SGX EPC pages go through the following life cycle:
DIRTY ---> FREE ---> IN-USE --\
^ |
\-----------------/
Recovery action for poison for a DIRTY or FREE page is simple. Just
make sure never to allocate the page. IN-USE pages need some extra
handling.
Add a new flag bit SGX_EPC_PAGE_IS_FREE that is set when a page
is added to a free list and cleared when the page is allocated.
Notes:
1) These transitions are made while holding the node->lock so that
future code that checks the flags while holding the node->lock
can be sure that if the SGX_EPC_PAGE_IS_FREE bit is set, then the
page is on the free list.
2) Initially while the pages are on the dirty list the
SGX_EPC_PAGE_IS_FREE bit is cleared.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/20211026220050.697075-2-tony.luck@intel.com
page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list);
list_del_init(&page->list);
sgx_nr_free_pages--;
+ page->flags = 0;
spin_unlock(&node->lock);
list_add_tail(&page->list, &node->free_page_list);
sgx_nr_free_pages++;
+ page->flags = SGX_EPC_PAGE_IS_FREE;
spin_unlock(&node->lock);
}
/* Pages, which are being tracked by the page reclaimer. */
#define SGX_EPC_PAGE_RECLAIMER_TRACKED BIT(0)
+/* Pages on free list */
+#define SGX_EPC_PAGE_IS_FREE BIT(1)
+
struct sgx_epc_page {
unsigned int section;
unsigned int flags;