & (av->pagesize-1)) == 0);
+    /* mem is aligned */
+    assert(aligned_OK(chunk2mem(p)));
+#else
+    /* force an appropriate assert violation if debug set */
+    assert(!chunk_is_mmapped(p));
+#endif
+  }
+}
+
+/*
+  Properties of free chunks
+*/
+
+#if __STD_C
+static void do_check_free_chunk(mchunkptr p)
+#else
+static void do_check_free_chunk(p) mchunkptr p;
+#endif
+{
+  mstate av = get_malloc_state();
+
+  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
+  mchunkptr next = chunk_at_offset(p, sz);
+
+  do_check_chunk(p);
+
+  /* Chunk must claim to be free ... */
+  assert(!inuse(p));
+  assert (!chunk_is_mmapped(p));
+
+  /* Unless a special marker, must have OK fields */
+  if ((CHUNK_SIZE_T)(sz) >= MINSIZE)
+  {
+    assert((sz & MALLOC_ALIGN_MASK) == 0);
+    assert(aligned_OK(chunk2mem(p)));
+    /* ... matching footer field */
+    assert(next->prev_size == sz);
+    /* ... and is fully consolidated */
+    assert(prev_inuse(p));
+    assert (next == av->top || inuse(next));
+
+    /* ... and has minimally sane links */
+    assert(p->fd->bk == p);
+    assert(p->bk->fd == p);
+  }
+  else /* markers are always of size SIZE_SZ */
+    assert(sz == SIZE_SZ);
+}
+
+/*
+  Properties of inuse chunks
+*/
+
+#if __STD_C
+static void do_check_inuse_chunk(mchunkptr p)
+#else
+static void do_check_inuse_chunk(p) mchunkptr p;
+#endif
+{
+  mstate av = get_malloc_state();
+  mchunkptr next;
+  do_check_chunk(p);
+
+  if (chunk_is_mmapped(p))
+    return; /* mmapped chunks have no next/prev */
+
+  /* Check whether it claims to be in use ... */
+  assert(inuse(p));
+
+  next = next_chunk(p);
+
+  /* ... and is surrounded by OK chunks.
+    Since more things can be checked with free chunks than inuse ones,
+    if an inuse chunk borders them and debug is on, it's worth doing them.
+  */
+  if (!prev_inuse(p))  {
+    /* Note that we cannot even look at prev unless it is not inuse */
+    mchunkptr prv = prev_chunk(p);
+    assert(next_chunk(prv) == p);
+    do_check_free_chunk(prv);
+  }
+
+  if (next == av->top) {
+    assert(prev_inuse(next));
+    assert(chunksize(next) >= MINSIZE);
+  }
+  else if (!inuse(next))
+    do_check_free_chunk(next);
+}
+
+/*
+  Properties of chunks recycled from fastbins
+*/
+
+#if __STD_C
+static void do_check_remalloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
+#else
+static void do_check_remalloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
+#endif
+{
+  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
+
+  do_check_inuse_chunk(p);
+
+  /* Legal size ... */
+  assert((sz & MALLOC_ALIGN_MASK) == 0);
+  assert((CHUNK_SIZE_T)(sz) >= MINSIZE);
+  /* ... and alignment */
+  assert(aligned_OK(chunk2mem(p)));
+  /* chunk is less than MINSIZE more than request */
+  assert((long)(sz) - (long)(s) >= 0);
+  assert((long)(sz) - (long)(s + MINSIZE) < 0);
+}
+
+/*
+  Properties of nonrecycled chunks at the point they are malloced
+*/
+
+#if __STD_C
+static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
+#else
+static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
+#endif
+{
+  /* same as recycled case ... */
+  do_check_remalloced_chunk(p, s);
+
+  /*
+    ... plus,  must obey implementation invariant that prev_inuse is
+    always true of any allocated chunk; i.e., that each allocated
+    chunk borders either a previously allocated and still in-use
+    chunk, or the base of its memory arena. This is ensured
+    by making all allocations from the the `lowest' part of any found
+    chunk.  This does not necessarily hold however for chunks
+    recycled via fastbins.
+  */
+
+  assert(prev_inuse(p));
+}
+
+
+/*
+  Properties of malloc_state.
+
+  This may be useful for debugging malloc, as well as detecting user
+  programmer errors that somehow write into malloc_state.
+
+  If you are extending or experimenting with this malloc, you can
+  probably figure out how to hack this routine to print out or
+  display chunk addresses, sizes, bins, and other instrumentation.
+*/
+
+static void do_check_malloc_state()
+{
+  mstate av = get_malloc_state();
+  int i;
+  mchunkptr p;
+  mchunkptr q;
+  mbinptr b;
+  unsigned int binbit;
+  int empty;
+  unsigned int idx;
+  INTERNAL_SIZE_T size;
+  CHUNK_SIZE_T  total = 0;
+  int max_fast_bin;
+
+  /* internal size_t must be no wider than pointer type */
+  assert(sizeof(INTERNAL_SIZE_T) <= sizeof(char*));
+
+  /* alignment is a power of 2 */
+  assert((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-1)) == 0);
+
+  /* cannot run remaining checks until fully initialized */
+  if (av->top == 0 || av->top == initial_top(av))
+    return;
+
+  /* pagesize is a power of 2 */
+  assert((av->pagesize & (av->pagesize-1)) == 0);
+
+  /* properties of fastbins */
+
+  /* max_fast is in allowed range */
+  assert(get_max_fast(av) <= request2size(MAX_FAST_SIZE));
+
+  max_fast_bin = fastbin_index(av->max_fast);
+
+  for (i = 0; i < NFASTBINS; ++i) {
+    p = av->fastbins[i];
+
+    /* all bins past max_fast are empty */
+    if (i > max_fast_bin)
+      assert(p == 0);
+
+    while (p != 0) {
+      /* each chunk claims to be inuse */
+      do_check_inuse_chunk(p);
+      total += chunksize(p);
+      /* chunk belongs in this bin */
+      assert(fastbin_index(chunksize(p)) == i);
+      p = p->fd;
+    }
+  }
+
+  if (total != 0)
+    assert(have_fastchunks(av));
+  else if (!have_fastchunks(av))
+    assert(total == 0);
+
+  /* check normal bins */
+  for (i = 1; i < NBINS; ++i) {
+    b = bin_at(av,i);
+
+    /* binmap is accurate (except for bin 1 == unsorted_chunks) */
+    if (i >= 2) {
+      binbit = get_binmap(av,i);
+      empty = last(b) == b;
+      if (!binbit)
+       assert(empty);
+      else if (!empty)
+       assert(binbit);
+    }
+
+    for (p = last(b); p != b; p = p->bk) {
+      /* each chunk claims to be free */
+      do_check_free_chunk(p);
+      size = chunksize(p);
+      total += size;
+      if (i >= 2) {
+       /* chunk belongs in bin */
+       idx = bin_index(size);
+       assert(idx == i);
+       /* lists are sorted */
+       if ((CHUNK_SIZE_T) size >= (CHUNK_SIZE_T)(FIRST_SORTED_BIN_SIZE)) {
+         assert(p->bk == b ||
+                (CHUNK_SIZE_T)chunksize(p->bk) >=
+                (CHUNK_SIZE_T)chunksize(p));
+       }
+      }
+      /* chunk is followed by a legal chain of inuse chunks */
+      for (q = next_chunk(p);
+          (q != av->top && inuse(q) &&
+            (CHUNK_SIZE_T)(chunksize(q)) >= MINSIZE);
+          q = next_chunk(q))
+       do_check_inuse_chunk(q);
+    }
+  }
+
+  /* top chunk is OK */
+  check_chunk(av->top);
+
+  /* sanity checks for statistics */
+
+  assert(total <= (CHUNK_SIZE_T)(av->max_total_mem));
+  assert(av->n_mmaps >= 0);
+  assert(av->n_mmaps <= av->max_n_mmaps);
+
+  assert((CHUNK_SIZE_T)(av->sbrked_mem) <=
+        (CHUNK_SIZE_T)(av->max_sbrked_mem));
+
+  assert((CHUNK_SIZE_T)(av->mmapped_mem) <=
+        (CHUNK_SIZE_T)(av->max_mmapped_mem));
+
+  assert((CHUNK_SIZE_T)(av->max_total_mem) >=
+        (CHUNK_SIZE_T)(av->mmapped_mem) + (CHUNK_SIZE_T)(av->sbrked_mem));
+}
+#endif
+
+
+/* ----------- Routines dealing with system allocation -------------- */
+
+/*
+  sysmalloc handles malloc cases requiring more memory from the system.
+  On entry, it is assumed that av->top does not have enough
+  space to service request for nb bytes, thus requiring that av->top
+  be extended or replaced.
+*/
+
+#if __STD_C
+static Void_t* sYSMALLOc(INTERNAL_SIZE_T nb, mstate av)
+#else
+static Void_t* sYSMALLOc(nb, av) INTERNAL_SIZE_T nb; mstate av;
+#endif
+{
+  mchunkptr       old_top;        /* incoming value of av->top */
+  INTERNAL_SIZE_T old_size;       /* its size */
+  char*           old_end;        /* its end address */
+
+  long            size;           /* arg to first MORECORE or mmap call */
+  char*           brk;            /* return value from MORECORE */
+
+  long            correction;     /* arg to 2nd MORECORE call */
+  char*           snd_brk;        /* 2nd return val */
+
+  INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
+  INTERNAL_SIZE_T end_misalign;   /* partial page left at end of new space */
+  char*           aligned_brk;    /* aligned offset into brk */
+
+  mchunkptr       p;              /* the allocated/returned chunk */
+  mchunkptr       remainder;      /* remainder from allocation */
+  CHUNK_SIZE_T    remainder_size; /* its size */
+
+  CHUNK_SIZE_T    sum;            /* for updating stats */
+
+  size_t          pagemask  = av->pagesize - 1;
+
+  /*
+    If there is space available in fastbins, consolidate and retry
+    malloc from scratch rather than getting memory from system.  This
+    can occur only if nb is in smallbin range so we didn't consolidate
+    upon entry to malloc. It is much easier to handle this case here
+    than in malloc proper.
+  */
+
+  if (have_fastchunks(av)) {
+    assert(in_smallbin_range(nb));
+    malloc_consolidate(av);
+    return mALLOc(nb - MALLOC_ALIGN_MASK);
+  }
+
+
+#if HAVE_MMAP
+
+  /*
+    If have mmap, and the request size meets the mmap threshold, and
+    the system supports mmap, and there are few enough currently
+    allocated mmapped regions, try to directly map this request
+    rather than expanding top.
+  */
+
+  if ((CHUNK_SIZE_T)(nb) >= (CHUNK_SIZE_T)(av->mmap_threshold) &&
+      (av->n_mmaps < av->n_mmaps_max)) {
+
+    char* mm;             /* return value from mmap call*/
+
+    /*
+      Round up size to nearest page.  For mmapped chunks, the overhead
+      is one SIZE_SZ unit larger than for normal chunks, because there
+      is no following chunk whose prev_size field could be used.
+    */
+    size = (nb + SIZE_SZ + MALLOC_ALIGN_MASK + pagemask) & ~pagemask;
+
+    /* Don't try if size wraps around 0 */
+    if ((CHUNK_SIZE_T)(size) > (CHUNK_SIZE_T)(nb)) {
+
+      mm = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE));
+
+      if (mm != (char*)(MORECORE_FAILURE)) {
+
+       /*
+         The offset to the start of the mmapped region is stored
+         in the prev_size field of the chunk. This allows us to adjust
+         returned start address to meet alignment requirements here
+         and in memalign(), and still be able to compute proper
+         address argument for later munmap in free() and realloc().
+       */
+
+       front_misalign = (INTERNAL_SIZE_T)chunk2mem(mm) & MALLOC_ALIGN_MASK;
+       if (front_misalign > 0) {
+         correction = MALLOC_ALIGNMENT - front_misalign;
+         p = (mchunkptr)(mm + correction);
+         p->prev_size = correction;
+         set_head(p, (size - correction) |IS_MMAPPED);
+       }
+       else {
+         p = (mchunkptr)mm;
+         p->prev_size = 0;
+         set_head(p, size|IS_MMAPPED);
+       }
+
+       /* update statistics */
+
+       if (++av->n_mmaps > av->max_n_mmaps)
+         av->max_n_mmaps = av->n_mmaps;
+
+       sum = av->mmapped_mem += size;
+       if (sum > (CHUNK_SIZE_T)(av->max_mmapped_mem))
+         av->max_mmapped_mem = sum;
+       sum += av->sbrked_mem;
+       if (sum > (CHUNK_SIZE_T)(av->max_total_mem))
+         av->max_total_mem = sum;
+
+       check_chunk(p);
+
+       return chunk2mem(p);
+      }
+    }
+  }
+#endif
+
+  /* Record incoming configuration of top */
+
+  old_top  = av->top;
+  old_size = chunksize(old_top);
+  old_end  = (char*)(chunk_at_offset(old_top, old_size));
+
+  brk = snd_brk = (char*)(MORECORE_FAILURE);
+
+  /*
+     If not the first time through, we require old_size to be
+     at least MINSIZE and to have prev_inuse set.
