// which means using the inverse of the current transform set on the
// SurfaceFlingerConsumer.
uint32_t invTransform = mCurrentTransform;
+ if (mSurfaceFlingerConsumer->getTransformToDisplayInverse()) {
+ /*
+ * the code below applies the display's inverse transform to the buffer
+ */
+ uint32_t invTransformOrient = hw->getOrientationTransform();
+ // calculate the inverse transform
+ if (invTransformOrient & NATIVE_WINDOW_TRANSFORM_ROT_90) {
+ invTransformOrient ^= NATIVE_WINDOW_TRANSFORM_FLIP_V |
+ NATIVE_WINDOW_TRANSFORM_FLIP_H;
+ }
+ // and apply to the current transform
+ invTransform = (Transform(invTransform) * Transform(invTransformOrient)).getOrientation();
+ }
+
int winWidth = s.active.w;
int winHeight = s.active.h;
if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
winHeight = s.active.w;
}
const Rect winCrop = activeCrop.transform(
- invTransform, winWidth, winHeight);
+ invTransform, s.active.w, s.active.h);
// below, crop is intersected with winCrop expressed in crop's coordinate space
float xScale = crop.getWidth() / float(winWidth);
float yScale = crop.getHeight() / float(winHeight);
- float insetL = winCrop.left * xScale;
- float insetT = winCrop.top * yScale;
- float insetR = (s.active.w - winCrop.right ) * xScale;
- float insetB = (s.active.h - winCrop.bottom) * yScale;
+ float insetL = winCrop.left * xScale;
+ float insetT = winCrop.top * yScale;
+ float insetR = (winWidth - winCrop.right ) * xScale;
+ float insetB = (winHeight - winCrop.bottom) * yScale;
crop.left += insetL;
crop.top += insetT;