OSDN Git Service

[InstSimplify] use computeKnownBits on shift amount operands
authorSanjay Patel <spatel@rotateright.com>
Tue, 10 May 2016 20:46:54 +0000 (20:46 +0000)
committerSanjay Patel <spatel@rotateright.com>
Tue, 10 May 2016 20:46:54 +0000 (20:46 +0000)
Do simplifications common to all shift instructions based on the amount shifted:
1. If the shift amount is known larger than the bitwidth, the result is undefined.
2. If the valid bits of the shift amount are all known to be 0, it's a shift by zero, so the shift operand is the result.

Note that we could generalize the shift-by-zero transform into a shift-by-constant if all of the valid bits in the shift
amount are known, but that would have to be done in InstCombine rather than here because it would mean we need to create
a new shift instruction.

Differential Revision: http://reviews.llvm.org/D19874

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269114 91177308-0d34-0410-b5e6-96231b3b80d8

lib/Analysis/InstructionSimplify.cpp
test/Transforms/InstSimplify/shift-knownbits.ll [new file with mode: 0644]

index 1212161..b9f9d90 100644 (file)
@@ -1315,6 +1315,22 @@ static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
       return V;
 
+  // If any bits in the shift amount make that value greater than or equal to
+  // the number of bits in the type, the shift is undefined.
+  unsigned BitWidth = Op1->getType()->getScalarSizeInBits();
+  APInt KnownZero(BitWidth, 0);
+  APInt KnownOne(BitWidth, 0);
+  computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+  if (KnownOne.getLimitedValue() >= BitWidth)
+    return UndefValue::get(Op0->getType());
+
+  // If all valid bits in the shift amount are known zero, the first operand is
+  // unchanged.
+  unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth);
+  APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits);
+  if ((KnownZero & ShiftAmountMask) == ShiftAmountMask)
+    return Op0;
+
   return nullptr;
 }
 