+  */
+
+  assert((old_top == initial_top(av) && old_size == 0) ||
+        ((CHUNK_SIZE_T) (old_size) >= MINSIZE &&
+         prev_inuse(old_top)));
+
+  /* Precondition: not enough current space to satisfy nb request */
+  assert((CHUNK_SIZE_T)(old_size) < (CHUNK_SIZE_T)(nb + MINSIZE));
+
+  /* Precondition: all fastbins are consolidated */
+  assert(!have_fastchunks(av));
+
+
+  /* Request enough space for nb + pad + overhead */
+
+  size = nb + av->top_pad + MINSIZE;
+
+  /*
+    If contiguous, we can subtract out existing space that we hope to
+    combine with new space. We add it back later only if
+    we don't actually get contiguous space.
+  */
+
+  if (contiguous(av))
+    size -= old_size;
+
+  /*
+    Round to a multiple of page size.
+    If MORECORE is not contiguous, this ensures that we only call it
+    with whole-page arguments.  And if MORECORE is contiguous and
+    this is not first time through, this preserves page-alignment of
+    previous calls. Otherwise, we correct to page-align below.
+  */
+
+  size = (size + pagemask) & ~pagemask;
+
+  /*
+    Don't try to call MORECORE if argument is so big as to appear
+    negative. Note that since mmap takes size_t arg, it may succeed
+    below even if we cannot call MORECORE.
+  */
+
+  if (size > 0)
+    brk = (char*)(MORECORE(size));
+
+  /*
+    If have mmap, try using it as a backup when MORECORE fails or
+    cannot be used. This is worth doing on systems that have "holes" in
+    address space, so sbrk cannot extend to give contiguous space, but
+    space is available elsewhere.  Note that we ignore mmap max count
+    and threshold limits, since the space will not be used as a
+    segregated mmap region.
+  */
+
+#if HAVE_MMAP
+  if (brk == (char*)(MORECORE_FAILURE)) {
+
+    /* Cannot merge with old top, so add its size back in */
+    if (contiguous(av))
+      size = (size + old_size + pagemask) & ~pagemask;
+
+    /* If we are relying on mmap as backup, then use larger units */
+    if ((CHUNK_SIZE_T)(size) < (CHUNK_SIZE_T)(MMAP_AS_MORECORE_SIZE))
+      size = MMAP_AS_MORECORE_SIZE;
+
+    /* Don't try if size wraps around 0 */
+    if ((CHUNK_SIZE_T)(size) > (CHUNK_SIZE_T)(nb)) {
+
+      brk = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE));
+
+      if (brk != (char*)(MORECORE_FAILURE)) {
+
+       /* We do not need, and cannot use, another sbrk call to find end */
+       snd_brk = brk + size;
+
+       /*
+          Record that we no longer have a contiguous sbrk region.
+          After the first time mmap is used as backup, we do not
+          ever rely on contiguous space since this could incorrectly
+          bridge regions.
+       */
+       set_noncontiguous(av);
+      }
+    }
+  }
+#endif
+
+  if (brk != (char*)(MORECORE_FAILURE)) {
+    av->sbrked_mem += size;
+
+    /*
+      If MORECORE extends previous space, we can likewise extend top size.
+    */
+
+    if (brk == old_end && snd_brk == (char*)(MORECORE_FAILURE)) {
+      set_head(old_top, (size + old_size) | PREV_INUSE);
+    }
+
+    /*
+      Otherwise, make adjustments:
+
+      * If the first time through or noncontiguous, we need to call sbrk
+       just to find out where the end of memory lies.
+
+      * We need to ensure that all returned chunks from malloc will meet
+       MALLOC_ALIGNMENT
+
+      * If there was an intervening foreign sbrk, we need to adjust sbrk
+       request size to account for fact that we will not be able to
+       combine new space with existing space in old_top.
+
+      * Almost all systems internally allocate whole pages at a time, in
+       which case we might as well use the whole last page of request.
+       So we allocate enough more memory to hit a page boundary now,
+       which in turn causes future contiguous calls to page-align.
+    */
+
+    else {
+      front_misalign = 0;
+      end_misalign = 0;
+      correction = 0;
+      aligned_brk = brk;
+
+      /*
+       If MORECORE returns an address lower than we have seen before,
+       we know it isn't really contiguous.  This and some subsequent
+       checks help cope with non-conforming MORECORE functions and
+       the presence of "foreign" calls to MORECORE from outside of
+       malloc or by other threads.  We cannot guarantee to detect
+       these in all cases, but cope with the ones we do detect.
+      */
+      if (contiguous(av) && old_size != 0 && brk < old_end) {
+       set_noncontiguous(av);
+      }
+
+      /* handle contiguous cases */
+      if (contiguous(av)) {
+
+       /*
+          We can tolerate forward non-contiguities here (usually due
+          to foreign calls) but treat them as part of our space for
+          stats reporting.
+       */
+       if (old_size != 0)
+         av->sbrked_mem += brk - old_end;
+
+       /* Guarantee alignment of first new chunk made from this space */
+
+       front_misalign = (INTERNAL_SIZE_T)chunk2mem(brk) & MALLOC_ALIGN_MASK;
+       if (front_misalign > 0) {
+
+         /*
+           Skip over some bytes to arrive at an aligned position.
+           We don't need to specially mark these wasted front bytes.
+           They will never be accessed anyway because
+           prev_inuse of av->top (and any chunk created from its start)
+           is always true after initialization.
+         */
+
+         correction = MALLOC_ALIGNMENT - front_misalign;
+         aligned_brk += correction;
+       }
+
+       /*
+         If this isn't adjacent to existing space, then we will not
+         be able to merge with old_top space, so must add to 2nd request.
+       */
+
+       correction += old_size;
+
+       /* Extend the end address to hit a page boundary */
+       end_misalign = (INTERNAL_SIZE_T)(brk + size + correction);
+       correction += ((end_misalign + pagemask) & ~pagemask) - end_misalign;
+
+       assert(correction >= 0);
+       snd_brk = (char*)(MORECORE(correction));
+
+       if (snd_brk == (char*)(MORECORE_FAILURE)) {
+         /*
+           If can't allocate correction, try to at least find out current
+           brk.  It might be enough to proceed without failing.
+         */
+         correction = 0;
+         snd_brk = (char*)(MORECORE(0));
+       }
+       else if (snd_brk < brk) {
+         /*
+           If the second call gives noncontiguous space even though
+           it says it won't, the only course of action is to ignore
+           results of second call, and conservatively estimate where
+           the first call left us. Also set noncontiguous, so this
+           won't happen again, leaving at most one hole.
+
+           Note that this check is intrinsically incomplete.  Because
+           MORECORE is allowed to give more space than we ask for,
+           there is no reliable way to detect a noncontiguity
+           producing a forward gap for the second call.
+         */
+         snd_brk = brk + size;
+         correction = 0;
+         set_noncontiguous(av);
+       }
+
+      }
+
+      /* handle non-contiguous cases */
+      else {
+       /* MORECORE/mmap must correctly align */
+       assert(aligned_OK(chunk2mem(brk)));
+
+       /* Find out current end of memory */
+       if (snd_brk == (char*)(MORECORE_FAILURE)) {
+         snd_brk = (char*)(MORECORE(0));
+         av->sbrked_mem += snd_brk - brk - size;
+       }
+      }
+
+      /* Adjust top based on results of second sbrk */
+      if (snd_brk != (char*)(MORECORE_FAILURE)) {
+       av->top = (mchunkptr)aligned_brk;
+       set_head(av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
+       av->sbrked_mem += correction;
+
+       /*
+         If not the first time through, we either have a
+         gap due to foreign sbrk or a non-contiguous region.  Insert a
+         double fencepost at old_top to prevent consolidation with space
+         we don't own. These fenceposts are artificial chunks that are
+         marked as inuse and are in any case too small to use.  We need
+         two to make sizes and alignments work out.
+       */
+
+       if (old_size != 0) {
+         /*
+            Shrink old_top to insert fenceposts, keeping size a
+            multiple of MALLOC_ALIGNMENT. We know there is at least
+            enough space in old_top to do this.
+         */
+         old_size = (old_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
+         set_head(old_top, old_size | PREV_INUSE);
+
+         /*
+           Note that the following assignments completely overwrite
+           old_top when old_size was previously MINSIZE.  This is
+           intentional. We need the fencepost, even if old_top otherwise gets
+           lost.
+         */
+         chunk_at_offset(old_top, old_size          )->size =
+           SIZE_SZ|PREV_INUSE;
+
+         chunk_at_offset(old_top, old_size + SIZE_SZ)->size =
+           SIZE_SZ|PREV_INUSE;
+
+         /*
+            If possible, release the rest, suppressing trimming.
+         */
+         if (old_size >= MINSIZE) {
+           INTERNAL_SIZE_T tt = av->trim_threshold;
+           av->trim_threshold = (INTERNAL_SIZE_T)(-1);
+           fREe(chunk2mem(old_top));
+           av->trim_threshold = tt;
+         }
+       }
+      }
+    }
+
+    /* Update statistics */
+    sum = av->sbrked_mem;
+    if (sum > (CHUNK_SIZE_T)(av->max_sbrked_mem))
+      av->max_sbrked_mem = sum;
+
+    sum += av->mmapped_mem;
+    if (sum > (CHUNK_SIZE_T)(av->max_total_mem))
+      av->max_total_mem = sum;
+
+    check_malloc_state();
+
+    /* finally, do the allocation */
+
+    p = av->top;
+    size = chunksize(p);
+
+    /* check that one of the above allocation paths succeeded */
+    if ((CHUNK_SIZE_T)(size) >= (CHUNK_SIZE_T)(nb + MINSIZE)) {
+      remainder_size = size - nb;
+      remainder = chunk_at_offset(p, nb);
+      av->top = remainder;
+      set_head(p, nb | PREV_INUSE);
+      set_head(remainder, remainder_size | PREV_INUSE);
+      check_malloced_chunk(p, nb);
+      return chunk2mem(p);
+    }
+
+  }
+
+  /* catch all failure paths */
+  MALLOC_FAILURE_ACTION;
+  return 0;
+}
+
+
+
+
+/*
+  sYSTRIm is an inverse of sorts to sYSMALLOc.  It gives memory back
+  to the system (via negative arguments to sbrk) if there is unused
+  memory at the `high' end of the malloc pool. It is called
+  automatically by free() when top space exceeds the trim
+  threshold. It is also called by the public malloc_trim routine.  It
+  returns 1 if it actually released any memory, else 0.
+*/
+
+#if __STD_C
+static int sYSTRIm(size_t pad, mstate av)
+#else
+static int sYSTRIm(pad, av) size_t pad; mstate av;
+#endif
+{
+  long  top_size;        /* Amount of top-most memory */
+  long  extra;           /* Amount to release */
+  long  released;        /* Amount actually released */
+  char* current_brk;     /* address returned by pre-check sbrk call */
+  char* new_brk;         /* address returned by post-check sbrk call */
+  size_t pagesz;
+
+  pagesz = av->pagesize;
+  top_size = chunksize(av->top);
+
+  /* Release in pagesize units, keeping at least one page */
+  extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
+
+  if (extra > 0) {
+
+    /*
+      Only proceed if end of memory is where we last set it.
+      This avoids problems if there were foreign sbrk calls.
+    */
+    current_brk = (char*)(MORECORE(0));
+    if (current_brk == (char*)(av->top) + top_size) {
+
+      /*
+       Attempt to release memory. We ignore MORECORE return value,
+       and instead call again to find out where new end of memory is.
+       This avoids problems if first call releases less than we asked,
+       of if failure somehow altered brk value. (We could still
+       encounter problems if it altered brk in some very bad way,
+       but the only thing we can do is adjust anyway, which will cause
+       some downstream failure.)
+      */
+
+      MORECORE(-extra);
+      new_brk = (char*)(MORECORE(0));
+
+      if (new_brk != (char*)MORECORE_FAILURE) {
+       released = (long)(current_brk - new_brk);
+
+       if (released != 0) {
+         /* Success. Adjust top. */
+         av->sbrked_mem -= released;
+         set_head(av->top, (top_size - released) | PREV_INUSE);
+         check_malloc_state();
+         return 1;
+       }
+      }
+    }
+  }
+  return 0;
+}
+
+/*
+  ------------------------------ malloc ------------------------------
+*/
+
+
+#if __STD_C
+Void_t* mALLOc(size_t bytes)
+#else
+  Void_t* mALLOc(bytes) size_t bytes;
+#endif
+{
+  mstate av = get_malloc_state();
+
+  INTERNAL_SIZE_T nb;               /* normalized request size */
+  unsigned int    idx;              /* associated bin index */
+  mbinptr         bin;              /* associated bin */
+  mfastbinptr*    fb;               /* associated fastbin */
+
+  mchunkptr       victim;           /* inspected/selected chunk */
+  INTERNAL_SIZE_T size;             /* its size */
+  int             victim_index;     /* its bin index */
+
+  mchunkptr       remainder;        /* remainder from a split */
+  CHUNK_SIZE_T    remainder_size;   /* its size */
+
+  unsigned int    block;            /* bit map traverser */
+  unsigned int    bit;              /* bit map traverser */
+  unsigned int    map;              /* current word of binmap */
+
+  mchunkptr       fwd;              /* misc temp for linking */
+  mchunkptr       bck;              /* misc temp for linking */
+
+  /*
+    Convert request size to internal form by adding SIZE_SZ bytes
+    overhead plus possibly more to obtain necessary alignment and/or
+    to obtain a size of at least MINSIZE, the smallest allocatable
+    size. Also, checked_request2size traps (returning 0) request sizes
+    that are so large that they wrap around zero when padded and
+    aligned.
+  */
+
+  checked_request2size(bytes, nb);
+
+  /*
+    Bypass search if no frees yet
+   */
+  if (!have_anychunks(av)) {
+    if (av->max_fast == 0) /* initialization check */
+      malloc_consolidate(av);
+    goto use_top;
+  }
+
+  /*
+    If the size qualifies as a fastbin, first check corresponding bin.
+  */
+
+  if ((CHUNK_SIZE_T)(nb) <= (CHUNK_SIZE_T)(av->max_fast)) {
+    fb = &(av->fastbins[(fastbin_index(nb))]);
+    if ( (victim = *fb) != 0) {
+      *fb = victim->fd;
+      check_remalloced_chunk(victim, nb);
+      return chunk2mem(victim);
+    }
+  }
+
+  /*
+    If a small request, check regular bin.  Since these "smallbins"
+    hold one size each, no searching within bins is necessary.
+    (For a large request, we need to wait until unsorted chunks are
+    processed to find best fit. But for small ones, fits are exact
+    anyway, so we can check now, which is faster.)
+  */
+
+  if (in_smallbin_range(nb)) {
+    idx = smallbin_index(nb);
+    bin = bin_at(av,idx);
+
+    if ( (victim = last(bin)) != bin) {
+      bck = victim->bk;
+      set_inuse_bit_at_offset(victim, nb);
+      bin->bk = bck;
+      bck->fd = bin;
+
+      check_malloced_chunk(victim, nb);
+      return chunk2mem(victim);
+    }
+  }
+
+  /*
+     If this is a large request, consolidate fastbins before continuing.
+     While it might look excessive to kill all fastbins before
+     even seeing if there is space available, this avoids
+     fragmentation problems normally associated with fastbins.
+     Also, in practice, programs tend to have runs of either small or
+     large requests, but less often mixtures, so consolidation is not
+     invoked all that often in most programs. And the programs that
+     it is called frequently in otherwise tend to fragment.
+  */
+
+  else {
+    idx = largebin_index(nb);
+    if (have_fastchunks(av))
+      malloc_consolidate(av);
+  }
+
+  /*
+    Process recently freed or remaindered chunks, taking one only if
+    it is exact fit, or, if this a small request, the chunk is remainder from
+    the most recent non-exact fit.  Place other traversed chunks in
+    bins.  Note that this step is the only place in any routine where
+    chunks are placed in bins.
+  */
+
+  while ( (victim = unsorted_chunks(av)->bk) != unsorted_chunks(av)) {
+    bck = victim->bk;
+    size = chunksize(victim);
+
+    /*
+       If a small request, try to use last remainder if it is the
+       only chunk in unsorted bin.  This helps promote locality for
+       runs of consecutive small requests. This is the only
+       exception to best-fit, and applies only when there is
+       no exact fit for a small chunk.
+    */
+
+    if (in_smallbin_range(nb) &&
+       bck == unsorted_chunks(av) &&
+       victim == av->last_remainder &&
+       (CHUNK_SIZE_T)(size) > (CHUNK_SIZE_T)(nb + MINSIZE)) {
+
+      /* split and reattach remainder */
+      remainder_size = size - nb;
+      remainder = chunk_at_offset(victim, nb);
+      unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
+      av->last_remainder = remainder;
+      remainder->bk = remainder->fd = unsorted_chunks(av);
+
+      set_head(victim, nb | PREV_INUSE);
+      set_head(remainder, remainder_size | PREV_INUSE);
+      set_foot(remainder, remainder_size);
+
+      check_malloced_chunk(victim, nb);
+      return chunk2mem(victim);
+    }
+
+    /* remove from unsorted list */
+    unsorted_chunks(av)->bk = bck;
+    bck->fd = unsorted_chunks(av);
+
+    /* Take now instead of binning if exact fit */
+
+    if (size == nb) {
+      set_inuse_bit_at_offset(victim, size);
+      check_malloced_chunk(victim, nb);
+      return chunk2mem(victim);
+    }
+
+    /* place chunk in bin */
+
+    if (in_smallbin_range(size)) {
+      victim_index = smallbin_index(size);
+      bck = bin_at(av, victim_index);
+      fwd = bck->fd;
+    }
+    else {
+      victim_index = largebin_index(size);
+      bck = bin_at(av, victim_index);
+      fwd = bck->fd;
+
+      if (fwd != bck) {
+       /* if smaller than smallest, place first */
+       if ((CHUNK_SIZE_T)(size) < (CHUNK_SIZE_T)(bck->bk->size)) {
+         fwd = bck;
+         bck = bck->bk;
+       }
+       else if ((CHUNK_SIZE_T)(size) >=
+                (CHUNK_SIZE_T)(FIRST_SORTED_BIN_SIZE)) {
+
+         /* maintain large bins in sorted order */
+         size |= PREV_INUSE; /* Or with inuse bit to speed comparisons */
+         while ((CHUNK_SIZE_T)(size) < (CHUNK_SIZE_T)(fwd->size))
+           fwd = fwd->fd;
+         bck = fwd->bk;
+       }
+      }
+    }
+
+    mark_bin(av, victim_index);
+    victim->bk = bck;
+    victim->fd = fwd;
+    fwd->bk = victim;
+    bck->fd = victim;
+  }
+
+  /*
+    If a large request, scan through the chunks of current bin to
+    find one that fits.  (This will be the smallest that fits unless
+    FIRST_SORTED_BIN_SIZE has been changed from default.)  This is
+    the only step where an unbounded number of chunks might be
+    scanned without doing anything useful with them. However the
+    lists tend to be short.
+  */
+
+  if (!in_smallbin_range(nb)) {
+    bin = bin_at(av, idx);
+
+    for (victim = last(bin); victim != bin; victim = victim->bk) {
+      size = chunksize(victim);
+
+      if ((CHUNK_SIZE_T)(size) >= (CHUNK_SIZE_T)(nb)) {
+       remainder_size = size - nb;
+       unlink(victim, bck, fwd);
+
+       /* Exhaust */
+       if (remainder_size < MINSIZE)  {
+         set_inuse_bit_at_offset(victim, size);
+         check_malloced_chunk(victim, nb);
+         return chunk2mem(victim);
+       }
+       /* Split */
+       else {
+         remainder = chunk_at_offset(victim, nb);
+         unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
+         remainder->bk = remainder->fd = unsorted_chunks(av);
+         set_head(victim, nb | PREV_INUSE);
+         set_head(remainder, remainder_size | PREV_INUSE);
+         set_foot(remainder, remainder_size);
+         check_malloced_chunk(victim, nb);
+         return chunk2mem(victim);
+       }
+      }
+    }
+  }
+
+  /*
+    Search for a chunk by scanning bins, starting with next largest
+    bin. This search is strictly by best-fit; i.e., the smallest
+    (with ties going to approximately the least recently used) chunk
+    that fits is selected.
+
+    The bitmap avoids needing to check that most blocks are nonempty.
+  */
+
+  ++idx;
+  bin = bin_at(av,idx);
+  block = idx2block(idx);
+  map = av->binmap[block];
+  bit = idx2bit(idx);
+
+  for (;;) {
+
+    /* Skip rest of block if there are no more set bits in this block.  */
+    if (bit > map || bit == 0) {
+      do {
+       if (++block >= BINMAPSIZE)  /* out of bins */
+         goto use_top;
+      } while ( (map = av->binmap[block]) == 0);
+
+      bin = bin_at(av, (block << BINMAPSHIFT));
+      bit = 1;
+    }
+
+    /* Advance to bin with set bit. There must be one. */
+    while ((bit & map) == 0) {
+      bin = next_bin(bin);
+      bit <<= 1;
+      assert(bit != 0);
+    }
+
+    /* Inspect the bin. It is likely to be non-empty */
+    victim = last(bin);
+
+    /*  If a false alarm (empty bin), clear the bit. */
+    if (victim == bin) {
+      av->binmap[block] = map &= ~bit; /* Write through */
+      bin = next_bin(bin);
+      bit <<= 1;
+    }
+
+    else {
+      size = chunksize(victim);
+
+      /*  We know the first chunk in this bin is big enough to use. */
+      assert((CHUNK_SIZE_T)(size) >= (CHUNK_SIZE_T)(nb));
+
+      remainder_size = size - nb;
+
+      /* unlink */
+      bck = victim->bk;
+      bin->bk = bck;
+      bck->fd = bin;
+
+      /* Exhaust */
+      if (remainder_size < MINSIZE) {
+       set_inuse_bit_at_offset(victim, size);
+       check_malloced_chunk(victim, nb);
+       return chunk2mem(victim);
+      }
+
+      /* Split */
+      else {
+       remainder = chunk_at_offset(victim, nb);
+
+       unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
+       remainder->bk = remainder->fd = unsorted_chunks(av);
+       /* advertise as last remainder */
+       if (in_smallbin_range(nb))
+         av->last_remainder = remainder;
+
+       set_head(victim, nb | PREV_INUSE);
+       set_head(remainder, remainder_size | PREV_INUSE);
+       set_foot(remainder, remainder_size);
+       check_malloced_chunk(victim, nb);
+       return chunk2mem(victim);
+      }
+    }
+  }
+
+  use_top:
+  /*
+    If large enough, split off the chunk bordering the end of memory
+    (held in av->top). Note that this is in accord with the best-fit
+    search rule.  In effect, av->top is treated as larger (and thus
+    less well fitting) than any other available chunk since it can
+    be extended to be as large as necessary (up to system
+    limitations).
+
+    We require that av->top always exists (i.e., has size >=
+    MINSIZE) after initialization, so if it would otherwise be
+    exhuasted by current request, it is replenished. (The main
+    reason for ensuring it exists is that we may need MINSIZE space
+    to put in fenceposts in sysmalloc.)
+  */
+
+  victim = av->top;
+  size = chunksize(victim);
+
+  if ((CHUNK_SIZE_T)(size) >= (CHUNK_SIZE_T)(nb + MINSIZE)) {
+    remainder_size = size - nb;
+    remainder = chunk_at_offset(victim, nb);
+    av->top = remainder;
+    set_head(victim, nb | PREV_INUSE);
+    set_head(remainder, remainder_size | PREV_INUSE);
+
+    check_malloced_chunk(victim, nb);
+    return chunk2mem(victim);
+  }
+
+  /*
+     If no space in top, relay to handle system-dependent cases
+  */
+  return sYSMALLOc(nb, av);
+}
+
+/*
+  ------------------------------ free ------------------------------
+*/
+
+#if __STD_C
+void fREe(Void_t* mem)
+#else
+void fREe(mem) Void_t* mem;
+#endif
+{
+  mstate av = get_malloc_state();
+
+  mchunkptr       p;           /* chunk corresponding to mem */
+  INTERNAL_SIZE_T size;        /* its size */
+  mfastbinptr*    fb;          /* associated fastbin */
+  mchunkptr       nextchunk;   /* next contiguous chunk */
+  INTERNAL_SIZE_T nextsize;    /* its size */
+  int             nextinuse;   /* true if nextchunk is used */
+  INTERNAL_SIZE_T prevsize;    /* size of previous contiguous chunk */
+  mchunkptr       bck;         /* misc temp for linking */
+  mchunkptr       fwd;         /* misc temp for linking */
+
+  /* free(0) has no effect */
+  if (mem != 0) {
+    p = mem2chunk(mem);
+    size = chunksize(p);
+
+    check_inuse_chunk(p);
+
+    /*
+      If eligible, place chunk on a fastbin so it can be found
+      and used quickly in malloc.
+    */
+
+    if ((CHUNK_SIZE_T)(size) <= (CHUNK_SIZE_T)(av->max_fast)
+
+#if TRIM_FASTBINS
+       /*
+          If TRIM_FASTBINS set, don't place chunks
+          bordering top into fastbins
+       */
+       && (chunk_at_offset(p, size) != av->top)
+#endif
+       ) {
+
+      set_fastchunks(av);
+      fb = &(av->fastbins[fastbin_index(size)]);
+      p->fd = *fb;
+      *fb = p;
+    }
+
+    /*
+       Consolidate other non-mmapped chunks as they arrive.