diff --git a/test/Transforms/InstSimplify/shift-knownbits.ll b/test/Transforms/InstSimplify/shift-knownbits.ll
new file mode 100644 (file)
index 0000000..f50ea05
--- /dev/null
@@ -0,0 +1,147 @@
+; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
+; RUN: opt < %s -instsimplify -S | FileCheck %s
+
+; If any bits of the shift amount are known to make it exceed or equal
+; the number of bits in the type, the shift causes undefined behavior.
+
+define i32 @shl_amount_is_known_bogus(i32 %a, i32 %b) {
+; CHECK-LABEL: @shl_amount_is_known_bogus(
+; CHECK-NEXT:    ret i32 undef
+;
+  %or = or i32 %b, 32
+  %shl = shl i32 %a, %or
+  ret i32 %shl
+}
+
+; Check some weird types and the other shift ops.
+
+define i31 @lshr_amount_is_known_bogus(i31 %a, i31 %b) {
+; CHECK-LABEL: @lshr_amount_is_known_bogus(
+; CHECK-NEXT:    ret i31 undef
+;
+  %or = or i31 %b, 31
+  %shr = lshr i31 %a, %or
+  ret i31 %shr
+}
+
+define i33 @ashr_amount_is_known_bogus(i33 %a, i33 %b) {
+; CHECK-LABEL: @ashr_amount_is_known_bogus(
+; CHECK-NEXT:    ret i33 undef
+;
+  %or = or i33 %b, 33
+  %shr = ashr i33 %a, %or
+  ret i33 %shr
+}
+
+
+; If all valid bits of the shift amount are known 0, there's no shift.
+; It doesn't matter if high bits are set because that would be undefined.
+; Therefore, the only possible valid result of these shifts is %a.
+
+define i16 @ashr_amount_is_zero(i16 %a, i16 %b) {
+; CHECK-LABEL: @ashr_amount_is_zero(
+; CHECK-NEXT:    ret i16 %a
+;
+  %and = and i16 %b, 65520 ; 0xfff0
+  %shr = ashr i16 %a, %and
+  ret i16 %shr
+}
+
+define i300 @lshr_amount_is_zero(i300 %a, i300 %b) {
+; CHECK-LABEL: @lshr_amount_is_zero(
+; CHECK-NEXT:    ret i300 %a
+;
+  %and = and i300 %b, 2048
+  %shr = lshr i300 %a, %and
+  ret i300 %shr
+}
+
+define i9 @shl_amount_is_zero(i9 %a, i9 %b) {
+; CHECK-LABEL: @shl_amount_is_zero(
+; CHECK-NEXT:    ret i9 %a
+;
+  %and = and i9 %b, 496 ; 0x1f0
+  %shl = shl i9 %a, %and
+  ret i9 %shl
+}
+
+
+; Verify that we've calculated the log2 boundary of valid bits correctly for a weird type.
+
+define i9 @shl_amount_is_not_known_zero(i9 %a, i9 %b) {
+; CHECK-LABEL: @shl_amount_is_not_known_zero(
+; CHECK-NEXT:    [[AND:%.*]] = and i9 %b, -8
+; CHECK-NEXT:    [[SHL:%.*]] = shl i9 %a, [[AND]]
+; CHECK-NEXT:    ret i9 [[SHL]]
+;
+  %and = and i9 %b, 504 ; 0x1f8
+  %shl = shl i9 %a, %and
+  ret i9 %shl
+}
+
+
+; For vectors, we need all scalar elements to meet the requirements to optimize.
+
+define <2 x i32> @ashr_vector_bogus(<2 x i32> %a, <2 x i32> %b) {
+; CHECK-LABEL: @ashr_vector_bogus(
+; CHECK-NEXT:    ret <2 x i32> undef
+;
+  %or = or <2 x i32> %b, <i32 32, i32 32>
+  %shr = ashr <2 x i32> %a, %or
+  ret <2 x i32> %shr
+}
+
+; FIXME: This is undef, but computeKnownBits doesn't handle the union.
+define <2 x i32> @shl_vector_bogus(<2 x i32> %a, <2 x i32> %b) {
+; CHECK-LABEL: @shl_vector_bogus(
+; CHECK-NEXT:    [[OR:%.*]] = or <2 x i32> %b, <i32 32, i32 64>
+; CHECK-NEXT:    [[SHL:%.*]] = shl <2 x i32> %a, [[OR]]
+; CHECK-NEXT:    ret <2 x i32> [[SHL]]
+;
+  %or = or <2 x i32> %b, <i32 32, i32 64>
+  %shl = shl <2 x i32> %a, %or
+  ret <2 x i32> %shl
+}
+
+define <2 x i32> @lshr_vector_zero(<2 x i32> %a, <2 x i32> %b) {
+; CHECK-LABEL: @lshr_vector_zero(
+; CHECK-NEXT:    ret <2 x i32> %a
+;
+  %and = and <2 x i32> %b, <i32 64, i32 256>
+  %shr = lshr <2 x i32> %a, %and
+  ret <2 x i32> %shr
+}
+
+; Make sure that weird vector types work too.
+define <2 x i15> @shl_vector_zero(<2 x i15> %a, <2 x i15> %b) {
+; CHECK-LABEL: @shl_vector_zero(
+; CHECK-NEXT:    ret <2 x i15> %a
+;
+  %and = and <2 x i15> %b, <i15 1024, i15 1024>
+  %shl = shl <2 x i15> %a, %and
+  ret <2 x i15> %shl
+}
+
+define <2 x i32> @shl_vector_for_real(<2 x i32> %a, <2 x i32> %b) {
+; CHECK-LABEL: @shl_vector_for_real(
+; CHECK-NEXT:    [[AND:%.*]] = and <2 x i32> %b, <i32 3, i32 3>
+; CHECK-NEXT:    [[SHL:%.*]] = shl <2 x i32> %a, [[AND]]
+; CHECK-NEXT:    ret <2 x i32> [[SHL]]
+;
+  %and = and <2 x i32> %b, <i32 3, i32 3> ; a necessary mask op
+  %shl = shl <2 x i32> %a, %and
+  ret <2 x i32> %shl
+}
+
+
+; We calculate the valid bits of the shift using log2, and log2 of 1 (the type width) is 0.
+; That should be ok. Either the shift amount is 0 or invalid (1), so we can always return %a.
+
+define i1 @shl_i1(i1 %a, i1 %b) {
+; CHECK-LABEL: @shl_i1(
+; CHECK-NEXT:    ret i1 %a
+;
+  %shl = shl i1 %a, %b
+  ret i1 %shl
+}
+