+    */
+
+    else if (!chunk_is_mmapped(p)) {
+      set_anychunks(av);
+
+      nextchunk = chunk_at_offset(p, size);
+      nextsize = chunksize(nextchunk);
+
+      /* consolidate backward */
+      if (!prev_inuse(p)) {
+       prevsize = p->prev_size;
+       size += prevsize;
+       p = chunk_at_offset(p, -((long) prevsize));
+       unlink(p, bck, fwd);
+      }
+
+      if (nextchunk != av->top) {
+       /* get and clear inuse bit */
+       nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
+       set_head(nextchunk, nextsize);
+
+       /* consolidate forward */
+       if (!nextinuse) {
+         unlink(nextchunk, bck, fwd);
+         size += nextsize;
+       }
+
+       /*
+         Place the chunk in unsorted chunk list. Chunks are
+         not placed into regular bins until after they have
+         been given one chance to be used in malloc.
+       */
+
+       bck = unsorted_chunks(av);
+       fwd = bck->fd;
+       p->bk = bck;
+       p->fd = fwd;
+       bck->fd = p;
+       fwd->bk = p;
+
+       set_head(p, size | PREV_INUSE);
+       set_foot(p, size);
+
+       check_free_chunk(p);
+      }
+
+      /*
+        If the chunk borders the current high end of memory,
+        consolidate into top
+      */
+
+      else {
+       size += nextsize;
+       set_head(p, size | PREV_INUSE);
+       av->top = p;
+       check_chunk(p);
+      }
+
+      /*
+       If freeing a large space, consolidate possibly-surrounding
+       chunks. Then, if the total unused topmost memory exceeds trim
+       threshold, ask malloc_trim to reduce top.
+
+       Unless max_fast is 0, we don't know if there are fastbins
+       bordering top, so we cannot tell for sure whether threshold
+       has been reached unless fastbins are consolidated.  But we
+       don't want to consolidate on each free.  As a compromise,
+       consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
+       is reached.
+      */
+
+      if ((CHUNK_SIZE_T)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) {
+       if (have_fastchunks(av))
+         malloc_consolidate(av);
+
+#ifndef MORECORE_CANNOT_TRIM
+       if ((CHUNK_SIZE_T)(chunksize(av->top)) >=
+           (CHUNK_SIZE_T)(av->trim_threshold))
+         sYSTRIm(av->top_pad, av);
+#endif
+      }
+
+    }
+    /*
+      If the chunk was allocated via mmap, release via munmap()
+      Note that if HAVE_MMAP is false but chunk_is_mmapped is
+      true, then user must have overwritten memory. There's nothing
+      we can do to catch this error unless DEBUG is set, in which case
+      check_inuse_chunk (above) will have triggered error.
+    */
+
+    else {
+#if HAVE_MMAP
+      int ret;
+      INTERNAL_SIZE_T offset = p->prev_size;
+      av->n_mmaps--;
+      av->mmapped_mem -= (size + offset);
+      ret = munmap((char*)p - offset, size + offset);
+      /* munmap returns non-zero on failure */
+      assert(ret == 0);
+#endif
+    }
+  }
+}
+
+/*
+  ------------------------- malloc_consolidate -------------------------
+
+  malloc_consolidate is a specialized version of free() that tears
+  down chunks held in fastbins.  Free itself cannot be used for this
+  purpose since, among other things, it might place chunks back onto
+  fastbins.  So, instead, we need to use a minor variant of the same
+  code.
+
+  Also, because this routine needs to be called the first time through
+  malloc anyway, it turns out to be the perfect place to trigger
+  initialization code.
+*/
+
+#if __STD_C
+static void malloc_consolidate(mstate av)
+#else
+static void malloc_consolidate(av) mstate av;
+#endif
+{
+  mfastbinptr*    fb;                 /* current fastbin being consolidated */
+  mfastbinptr*    maxfb;              /* last fastbin (for loop control) */
+  mchunkptr       p;                  /* current chunk being consolidated */
+  mchunkptr       nextp;              /* next chunk to consolidate */
+  mchunkptr       unsorted_bin;       /* bin header */
+  mchunkptr       first_unsorted;     /* chunk to link to */
+
+  /* These have same use as in free() */
+  mchunkptr       nextchunk;
+  INTERNAL_SIZE_T size;
+  INTERNAL_SIZE_T nextsize;
+  INTERNAL_SIZE_T prevsize;
+  int             nextinuse;
+  mchunkptr       bck;
+  mchunkptr       fwd;
+
+  /*
+    If max_fast is 0, we know that av hasn't
+    yet been initialized, in which case do so below
+  */
+
+  if (av->max_fast != 0) {
+    clear_fastchunks(av);
+
+    unsorted_bin = unsorted_chunks(av);
+
+    /*
+      Remove each chunk from fast bin and consolidate it, placing it
+      then in unsorted bin. Among other reasons for doing this,
+      placing in unsorted bin avoids needing to calculate actual bins
+      until malloc is sure that chunks aren't immediately going to be
+      reused anyway.
+    */
+
+    maxfb = &(av->fastbins[fastbin_index(av->max_fast)]);
+    fb = &(av->fastbins[0]);
+    do {
+      if ( (p = *fb) != 0) {
+       *fb = 0;
+
+       do {
+         check_inuse_chunk(p);
+         nextp = p->fd;
+
+         /* Slightly streamlined version of consolidation code in free() */
+         size = p->size & ~PREV_INUSE;
+         nextchunk = chunk_at_offset(p, size);
+         nextsize = chunksize(nextchunk);
+
+         if (!prev_inuse(p)) {
+           prevsize = p->prev_size;
+           size += prevsize;
+           p = chunk_at_offset(p, -((long) prevsize));
+           unlink(p, bck, fwd);
+         }
+
+         if (nextchunk != av->top) {
+           nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
+           set_head(nextchunk, nextsize);
+
+           if (!nextinuse) {
+             size += nextsize;
+             unlink(nextchunk, bck, fwd);
+           }
+
+           first_unsorted = unsorted_bin->fd;
+           unsorted_bin->fd = p;
+           first_unsorted->bk = p;
+
+           set_head(p, size | PREV_INUSE);
+           p->bk = unsorted_bin;
+           p->fd = first_unsorted;
+           set_foot(p, size);
+         }
+
+         else {
+           size += nextsize;
+           set_head(p, size | PREV_INUSE);
+           av->top = p;
+         }
+
+       } while ( (p = nextp) != 0);
+
+      }
+    } while (fb++ != maxfb);
+  }
+  else {
+    malloc_init_state(av);
+    check_malloc_state();
+  }
+}
+
+/*
+  ------------------------------ realloc ------------------------------
+*/
+
+
+#if __STD_C
+Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
+#else
+Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
+#endif
+{
+  mstate av = get_malloc_state();
+
+  INTERNAL_SIZE_T  nb;              /* padded request size */
+
+  mchunkptr        oldp;            /* chunk corresponding to oldmem */
+  INTERNAL_SIZE_T  oldsize;         /* its size */
+
+  mchunkptr        newp;            /* chunk to return */
+  INTERNAL_SIZE_T  newsize;         /* its size */
+  Void_t*          newmem;          /* corresponding user mem */
+
+  mchunkptr        next;            /* next contiguous chunk after oldp */
+
+  mchunkptr        remainder;       /* extra space at end of newp */
+  CHUNK_SIZE_T     remainder_size;  /* its size */
+
+  mchunkptr        bck;             /* misc temp for linking */
+  mchunkptr        fwd;             /* misc temp for linking */
+
+  CHUNK_SIZE_T     copysize;        /* bytes to copy */
+  unsigned int     ncopies;         /* INTERNAL_SIZE_T words to copy */
+  INTERNAL_SIZE_T* s;               /* copy source */
+  INTERNAL_SIZE_T* d;               /* copy destination */
+
+
+#ifdef REALLOC_ZERO_BYTES_FREES
+  if (bytes == 0) {
+    fREe(oldmem);
+    return 0;
+  }
+#endif
+
+  /* realloc of null is supposed to be same as malloc */
+  if (oldmem == 0) return mALLOc(bytes);
+
+  checked_request2size(bytes, nb);
+
+  oldp    = mem2chunk(oldmem);
+  oldsize = chunksize(oldp);
+
+  check_inuse_chunk(oldp);
+
+  if (!chunk_is_mmapped(oldp)) {
+
+    if ((CHUNK_SIZE_T)(oldsize) >= (CHUNK_SIZE_T)(nb)) {
+      /* already big enough; split below */
+      newp = oldp;
+      newsize = oldsize;
+    }
+
+    else {
+      next = chunk_at_offset(oldp, oldsize);
+
+      /* Try to expand forward into top */
+      if (next == av->top &&
+         (CHUNK_SIZE_T)(newsize = oldsize + chunksize(next)) >=
+         (CHUNK_SIZE_T)(nb + MINSIZE)) {
+       set_head_size(oldp, nb);
+       av->top = chunk_at_offset(oldp, nb);
+       set_head(av->top, (newsize - nb) | PREV_INUSE);
+       return chunk2mem(oldp);
+      }
+
+      /* Try to expand forward into next chunk;  split off remainder below */
+      else if (next != av->top &&
+              !inuse(next) &&
+              (CHUNK_SIZE_T)(newsize = oldsize + chunksize(next)) >=
+              (CHUNK_SIZE_T)(nb)) {
+       newp = oldp;
+       unlink(next, bck, fwd);
+      }
+
+      /* allocate, copy, free */
+      else {
+       newmem = mALLOc(nb - MALLOC_ALIGN_MASK);
+       if (newmem == 0)
+         return 0; /* propagate failure */
+
+       newp = mem2chunk(newmem);
+       newsize = chunksize(newp);
+
+       /*
+         Avoid copy if newp is next chunk after oldp.
+       */
+       if (newp == next) {
+         newsize += oldsize;
+         newp = oldp;
+       }
+       else {
+         /*
+           Unroll copy of <= 36 bytes (72 if 8byte sizes)
+           We know that contents have an odd number of
+           INTERNAL_SIZE_T-sized words; minimally 3.
+         */
+
+         copysize = oldsize - SIZE_SZ;
+         s = (INTERNAL_SIZE_T*)(oldmem);
+         d = (INTERNAL_SIZE_T*)(newmem);
+         ncopies = copysize / sizeof(INTERNAL_SIZE_T);
+         assert(ncopies >= 3);
+
+         if (ncopies > 9)
+           MALLOC_COPY(d, s, copysize);
+
+         else {
+           *(d+0) = *(s+0);
+           *(d+1) = *(s+1);
+           *(d+2) = *(s+2);
+           if (ncopies > 4) {
+             *(d+3) = *(s+3);
+             *(d+4) = *(s+4);
+             if (ncopies > 6) {
+               *(d+5) = *(s+5);
+               *(d+6) = *(s+6);
+               if (ncopies > 8) {
+                 *(d+7) = *(s+7);
+                 *(d+8) = *(s+8);
+               }
+             }
+           }
+         }
+
+         fREe(oldmem);
+         check_inuse_chunk(newp);
+         return chunk2mem(newp);
+       }
+      }
+    }
+
+    /* If possible, free extra space in old or extended chunk */
+
+    assert((CHUNK_SIZE_T)(newsize) >= (CHUNK_SIZE_T)(nb));
+
+    remainder_size = newsize - nb;
+
+    if (remainder_size < MINSIZE) { /* not enough extra to split off */
+      set_head_size(newp, newsize);
+      set_inuse_bit_at_offset(newp, newsize);
+    }
+    else { /* split remainder */
+      remainder = chunk_at_offset(newp, nb);
+      set_head_size(newp, nb);
+      set_head(remainder, remainder_size | PREV_INUSE);
+      /* Mark remainder as inuse so free() won't complain */
+      set_inuse_bit_at_offset(remainder, remainder_size);
+      fREe(chunk2mem(remainder));
+    }
+
+    check_inuse_chunk(newp);
+    return chunk2mem(newp);
+  }
+
+  /*
+    Handle mmap cases
+  */
+
+  else {
+#if HAVE_MMAP
+
+#if HAVE_MREMAP
+    INTERNAL_SIZE_T offset = oldp->prev_size;
+    size_t pagemask = av->pagesize - 1;
+    char *cp;
+    CHUNK_SIZE_T  sum;
+
+    /* Note the extra SIZE_SZ overhead */
+    newsize = (nb + offset + SIZE_SZ + pagemask) & ~pagemask;
+
+    /* don't need to remap if still within same page */
+    if (oldsize == newsize - offset)
+      return oldmem;
+
+    cp = (char*)mremap((char*)oldp - offset, oldsize + offset, newsize, 1);
+
+    if (cp != (char*)MORECORE_FAILURE) {
+
+      newp = (mchunkptr)(cp + offset);
+      set_head(newp, (newsize - offset)|IS_MMAPPED);
+
+      assert(aligned_OK(chunk2mem(newp)));
+      assert((newp->prev_size == offset));
+
+      /* update statistics */
+      sum = av->mmapped_mem += newsize - oldsize;
+      if (sum > (CHUNK_SIZE_T)(av->max_mmapped_mem))
+       av->max_mmapped_mem = sum;
+      sum += av->sbrked_mem;
+      if (sum > (CHUNK_SIZE_T)(av->max_total_mem))
+       av->max_total_mem = sum;
+
+      return chunk2mem(newp);
+    }
+#endif
+
+    /* Note the extra SIZE_SZ overhead. */
+    if ((CHUNK_SIZE_T)(oldsize) >= (CHUNK_SIZE_T)(nb + SIZE_SZ))
+      newmem = oldmem; /* do nothing */
+    else {
+      /* Must alloc, copy, free. */
+      newmem = mALLOc(nb - MALLOC_ALIGN_MASK);
+      if (newmem != 0) {
+       MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
+       fREe(oldmem);
+      }
+    }
+    return newmem;
+
+#else
+    /* If !HAVE_MMAP, but chunk_is_mmapped, user must have overwritten mem */
+    check_malloc_state();
+    MALLOC_FAILURE_ACTION;
+    return 0;
+#endif
+  }
+}
+
+/*
+  ------------------------------ memalign ------------------------------
+*/
+
+#if __STD_C
+Void_t* mEMALIGn(size_t alignment, size_t bytes)
+#else
+Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
+#endif
+{
+  INTERNAL_SIZE_T nb;             /* padded  request size */
+  char*           m;              /* memory returned by malloc call */
+  mchunkptr       p;              /* corresponding chunk */
+  char*           brk;            /* alignment point within p */
+  mchunkptr       newp;           /* chunk to return */
+  INTERNAL_SIZE_T newsize;        /* its size */
+  INTERNAL_SIZE_T leadsize;       /* leading space before alignment point */
+  mchunkptr       remainder;      /* spare room at end to split off */
+  CHUNK_SIZE_T    remainder_size; /* its size */
+  INTERNAL_SIZE_T size;
+
+  /* If need less alignment than we give anyway, just relay to malloc */
+
+  if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
+
+  /* Otherwise, ensure that it is at least a minimum chunk size */
+
+  if (alignment <  MINSIZE) alignment = MINSIZE;
+
+  /* Make sure alignment is power of 2 (in case MINSIZE is not).  */
+  if ((alignment & (alignment - 1)) != 0) {
+    size_t a = MALLOC_ALIGNMENT * 2;
+    while ((CHUNK_SIZE_T)a < (CHUNK_SIZE_T)alignment) a <<= 1;
+    alignment = a;
+  }
+
+  checked_request2size(bytes, nb);
+
+  /*
+    Strategy: find a spot within that chunk that meets the alignment
+    request, and then possibly free the leading and trailing space.
+  */
+
+
+  /* Call malloc with worst case padding to hit alignment. */
+
+  m  = (char*)(mALLOc(nb + alignment + MINSIZE));
+
+  if (m == 0) return 0; /* propagate failure */
+
+  p = mem2chunk(m);
+
+  if ((((PTR_UINT)(m)) % alignment) != 0) { /* misaligned */
+
+    /*
+      Find an aligned spot inside chunk.  Since we need to give back
+      leading space in a chunk of at least MINSIZE, if the first
+      calculation places us at a spot with less than MINSIZE leader,
+      we can move to the next aligned spot -- we've allocated enough
+      total room so that this is always possible.
+    */
+
+    brk = (char*)mem2chunk((PTR_UINT)(((PTR_UINT)(m + alignment - 1)) &
+                          -((signed long) alignment)));
+    if ((CHUNK_SIZE_T)(brk - (char*)(p)) < MINSIZE)
+      brk += alignment;
+
+    newp = (mchunkptr)brk;
+    leadsize = brk - (char*)(p);
+    newsize = chunksize(p) - leadsize;
+
+    /* For mmapped chunks, just adjust offset */
+    if (chunk_is_mmapped(p)) {
+      newp->prev_size = p->prev_size + leadsize;
+      set_head(newp, newsize|IS_MMAPPED);
+      return chunk2mem(newp);
+    }
+
+    /* Otherwise, give back leader, use the rest */
+    set_head(newp, newsize | PREV_INUSE);
+    set_inuse_bit_at_offset(newp, newsize);
+    set_head_size(p, leadsize);
+    fREe(chunk2mem(p));
+    p = newp;
+
+    assert (newsize >= nb &&
+           (((PTR_UINT)(chunk2mem(p))) % alignment) == 0);
+  }
+
+  /* Also give back spare room at the end */
+  if (!chunk_is_mmapped(p)) {
+    size = chunksize(p);
+    if ((CHUNK_SIZE_T)(size) > (CHUNK_SIZE_T)(nb + MINSIZE)) {
+      remainder_size = size - nb;
+      remainder = chunk_at_offset(p, nb);
+      set_head(remainder, remainder_size | PREV_INUSE);
+      set_head_size(p, nb);
+      fREe(chunk2mem(remainder));
+    }
+  }
+
+  check_inuse_chunk(p);
+  return chunk2mem(p);
+}
+
+/*
+  ------------------------------ calloc ------------------------------
+*/
+
+#if __STD_C
+Void_t* cALLOc(size_t n_elements, size_t elem_size)
+#else
+Void_t* cALLOc(n_elements, elem_size) size_t n_elements; size_t elem_size;
+#endif
+{
+  mchunkptr p;
+  CHUNK_SIZE_T  clearsize;
+  CHUNK_SIZE_T  nclears;
+  INTERNAL_SIZE_T* d;
+
+  Void_t* mem = mALLOc(n_elements * elem_size);
+
+  if (mem != 0) {
+    p = mem2chunk(mem);
+
+    if (!chunk_is_mmapped(p))
+    {
+      /*
+       Unroll clear of <= 36 bytes (72 if 8byte sizes)
+       We know that contents have an odd number of
+       INTERNAL_SIZE_T-sized words; minimally 3.
+      */
+
+      d = (INTERNAL_SIZE_T*)mem;
+      clearsize = chunksize(p) - SIZE_SZ;
+      nclears = clearsize / sizeof(INTERNAL_SIZE_T);
+      assert(nclears >= 3);
+
+      if (nclears > 9)
+       MALLOC_ZERO(d, clearsize);
+
+      else {
+       *(d+0) = 0;
+       *(d+1) = 0;
+       *(d+2) = 0;
+       if (nclears > 4) {
+         *(d+3) = 0;
+         *(d+4) = 0;
+         if (nclears > 6) {
+           *(d+5) = 0;
+           *(d+6) = 0;
+           if (nclears > 8) {
+             *(d+7) = 0;
+             *(d+8) = 0;
+           }
+         }
+       }
+      }
+    }
+#if ! MMAP_CLEARS
+    else
+    {
+      d = (INTERNAL_SIZE_T*)mem;
+      /*
+       Note the additional SIZE_SZ
+      */
+      clearsize = chunksize(p) - 2*SIZE_SZ;
+      MALLOC_ZERO(d, clearsize);
+    }
+#endif
+  }
+  return mem;
+}
+
+/*
+  ------------------------------ cfree ------------------------------
+*/
+
+#if __STD_C
+void cFREe(Void_t *mem)
+#else
+void cFREe(mem) Void_t *mem;
+#endif
+{
+  fREe(mem);
+}
+
+#ifdef NEED_INDEPENDENT
+/*
+  ------------------------- independent_calloc -------------------------
+*/
+
+#if __STD_C
+Void_t** iCALLOc(size_t n_elements, size_t elem_size, Void_t* chunks[])
+#else
+Void_t** iCALLOc(n_elements, elem_size, chunks) size_t n_elements; size_t elem_size; Void_t* chunks[];
+#endif
+{
+  size_t sz = elem_size; /* serves as 1-element array */
+  /* opts arg of 3 means all elements are same size, and should be cleared */
+  return iALLOc(n_elements, &sz, 3, chunks);
+}
+
+/*
+  ------------------------- independent_comalloc -------------------------
+*/
+
+#if __STD_C
+Void_t** iCOMALLOc(size_t n_elements, size_t sizes[], Void_t* chunks[])
+#else
+Void_t** iCOMALLOc(n_elements, sizes, chunks) size_t n_elements; size_t sizes[]; Void_t* chunks[];
+#endif
+{
+  return iALLOc(n_elements, sizes, 0, chunks);
+}
+
+/*
+  ------------------------------ ialloc ------------------------------
+  ialloc provides common support for independent_X routines, handling all of
+  the combinations that can result.
+
+  The opts arg has:
+    bit 0 set if all elements are same size (using sizes[0])
+    bit 1 set if elements should be zeroed
+*/
+
+
+#if __STD_C
+static Void_t** iALLOc(size_t n_elements,
+                      size_t* sizes,
+                      int opts,
+                      Void_t* chunks[])
+#else
+static Void_t** iALLOc(n_elements, sizes, opts, chunks) size_t n_elements; size_t* sizes; int opts; Void_t* chunks[];
+#endif
+{
+  mstate av = get_malloc_state();
+  INTERNAL_SIZE_T element_size;   /* chunksize of each element, if all same */
+  INTERNAL_SIZE_T contents_size;  /* total size of elements */
+  INTERNAL_SIZE_T array_size;     /* request size of pointer array */
+  Void_t*         mem;            /* malloced aggregate space */
+  mchunkptr       p;              /* corresponding chunk */
+  INTERNAL_SIZE_T remainder_size; /* remaining bytes while splitting */
+  Void_t**        marray;         /* either "chunks" or malloced ptr array */
+  mchunkptr       array_chunk;    /* chunk for malloced ptr array */
+  int             mmx;            /* to disable mmap */
+  INTERNAL_SIZE_T size;
+  size_t          i;
+
+  /* Ensure initialization */
+  if (av->max_fast == 0) malloc_consolidate(av);
+
+  /* compute array length, if needed */
+  if (chunks != 0) {
+    if (n_elements == 0)
+      return chunks; /* nothing to do */
+    marray = chunks;
+    array_size = 0;
+  }
+  else {
+    /* if empty req, must still return chunk representing empty array */
+    if (n_elements == 0)
+      return (Void_t**) mALLOc(0);
+    marray = 0;
+    array_size = request2size(n_elements * (sizeof(Void_t*)));
+  }
+
+  /* compute total element size */
+  if (opts & 0x1) { /* all-same-size */
+    element_size = request2size(*sizes);
+    contents_size = n_elements * element_size;
+  }
+  else { /* add up all the sizes */
+    element_size = 0;
+    contents_size = 0;
+    for (i = 0; i != n_elements; ++i)
+      contents_size += request2size(sizes[i]);
+  }
+
+  /* subtract out alignment bytes from total to minimize overallocation */
+  size = contents_size + array_size - MALLOC_ALIGN_MASK;
+
+  /*
+     Allocate the aggregate chunk.
+     But first disable mmap so malloc won't use it, since
+     we would not be able to later free/realloc space internal
+     to a segregated mmap region.
+ */
+  mmx = av->n_mmaps_max;   /* disable mmap */
+  av->n_mmaps_max = 0;
+  mem = mALLOc(size);
+  av->n_mmaps_max = mmx;   /* reset mmap */
+  if (mem == 0)
+    return 0;
+
+  p = mem2chunk(mem);
+  assert(!chunk_is_mmapped(p));
+  remainder_size = chunksize(p);
+
+  if (opts & 0x2) {       /* optionally clear the elements */
+    MALLOC_ZERO(mem, remainder_size - SIZE_SZ - array_size);
+  }
+
+  /* If not provided, allocate the pointer array as final part of chunk */
+  if (marray == 0) {
+    array_chunk = chunk_at_offset(p, contents_size);
+    marray = (Void_t**) (chunk2mem(array_chunk));
+    set_head(array_chunk, (remainder_size - contents_size) | PREV_INUSE);
+    remainder_size = contents_size;
+  }
+
+  /* split out elements */
+  for (i = 0; ; ++i) {
+    marray[i] = chunk2mem(p);
+    if (i != n_elements-1) {
+      if (element_size != 0)
+       size = element_size;
+      else
+       size = request2size(sizes[i]);
+      remainder_size -= size;
+      set_head(p, size | PREV_INUSE);
+      p = chunk_at_offset(p, size);
+    }
+    else { /* the final element absorbs any overallocation slop */
+      set_head(p, remainder_size | PREV_INUSE);
+      break;
+    }
+  }
+
+#if DEBUG
+  if (marray != chunks) {
+    /* final element must have exactly exhausted chunk */
+    if (element_size != 0)
+      assert(remainder_size == element_size);
+    else
+      assert(remainder_size == request2size(sizes[i]));
+    check_inuse_chunk(mem2chunk(marray));
+  }
+
+  for (i = 0; i != n_elements; ++i)
+    check_inuse_chunk(mem2chunk(marray[i]));
+#endif
+
+  return marray;
+}
+#endif /* NEED_INDEPENDENT */
+
+
+/*
+  ------------------------------ valloc ------------------------------
+*/
+
+#if __STD_C
+Void_t* vALLOc(size_t bytes)
+#else
+Void_t* vALLOc(bytes) size_t bytes;
+#endif
+{
+  /* Ensure initialization */
+  mstate av = get_malloc_state();
+  if (av->max_fast == 0) malloc_consolidate(av);
+  return mEMALIGn(av->pagesize, bytes);
+}
+
+#ifdef NEED_PVALLOC
+/*
+  ------------------------------ pvalloc ------------------------------
+*/
+
+
+#if __STD_C
+Void_t* pVALLOc(size_t bytes)
+#else
+Void_t* pVALLOc(bytes) size_t bytes;
+#endif
+{
+  mstate av = get_malloc_state();
+  size_t pagesz;
+
+  /* Ensure initialization */
+  if (av->max_fast == 0) malloc_consolidate(av);
+  pagesz = av->pagesize;
+  return mEMALIGn(pagesz, (bytes + pagesz - 1) & ~(pagesz - 1));
+}
+#endif /*NEED_PVALLOC*/
+
+
+/*
+  ------------------------------ malloc_trim ------------------------------
+*/
+
+#if __STD_C
+int mTRIm(size_t pad)
+#else
+int mTRIm(pad) size_t pad;
+#endif
+{
+  mstate av = get_malloc_state();
+  /* Ensure initialization/consolidation */
+  malloc_consolidate(av);
+
+#ifndef MORECORE_CANNOT_TRIM
+  return sYSTRIm(pad, av);
+#else
+  return 0;
+#endif
+}
+
+
+/*
+  ------------------------- malloc_usable_size -------------------------
+*/
+
+#if __STD_C
+size_t mUSABLe(Void_t* mem)
+#else
+size_t mUSABLe(mem) Void_t* mem;
+#endif
+{
+  mchunkptr p;
+  if (mem != 0) {
+    p = mem2chunk(mem);
+    if (chunk_is_mmapped(p))
+      return chunksize(p) - 2*SIZE_SZ;
+    else if (inuse(p))
+      return chunksize(p) - SIZE_SZ;
+  }
+  return 0;
+}
+
+/*
+  ------------------------------ mallinfo ------------------------------
+*/
+
+struct mallinfo mALLINFo()
+{
+  mstate av = get_malloc_state();
+  struct mallinfo mi;
+  unsigned i;
+  mbinptr b;
+  mchunkptr p;
+  INTERNAL_SIZE_T avail;
+  INTERNAL_SIZE_T fastavail;
+  int nblocks;
+  int nfastblocks;
+
+  /* Ensure initialization */
+  if (av->top == 0)  malloc_consolidate(av);
+
+  check_malloc_state();
+
+  /* Account for top */
+  avail = chunksize(av->top);
+  nblocks = 1;  /* top always exists */
+
+  /* traverse fastbins */
+  nfastblocks = 0;
+  fastavail = 0;
+
+  for (i = 0; i < NFASTBINS; ++i) {
+    for (p = av->fastbins[i]; p != 0; p = p->fd) {
+      ++nfastblocks;
+      fastavail += chunksize(p);
+    }
+  }
+
+  avail += fastavail;
+
+  /* traverse regular bins */
+  for (i = 1; i < NBINS; ++i) {
+    b = bin_at(av, i);
+    for (p = last(b); p != b; p = p->bk) {
+      ++nblocks;
+      avail += chunksize(p);
+    }
+  }
+
+  mi.smblks = nfastblocks;
+  mi.ordblks = nblocks;
+  mi.fordblks = avail;
+  mi.uordblks = av->sbrked_mem - avail;
+  mi.arena = av->sbrked_mem;
+  mi.hblks = av->n_mmaps;
+  mi.hblkhd = av->mmapped_mem;
+  mi.fsmblks = fastavail;
+  mi.keepcost = chunksize(av->top);
+  mi.usmblks = av->max_total_mem;
+  return mi;
+}
+
+/*
+  ------------------------------ malloc_stats ------------------------------
+*/
+
+void mSTATs()
+{
+  struct mallinfo mi = mALLINFo();
+
+#ifdef WIN32
+  {
+    CHUNK_SIZE_T  free, reserved, committed;
+    vminfo (&free, &reserved, &committed);
+    fprintf(stderr, "free bytes       = %10lu\n",
+           free);
+    fprintf(stderr, "reserved bytes   = %10lu\n",
+           reserved);
+    fprintf(stderr, "committed bytes  = %10lu\n",
+           committed);
+  }
+#endif
+
+
+  fprintf(stderr, "max system bytes = %10lu\n",
+         (CHUNK_SIZE_T)(mi.usmblks));
+  fprintf(stderr, "system bytes     = %10lu\n",
+         (CHUNK_SIZE_T)(mi.arena + mi.hblkhd));
+  fprintf(stderr, "in use bytes     = %10lu\n",
+         (CHUNK_SIZE_T)(mi.uordblks + mi.hblkhd));
+
+#ifdef WIN32
+  {
+    CHUNK_SIZE_T  kernel, user;
+    if (cpuinfo (TRUE, &kernel, &user)) {
+      fprintf(stderr, "kernel ms        = %10lu\n",
+             kernel);
+      fprintf(stderr, "user ms          = %10lu\n",
+             user);
+    }
+  }
+#endif
+}
+
+
+/*
+  ------------------------------ mallopt ------------------------------
+*/
+
+#if __STD_C
+int mALLOPt(int param_number, int value)
+#else
+int mALLOPt(param_number, value) int param_number; int value;
+#endif
+{
+  mstate av = get_malloc_state();
+  /* Ensure initialization/consolidation */
+  malloc_consolidate(av);
+
+  switch(param_number) {
+  case M_MXFAST:
+    if (value >= 0 && value <= MAX_FAST_SIZE) {
+      set_max_fast(av, value);
+      return 1;
+    }
+    else
+      return 0;
+
+  case M_TRIM_THRESHOLD:
+    av->trim_threshold = value;
+    return 1;
+
+  case M_TOP_PAD:
+    av->top_pad = value;
+    return 1;
+
+  case M_MMAP_THRESHOLD:
+    av->mmap_threshold = value;
+    return 1;
+
+  case M_MMAP_MAX:
+#if !HAVE_MMAP
+    if (value != 0)
+      return 0;
+#endif
+    av->n_mmaps_max = value;
+    return 1;
+
+  default:
+    return 0;
+  }
+}
+
+/*
+  -------------------- Alternative MORECORE functions --------------------
+*/
+
+
+/*
+  General Requirements for MORECORE.
+
+  The MORECORE function must have the following properties:
+
+  If MORECORE_CONTIGUOUS is false:
+
+    * MORECORE must allocate in multiples of pagesize. It will
+      only be called with arguments that are multiples of pagesize.
+
+    * MORECORE(0) must return an address that is at least
+      MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
+
+  else (i.e. If MORECORE_CONTIGUOUS is true):
+
+    * Consecutive calls to MORECORE with positive arguments
+      return increasing addresses, indicating that space has been
+      contiguously extended.
+
+    * MORECORE need not allocate in multiples of pagesize.
+      Calls to MORECORE need not have args of multiples of pagesize.
+
+    * MORECORE need not page-align.
+
+  In either case:
+
+    * MORECORE may allocate more memory than requested. (Or even less,
+      but this will generally result in a malloc failure.)
+
+    * MORECORE must not allocate memory when given argument zero, but
+      instead return one past the end address of memory from previous
+      nonzero call. This malloc does NOT call MORECORE(0)
+      until at least one call with positive arguments is made, so
+      the initial value returned is not important.
+
+    * Even though consecutive calls to MORECORE need not return contiguous
+      addresses, it must be OK for malloc'ed chunks to span multiple
+      regions in those cases where they do happen to be contiguous.
+
+    * MORECORE need not handle negative arguments -- it may instead
+      just return MORECORE_FAILURE when given negative arguments.
+      Negative arguments are always multiples of pagesize. MORECORE
+      must not misinterpret negative args as large positive unsigned
+      args. You can suppress all such calls from even occurring by defining
+      MORECORE_CANNOT_TRIM,
+
+  There is some variation across systems about the type of the
+  argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
+  actually be size_t, because sbrk supports negative args, so it is
+  normally the signed type of the same width as size_t (sometimes
+  declared as "intptr_t", and sometimes "ptrdiff_t").  It doesn't much
+  matter though. Internally, we use "long" as arguments, which should
+  work across all reasonable possibilities.
+
+  Additionally, if MORECORE ever returns failure for a positive
+  request, and HAVE_MMAP is true, then mmap is used as a noncontiguous
+  system allocator. This is a useful backup strategy for systems with
+  holes in address spaces -- in this case sbrk cannot contiguously
+  expand the heap, but mmap may be able to map noncontiguous space.
+
+  If you'd like mmap to ALWAYS be used, you can define MORECORE to be
+  a function that always returns MORECORE_FAILURE.
+
+  Malloc only has limited ability to detect failures of MORECORE
+  to supply contiguous space when it says it can. In particular,
+  multithreaded programs that do not use locks may result in
+  rece conditions across calls to MORECORE that result in gaps
+  that cannot be detected as such, and subsequent corruption.
+
+  If you are using this malloc with something other than sbrk (or its
+  emulation) to supply memory regions, you probably want to set
+  MORECORE_CONTIGUOUS as false.  As an example, here is a custom
+  allocator kindly contributed for pre-OSX macOS.  It uses virtually
+  but not necessarily physically contiguous non-paged memory (locked
+  in, present and won't get swapped out).  You can use it by
+  uncommenting this section, adding some #includes, and setting up the
+  appropriate defines above:
+
+      #define MORECORE osMoreCore
+      #define MORECORE_CONTIGUOUS 0
+
+  There is also a shutdown routine that should somehow be called for
+  cleanup upon program exit.
+
+  #define MAX_POOL_ENTRIES 100
+  #define MINIMUM_MORECORE_SIZE  (64 * 1024)
+  static int next_os_pool;
+  void *our_os_pools[MAX_POOL_ENTRIES];
+
+  void *osMoreCore(int size)
+  {
+    void *ptr = 0;
+    static void *sbrk_top = 0;
+
+    if (size > 0)
+    {
+      if (size < MINIMUM_MORECORE_SIZE)
+        size = MINIMUM_MORECORE_SIZE;
+      if (CurrentExecutionLevel() == kTaskLevel)
+        ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
+      if (ptr == 0)
+      {
+       return (void *) MORECORE_FAILURE;
+      }
+      // save ptrs so they can be freed during cleanup
+      our_os_pools[next_os_pool] = ptr;
+      next_os_pool++;
+      ptr = (void *) ((((CHUNK_SIZE_T) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
+      sbrk_top = (char *) ptr + size;
+      return ptr;
+    }
+    else if (size < 0)
+    {
+      // we don't currently support shrink behavior
+      return (void *) MORECORE_FAILURE;
+    }
+    else
+    {
+      return sbrk_top;
+    }
+  }
+
+  // cleanup any allocated memory pools
+  // called as last thing before shutting down driver
+
+  void osCleanupMem(void)
+  {
+    void **ptr;
+
+    for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
+      if (*ptr)
+      {
+        PoolDeallocate(*ptr);
+        *ptr = 0;
+      }
+  }
+
+*/
+
+
+/*
+  --------------------------------------------------------------
+
+  Emulation of sbrk for win32.
+  Donated by J. Walter <Walter@GeNeSys-e.de>.
+  For additional information about this code, and malloc on Win32, see
+     http://www.genesys-e.de/jwalter/
+*/
+
+
+#ifdef WIN32
+
+#ifdef _DEBUG
+/* #define TRACE */
+#endif
+
+/* Support for USE_MALLOC_LOCK */
+#ifdef USE_MALLOC_LOCK
+
+/* Wait for spin lock */
+static int slwait (int *sl) {
+    while (InterlockedCompareExchange ((void **) sl, (void *) 1, (void *) 0) != 0)
+           Sleep (0);
+    return 0;
+}
+
+/* Release spin lock */
+static int slrelease (int *sl) {
+    InterlockedExchange (sl, 0);
+    return 0;
+}
+
+#ifdef NEEDED
+/* Spin lock for emulation code */
+static int g_sl;
+#endif
+
+#endif /* USE_MALLOC_LOCK */
+
+/* getpagesize for windows */
+static long getpagesize (void) {
+    static long g_pagesize = 0;
+    if (! g_pagesize) {
+       SYSTEM_INFO system_info;
+       GetSystemInfo (&system_info);
+       g_pagesize = system_info.dwPageSize;
+    }
+    return g_pagesize;
+}
+static long getregionsize (void) {
+    static long g_regionsize = 0;
+    if (! g_regionsize) {
+       SYSTEM_INFO system_info;
+       GetSystemInfo (&system_info);
+       g_regionsize = system_info.dwAllocationGranularity;
+    }
+    return g_regionsize;
+}
+
+/* A region list entry */
+typedef struct _region_list_entry {
+    void *top_allocated;
+    void *top_committed;
+    void *top_reserved;
+    long reserve_size;
+    struct _region_list_entry *previous;
+} region_list_entry;
+
+/* Allocate and link a region entry in the region list */
+static int region_list_append (region_list_entry **last, void *base_reserved, long reserve_size) {
+    region_list_entry *next = HeapAlloc (GetProcessHeap (), 0, sizeof (region_list_entry));
+    if (! next)
+       return FALSE;
+    next->top_allocated = (char *) base_reserved;
+    next->top_committed = (char *) base_reserved;
+    next->top_reserved = (char *) base_reserved + reserve_size;
+    next->reserve_size = reserve_size;
+    next->previous = *last;
+    *last = next;
+    return TRUE;
+}
+/* Free and unlink the last region entry from the region list */
+static int region_list_remove (region_list_entry **last) {
+    region_list_entry *previous = (*last)->previous;
+    if (! HeapFree (GetProcessHeap (), sizeof (region_list_entry), *last))
+       return FALSE;
+    *last = previous;
+    return TRUE;
+}
+
+#define CEIL(size,to)  (((size)+(to)-1)&~((to)-1))
+#define FLOOR(size,to) ((size)&~((to)-1))
+
+#define SBRK_SCALE  0
+/* #define SBRK_SCALE  1 */
+/* #define SBRK_SCALE  2 */
+/* #define SBRK_SCALE  4  */
+
+/* sbrk for windows */
+static void *sbrk (long size) {
+    static long g_pagesize, g_my_pagesize;
+    static long g_regionsize, g_my_regionsize;
+    static region_list_entry *g_last;
+    void *result = (void *) MORECORE_FAILURE;
+#ifdef TRACE
+    printf ("sbrk %d\n", size);
+#endif
+#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
+    /* Wait for spin lock */
+    slwait (&g_sl);
+#endif
+    /* First time initialization */
+    if (! g_pagesize) {
+       g_pagesize = getpagesize ();
+       g_my_pagesize = g_pagesize << SBRK_SCALE;
+    }
+    if (! g_regionsize) {
+       g_regionsize = getregionsize ();
+       g_my_regionsize = g_regionsize << SBRK_SCALE;
+    }
+    if (! g_last) {
+       if (! region_list_append (&g_last, 0, 0))
+          goto sbrk_exit;
+    }
+    /* Assert invariants */
+    assert (g_last);
+    assert ((char *) g_last->top_reserved - g_last->reserve_size <= (char *) g_last->top_allocated &&
+           g_last->top_allocated <= g_last->top_committed);
+    assert ((char *) g_last->top_reserved - g_last->reserve_size <= (char *) g_last->top_committed &&
+           g_last->top_committed <= g_last->top_reserved &&
+           (unsigned) g_last->top_committed % g_pagesize == 0);
+    assert ((unsigned) g_last->top_reserved % g_regionsize == 0);
+    assert ((unsigned) g_last->reserve_size % g_regionsize == 0);
+    /* Allocation requested? */
+    if (size >= 0) {
+       /* Allocation size is the requested size */
+       long allocate_size = size;
+       /* Compute the size to commit */
+       long to_commit = (char *) g_last->top_allocated + allocate_size - (char *) g_last->top_committed;
+       /* Do we reach the commit limit? */
+       if (to_commit > 0) {
+           /* Round size to commit */
+           long commit_size = CEIL (to_commit, g_my_pagesize);
+           /* Compute the size to reserve */
+           long to_reserve = (char *) g_last->top_committed + commit_size - (char *) g_last->top_reserved;
+           /* Do we reach the reserve limit? */
+           if (to_reserve > 0) {
+               /* Compute the remaining size to commit in the current region */
+               long remaining_commit_size = (char *) g_last->top_reserved - (char *) g_last->top_committed;
+               if (remaining_commit_size > 0) {
+                   /* Assert preconditions */
+                   assert ((unsigned) g_last->top_committed % g_pagesize == 0);
+                   assert (0 < remaining_commit_size && remaining_commit_size % g_pagesize == 0); {
+                       /* Commit this */
+                       void *base_committed = VirtualAlloc (g_last->top_committed, remaining_commit_size,
+                                                                                        MEM_COMMIT, PAGE_READWRITE);
+                       /* Check returned pointer for consistency */
+                       if (base_committed != g_last->top_committed)
+                           goto sbrk_exit;
+                       /* Assert postconditions */
+                       assert ((unsigned) base_committed % g_pagesize == 0);
+#ifdef TRACE
+                       printf ("Commit %p %d\n", base_committed, remaining_commit_size);
+#endif
+                       /* Adjust the regions commit top */
+                       g_last->top_committed = (char *) base_committed + remaining_commit_size;
+                   }
+               } {
+                   /* Now we are going to search and reserve. */
+                   int contiguous = -1;
+                   int found = FALSE;
+                   MEMORY_BASIC_INFORMATION memory_info;
+                   void *base_reserved;
+                   long reserve_size;
+                   do {
+                       /* Assume contiguous memory */
+                       contiguous = TRUE;
+                       /* Round size to reserve */
+                       reserve_size = CEIL (to_reserve, g_my_regionsize);
+                       /* Start with the current region's top */
+                       memory_info.BaseAddress = g_last->top_reserved;
+                       /* Assert preconditions */
+                       assert ((unsigned) memory_info.BaseAddress % g_pagesize == 0);
+                       assert (0 < reserve_size && reserve_size % g_regionsize == 0);
+                       while (VirtualQuery (memory_info.BaseAddress, &memory_info, sizeof (memory_info))) {
+                           /* Assert postconditions */
+                           assert ((unsigned) memory_info.BaseAddress % g_pagesize == 0);
+#ifdef TRACE
+                           printf ("Query %p %d %s\n", memory_info.BaseAddress, memory_info.RegionSize,
+                                   memory_info.State == MEM_FREE ? "FREE":
+                                   (memory_info.State == MEM_RESERVE ? "RESERVED":
+                                    (memory_info.State == MEM_COMMIT ? "COMMITTED": "?")));
+#endif
+                           /* Region is free, well aligned and big enough: we are done */
+                           if (memory_info.State == MEM_FREE &&
+                               (unsigned) memory_info.BaseAddress % g_regionsize == 0 &&
+                               memory_info.RegionSize >= (unsigned) reserve_size) {
+                               found = TRUE;
+                               break;
+                           }
+                           /* From now on we can't get contiguous memory! */
+                           contiguous = FALSE;
+                           /* Recompute size to reserve */
+                           reserve_size = CEIL (allocate_size, g_my_regionsize);
+                           memory_info.BaseAddress = (char *) memory_info.BaseAddress + memory_info.RegionSize;
+                           /* Assert preconditions */
+                           assert ((unsigned) memory_info.BaseAddress % g_pagesize == 0);
+                           assert (0 < reserve_size && reserve_size % g_regionsize == 0);
+                       }
+                       /* Search failed? */
+                       if (! found)
+                           goto sbrk_exit;
+                       /* Assert preconditions */
+                       assert ((unsigned) memory_info.BaseAddress % g_regionsize == 0);
+                       assert (0 < reserve_size && reserve_size % g_regionsize == 0);
+                       /* Try to reserve this */
+                       base_reserved = VirtualAlloc (memory_info.BaseAddress, reserve_size,
+                                                                         MEM_RESERVE, PAGE_NOACCESS);
+                       if (! base_reserved) {
+                           int rc = GetLastError ();
+                           if (rc != ERROR_INVALID_ADDRESS)
+                               goto sbrk_exit;
+                       }
+                       /* A null pointer signals (hopefully) a race condition with another thread. */
+                       /* In this case, we try again. */
+                   } while (! base_reserved);
+                   /* Check returned pointer for consistency */
+                   if (memory_info.BaseAddress && base_reserved != memory_info.BaseAddress)
+                       goto sbrk_exit;
+                   /* Assert postconditions */
+                   assert ((unsigned) base_reserved % g_regionsize == 0);
+#ifdef TRACE
+                   printf ("Reserve %p %d\n", base_reserved, reserve_size);
+#endif
+                   /* Did we get contiguous memory? */
+                   if (contiguous) {
+                       long start_size = (char *) g_last->top_committed - (char *) g_last->top_allocated;
+                       /* Adjust allocation size */
+                       allocate_size -= start_size;
+                       /* Adjust the regions allocation top */
+                       g_last->top_allocated = g_last->top_committed;
+                       /* Recompute the size to commit */
+                       to_commit = (char *) g_last->top_allocated + allocate_size - (char *) g_last->top_committed;
+                       /* Round size to commit */
+                       commit_size = CEIL (to_commit, g_my_pagesize);
+                   }
+                   /* Append the new region to the list */
+                   if (! region_list_append (&g_last, base_reserved, reserve_size))
+                       goto sbrk_exit;
+                   /* Didn't we get contiguous memory? */
+                   if (! contiguous) {
+                       /* Recompute the size to commit */
+                       to_commit = (char *) g_last->top_allocated + allocate_size - (char *) g_last->top_committed;
+                       /* Round size to commit */
+                       commit_size = CEIL (to_commit, g_my_pagesize);
+                   }
+               }
+           }
+           /* Assert preconditions */
+           assert ((unsigned) g_last->top_committed % g_pagesize == 0);
+           assert (0 < commit_size && commit_size % g_pagesize == 0); {
+               /* Commit this */
+               void *base_committed = VirtualAlloc (g_last->top_committed, commit_size,
+                                                                            MEM_COMMIT, PAGE_READWRITE);
+               /* Check returned pointer for consistency */
+               if (base_committed != g_last->top_committed)
+                   goto sbrk_exit;
+               /* Assert postconditions */
+               assert ((unsigned) base_committed % g_pagesize == 0);
+#ifdef TRACE
+               printf ("Commit %p %d\n", base_committed, commit_size);
+#endif
+               /* Adjust the regions commit top */
+               g_last->top_committed = (char *) base_committed + commit_size;
+           }
+       }
+       /* Adjust the regions allocation top */
+       g_last->top_allocated = (char *) g_last->top_allocated + allocate_size;
+       result = (char *) g_last->top_allocated - size;
+    /* Deallocation requested? */
+    } else if (size < 0) {
+       long deallocate_size = - size;
+       /* As long as we have a region to release */
+       while ((char *) g_last->top_allocated - deallocate_size < (char *) g_last->top_reserved - g_last->reserve_size) {
+           /* Get the size to release */
+           long release_size = g_last->reserve_size;
+           /* Get the base address */
+           void *base_reserved = (char *) g_last->top_reserved - release_size;
+           /* Assert preconditions */
+           assert ((unsigned) base_reserved % g_regionsize == 0);
+           assert (0 < release_size && release_size % g_regionsize == 0); {
+               /* Release this */
+               int rc = VirtualFree (base_reserved, 0,
+                                     MEM_RELEASE);
+               /* Check returned code for consistency */
+               if (! rc)
+                   goto sbrk_exit;
+#ifdef TRACE
+               printf ("Release %p %d\n", base_reserved, release_size);
+#endif
+           }
+           /* Adjust deallocation size */
+           deallocate_size -= (char *) g_last->top_allocated - (char *) base_reserved;
+           /* Remove the old region from the list */
+           if (! region_list_remove (&g_last))
+               goto sbrk_exit;
+       } {
+           /* Compute the size to decommit */
+           long to_decommit = (char *) g_last->top_committed - ((char *) g_last->top_allocated - deallocate_size);
+           if (to_decommit >= g_my_pagesize) {
+               /* Compute the size to decommit */
+               long decommit_size = FLOOR (to_decommit, g_my_pagesize);
+               /*  Compute the base address */
+               void *base_committed = (char *) g_last->top_committed - decommit_size;
+               /* Assert preconditions */
+               assert ((unsigned) base_committed % g_pagesize == 0);
+               assert (0 < decommit_size && decommit_size % g_pagesize == 0); {
+                   /* Decommit this */
+                   int rc = VirtualFree ((char *) base_committed, decommit_size,
+                                         MEM_DECOMMIT);
+                   /* Check returned code for consistency */
+                   if (! rc)
+                       goto sbrk_exit;
+#ifdef TRACE
+                   printf ("Decommit %p %d\n", base_committed, decommit_size);
+#endif
+               }
+               /* Adjust deallocation size and regions commit and allocate top */
+               deallocate_size -= (char *) g_last->top_allocated - (char *) base_committed;
+               g_last->top_committed = base_committed;
+               g_last->top_allocated = base_committed;
+           }
+       }
+       /* Adjust regions allocate top */
+       g_last->top_allocated = (char *) g_last->top_allocated - deallocate_size;
+       /* Check for underflow */
+       if ((char *) g_last->top_reserved - g_last->reserve_size > (char *) g_last->top_allocated ||
+           g_last->top_allocated > g_last->top_committed) {
+           /* Adjust regions allocate top */
+           g_last->top_allocated = (char *) g_last->top_reserved - g_last->reserve_size;
+           goto sbrk_exit;
+       }
+       result = g_last->top_allocated;
+    }
+    /* Assert invariants */
+    assert (g_last);
+    assert ((char *) g_last->top_reserved - g_last->reserve_size <= (char *) g_last->top_allocated &&
+           g_last->top_allocated <= g_last->top_committed);
+    assert ((char *) g_last->top_reserved - g_last->reserve_size <= (char *) g_last->top_committed &&
+           g_last->top_committed <= g_last->top_reserved &&
+           (unsigned) g_last->top_committed % g_pagesize == 0);
+    assert ((unsigned) g_last->top_reserved % g_regionsize == 0);
+    assert ((unsigned) g_last->reserve_size % g_regionsize == 0);
+
+sbrk_exit:
+#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
+    /* Release spin lock */
+    slrelease (&g_sl);
+#endif
+    return result;
+}
+
+/* mmap for windows */
+static void *mmap (void *ptr, long size, long prot, long type, long handle, long arg) {
+    static long g_pagesize;
+    static long g_regionsize;
+#ifdef TRACE
+    printf ("mmap %d\n", size);
+#endif
+#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
+    /* Wait for spin lock */
+    slwait (&g_sl);
+#endif
+    /* First time initialization */
+    if (! g_pagesize)
+       g_pagesize = getpagesize ();
+    if (! g_regionsize)
+       g_regionsize = getregionsize ();
+    /* Assert preconditions */
+    assert ((unsigned) ptr % g_regionsize == 0);
+    assert (size % g_pagesize == 0);
+    /* Allocate this */
+    ptr = VirtualAlloc (ptr, size,
+                                           MEM_RESERVE | MEM_COMMIT | MEM_TOP_DOWN, PAGE_READWRITE);
+    if (! ptr) {
+       ptr = (void *) MORECORE_FAILURE;
+       goto mmap_exit;
+    }
+    /* Assert postconditions */
+    assert ((unsigned) ptr % g_regionsize == 0);
+#ifdef TRACE
+    printf ("Commit %p %d\n", ptr, size);
+#endif
+mmap_exit:
+#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
+    /* Release spin lock */
+    slrelease (&g_sl);
+#endif
+    return ptr;
+}
+
+/* munmap for windows */
+static long munmap (void *ptr, long size) {
+    static long g_pagesize;
+    static long g_regionsize;
+    int rc = MUNMAP_FAILURE;
+#ifdef TRACE
+    printf ("munmap %p %d\n", ptr, size);
+#endif
+#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
+    /* Wait for spin lock */
+    slwait (&g_sl);
+#endif
+    /* First time initialization */
+    if (! g_pagesize)
+       g_pagesize = getpagesize ();
+    if (! g_regionsize)
+       g_regionsize = getregionsize ();
+    /* Assert preconditions */
+    assert ((unsigned) ptr % g_regionsize == 0);
+    assert (size % g_pagesize == 0);
+    /* Free this */
+    if (! VirtualFree (ptr, 0,
+                      MEM_RELEASE))
+       goto munmap_exit;
+    rc = 0;
+#ifdef TRACE
+    printf ("Release %p %d\n", ptr, size);
+#endif
+munmap_exit:
+#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
+    /* Release spin lock */
+    slrelease (&g_sl);
+#endif
+    return rc;
+}
+
+static void vminfo (CHUNK_SIZE_T  *free, CHUNK_SIZE_T  *reserved, CHUNK_SIZE_T  *committed) {
+    MEMORY_BASIC_INFORMATION memory_info;
+    memory_info.BaseAddress = 0;
+    *free = *reserved = *committed = 0;
+    while (VirtualQuery (memory_info.BaseAddress, &memory_info, sizeof (memory_info))) {
+       switch (memory_info.State) {
+       case MEM_FREE:
+           *free += memory_info.RegionSize;
+           break;
+       case MEM_RESERVE:
+           *reserved += memory_info.RegionSize;
+           break;
+       case MEM_COMMIT:
+           *committed += memory_info.RegionSize;
+           break;
+       }
+       memory_info.BaseAddress = (char *) memory_info.BaseAddress + memory_info.RegionSize;
+    }
+}
+
+static int cpuinfo (int whole, CHUNK_SIZE_T  *kernel, CHUNK_SIZE_T  *user) {
+    if (whole) {
+       __int64 creation64, exit64, kernel64, user64;
+       int rc = GetProcessTimes (GetCurrentProcess (),
+                                 (FILETIME *) &creation64,
+                                 (FILETIME *) &exit64,
+                                 (FILETIME *) &kernel64,
+                                 (FILETIME *) &user64);
+       if (! rc) {
+           *kernel = 0;
+           *user = 0;
+           return FALSE;
+       }
+       *kernel = (CHUNK_SIZE_T) (kernel64 / 10000);
+       *user = (CHUNK_SIZE_T) (user64 / 10000);
+       return TRUE;
+    } else {
+       __int64 creation64, exit64, kernel64, user64;
+       int rc = GetThreadTimes (GetCurrentThread (),
+                                (FILETIME *) &creation64,
+                                (FILETIME *) &exit64,
+                                (FILETIME *) &kernel64,
+                                (FILETIME *) &user64);
+       if (! rc) {
+           *kernel = 0;
+           *user = 0;
+           return FALSE;
+       }
+       *kernel = (CHUNK_SIZE_T) (kernel64 / 10000);
+       *user = (CHUNK_SIZE_T) (user64 / 10000);
+       return TRUE;
+    }
+}
+
+#endif /* WIN32 */
+
+/* ------------------------------------------------------------
+History:
+    V2.7.1 Thu Jul 25 10:58:03 2002  Doug Lea  (dl at gee)
+      * Allow tuning of FIRST_SORTED_BIN_SIZE
+      * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
+      * Better detection and support for non-contiguousness of MORECORE.
+       Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
+      * Bypass most of malloc if no frees. Thanks To Emery Berger.
+      * Fix freeing of old top non-contiguous chunk im sysmalloc.
+      * Raised default trim and map thresholds to 256K.
+      * Fix mmap-related #defines. Thanks to Lubos Lunak.
+      * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
+      * Branch-free bin calculation
+      * Default trim and mmap thresholds now 256K.
+
+    V2.7.0 Sun Mar 11 14:14:06 2001  Doug Lea  (dl at gee)
+      * Introduce independent_comalloc and independent_calloc.
+       Thanks to Michael Pachos for motivation and help.
+      * Make optional .h file available
+      * Allow > 2GB requests on 32bit systems.
+      * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
+       Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
+       and Anonymous.
+      * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
+       helping test this.)
+      * memalign: check alignment arg
+      * realloc: don't try to shift chunks backwards, since this
+       leads to  more fragmentation in some programs and doesn't
+       seem to help in any others.
+      * Collect all cases in malloc requiring system memory into sYSMALLOc
+      * Use mmap as backup to sbrk
+      * Place all internal state in malloc_state
+      * Introduce fastbins (although similar to 2.5.1)
+      * Many minor tunings and cosmetic improvements
+      * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
+      * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
+       Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
+      * Include errno.h to support default failure action.
+
+    V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
+      * return null for negative arguments
+      * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
+        * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
+         (e.g. WIN32 platforms)
+        * Cleanup header file inclusion for WIN32 platforms
+        * Cleanup code to avoid Microsoft Visual C++ compiler complaints
+        * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
+          memory allocation routines
+        * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
+        * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
+          usage of 'assert' in non-WIN32 code
+        * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
+          avoid infinite loop
+      * Always call 'fREe()' rather than 'free()'
+
+    V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
+      * Fixed ordering problem with boundary-stamping
+
+    V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
+      * Added pvalloc, as recommended by H.J. Liu
+      * Added 64bit pointer support mainly from Wolfram Gloger
+      * Added anonymously donated WIN32 sbrk emulation
+      * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
+      * malloc_extend_top: fix mask error that caused wastage after
+       foreign sbrks
+      * Add linux mremap support code from HJ Liu
+
+    V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
+      * Integrated most documentation with the code.
+      * Add support for mmap, with help from
+       Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
+      * Use last_remainder in more cases.
+      * Pack bins using idea from  colin@nyx10.cs.du.edu
+      * Use ordered bins instead of best-fit threshhold
+      * Eliminate block-local decls to simplify tracing and debugging.
+      * Support another case of realloc via move into top
+      * Fix error occuring when initial sbrk_base not word-aligned.
+      * Rely on page size for units instead of SBRK_UNIT to
+       avoid surprises about sbrk alignment conventions.
+      * Add mallinfo, mallopt. Thanks to Raymond Nijssen
+       (raymond@es.ele.tue.nl) for the suggestion.
+      * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
+      * More precautions for cases where other routines call sbrk,
+       courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
+      * Added macros etc., allowing use in linux libc from
+       H.J. Lu (hjl@gnu.ai.mit.edu)
+      * Inverted this history list
+
+    V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
+      * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
+      * Removed all preallocation code since under current scheme
+       the work required to undo bad preallocations exceeds
+       the work saved in good cases for most test programs.
+      * No longer use return list or unconsolidated bins since
+       no scheme using them consistently outperforms those that don't
+       given above changes.
+      * Use best fit for very large chunks to prevent some worst-cases.
+      * Added some support for debugging
+
+    V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
+      * Removed footers when chunks are in use. Thanks to
+       Paul Wilson (wilson@cs.texas.edu) for the suggestion.
+
+    V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
+      * Added malloc_trim, with help from Wolfram Gloger
+       (wmglo@Dent.MED.Uni-Muenchen.DE).
+
+    V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
+
+    V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
+      * realloc: try to expand in both directions
+      * malloc: swap order of clean-bin strategy;
+      * realloc: only conditionally expand backwards
+      * Try not to scavenge used bins
+      * Use bin counts as a guide to preallocation
+      * Occasionally bin return list chunks in first scan
+      * Add a few optimizations from colin@nyx10.cs.du.edu
+
+    V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
+      * faster bin computation & slightly different binning
+      * merged all consolidations to one part of malloc proper
+        (eliminating old malloc_find_space & malloc_clean_bin)
+      * Scan 2 returns chunks (not just 1)
+      * Propagate failure in realloc if malloc returns 0
+      * Add stuff to allow compilation on non-ANSI compilers
+         from kpv@research.att.com
+
+    V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
+      * removed potential for odd address access in prev_chunk
+      * removed dependency on getpagesize.h
+      * misc cosmetics and a bit more internal documentation
+      * anticosmetics: mangled names in macros to evade debugger strangeness
+      * tested on sparc, hp-700, dec-mips, rs6000
+         with gcc & native cc (hp, dec only) allowing
+         Detlefs & Zorn comparison study (in SIGPLAN Notices.)
+
+    Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
+      * Based loosely on libg++-1.2X malloc. (It retains some of the overall
+        structure of old version,  but most details differ.)
+
+*/
index d50ae17..9cd50c3 100644 (file)
@@ -29,14 +29,14 @@ public:
 #if 0  /* FIXME: See comment in sync.cc */
   ~muto ()
 #endif
-  int acquire (DWORD ms = INFINITE) __attribute__ ((regparm (1))); /* Acquire the lock. */
-  int release ();                   /* Release the lock. */
+  int acquire (DWORD ms = INFINITE) __attribute__ ((regparm (2))); /* Acquire the lock. */
+  int release () __attribute__ ((regparm (1)));                     /* Release the lock. */
 
   /* Return true if caller thread owns the lock. */
   int ismine () {return tid == GetCurrentThreadId ();}
   DWORD owner () {return tid;}
   int unstable () {return !tid && (sync || waiters >= 0);}
-  void reset ();
+  void reset () __attribute__ ((regparm (1)));
 };
 
 extern muto muto_start;
index 433fc99..9148d2e 100644 (file)
@@ -232,8 +232,8 @@ extern "C" int __small_sprintf (char *dst, const char *fmt, ...) /*__attribute__
 extern "C" int __small_vsprintf (char *dst, const char *fmt, va_list ap) /*__attribute__ ((regparm (3)))*/;
 extern void multiple_cygwin_problem (const char *, unsigned, unsigned);
 
-extern "C" void __malloc_lock (struct _reent *);
-extern "C" void __malloc_unlock (struct _reent *);
+extern "C" void __malloc_lock ();
+extern "C" void __malloc_unlock ();
 
 class path_conv;
 int __stdcall stat_worker (const char *name, struct __stat64 *buf, int nofollow,