From 3a166845e86a36ae7499428bd7d09430d38d3b29 Mon Sep 17 00:00:00 2001 From: Ivailo Monev Date: Fri, 15 Jan 2016 00:13:21 +0200 Subject: [PATCH] remove 3rd party DES sources --- src/3rdparty/des/des.cpp | 602 ----------------------------------------------- 1 file changed, 602 deletions(-) delete mode 100644 src/3rdparty/des/des.cpp diff --git a/src/3rdparty/des/des.cpp b/src/3rdparty/des/des.cpp deleted file mode 100644 index c1a260bba..000000000 --- a/src/3rdparty/des/des.cpp +++ /dev/null @@ -1,602 +0,0 @@ -/* - * Implementation of DES encryption for NTLM - * - * Copyright 1997-2005 Simon Tatham. - * - * This software is released under the MIT license. - */ - -/* - * Description of DES - * ------------------ - * - * Unlike the description in FIPS 46, I'm going to use _sensible_ indices: - * bits in an n-bit word are numbered from 0 at the LSB to n-1 at the MSB. - * And S-boxes are indexed by six consecutive bits, not by the outer two - * followed by the middle four. - * - * The DES encryption routine requires a 64-bit input, and a key schedule K - * containing 16 48-bit elements. - * - * First the input is permuted by the initial permutation IP. - * Then the input is split into 32-bit words L and R. (L is the MSW.) - * Next, 16 rounds. In each round: - * (L, R) <- (R, L xor f(R, K[i])) - * Then the pre-output words L and R are swapped. - * Then L and R are glued back together into a 64-bit word. (L is the MSW, - * again, but since we just swapped them, the MSW is the R that came out - * of the last round.) - * The 64-bit output block is permuted by the inverse of IP and returned. - * - * Decryption is identical except that the elements of K are used in the - * opposite order. (This wouldn't work if that word swap didn't happen.) - * - * The function f, used in each round, accepts a 32-bit word R and a - * 48-bit key block K. It produces a 32-bit output. - * - * First R is expanded to 48 bits using the bit-selection function E. - * The resulting 48-bit block is XORed with the key block K to produce - * a 48-bit block X. - * This block X is split into eight groups of 6 bits. Each group of 6 - * bits is then looked up in one of the eight S-boxes to convert - * it to 4 bits. These eight groups of 4 bits are glued back - * together to produce a 32-bit preoutput block. - * The preoutput block is permuted using the permutation P and returned. - * - * Key setup maps a 64-bit key word into a 16x48-bit key schedule. Although - * the approved input format for the key is a 64-bit word, eight of the - * bits are discarded, so the actual quantity of key used is 56 bits. - * - * First the input key is converted to two 28-bit words C and D using - * the bit-selection function PC1. - * Then 16 rounds of key setup occur. In each round, C and D are each - * rotated left by either 1 or 2 bits (depending on which round), and - * then converted into a key schedule element using the bit-selection - * function PC2. - * - * That's the actual algorithm. Now for the tedious details: all those - * painful permutations and lookup tables. - * - * IP is a 64-to-64 bit permutation. Its output contains the following - * bits of its input (listed in order MSB to LSB of output). - * - * 6 14 22 30 38 46 54 62 4 12 20 28 36 44 52 60 - * 2 10 18 26 34 42 50 58 0 8 16 24 32 40 48 56 - * 7 15 23 31 39 47 55 63 5 13 21 29 37 45 53 61 - * 3 11 19 27 35 43 51 59 1 9 17 25 33 41 49 57 - * - * E is a 32-to-48 bit selection function. Its output contains the following - * bits of its input (listed in order MSB to LSB of output). - * - * 0 31 30 29 28 27 28 27 26 25 24 23 24 23 22 21 20 19 20 19 18 17 16 15 - * 16 15 14 13 12 11 12 11 10 9 8 7 8 7 6 5 4 3 4 3 2 1 0 31 - * - * The S-boxes are arbitrary table-lookups each mapping a 6-bit input to a - * 4-bit output. In other words, each S-box is an array[64] of 4-bit numbers. - * The S-boxes are listed below. The first S-box listed is applied to the - * most significant six bits of the block X; the last one is applied to the - * least significant. - * - * 14 0 4 15 13 7 1 4 2 14 15 2 11 13 8 1 - * 3 10 10 6 6 12 12 11 5 9 9 5 0 3 7 8 - * 4 15 1 12 14 8 8 2 13 4 6 9 2 1 11 7 - * 15 5 12 11 9 3 7 14 3 10 10 0 5 6 0 13 - * - * 15 3 1 13 8 4 14 7 6 15 11 2 3 8 4 14 - * 9 12 7 0 2 1 13 10 12 6 0 9 5 11 10 5 - * 0 13 14 8 7 10 11 1 10 3 4 15 13 4 1 2 - * 5 11 8 6 12 7 6 12 9 0 3 5 2 14 15 9 - * - * 10 13 0 7 9 0 14 9 6 3 3 4 15 6 5 10 - * 1 2 13 8 12 5 7 14 11 12 4 11 2 15 8 1 - * 13 1 6 10 4 13 9 0 8 6 15 9 3 8 0 7 - * 11 4 1 15 2 14 12 3 5 11 10 5 14 2 7 12 - * - * 7 13 13 8 14 11 3 5 0 6 6 15 9 0 10 3 - * 1 4 2 7 8 2 5 12 11 1 12 10 4 14 15 9 - * 10 3 6 15 9 0 0 6 12 10 11 1 7 13 13 8 - * 15 9 1 4 3 5 14 11 5 12 2 7 8 2 4 14 - * - * 2 14 12 11 4 2 1 12 7 4 10 7 11 13 6 1 - * 8 5 5 0 3 15 15 10 13 3 0 9 14 8 9 6 - * 4 11 2 8 1 12 11 7 10 1 13 14 7 2 8 13 - * 15 6 9 15 12 0 5 9 6 10 3 4 0 5 14 3 - * - * 12 10 1 15 10 4 15 2 9 7 2 12 6 9 8 5 - * 0 6 13 1 3 13 4 14 14 0 7 11 5 3 11 8 - * 9 4 14 3 15 2 5 12 2 9 8 5 12 15 3 10 - * 7 11 0 14 4 1 10 7 1 6 13 0 11 8 6 13 - * - * 4 13 11 0 2 11 14 7 15 4 0 9 8 1 13 10 - * 3 14 12 3 9 5 7 12 5 2 10 15 6 8 1 6 - * 1 6 4 11 11 13 13 8 12 1 3 4 7 10 14 7 - * 10 9 15 5 6 0 8 15 0 14 5 2 9 3 2 12 - * - * 13 1 2 15 8 13 4 8 6 10 15 3 11 7 1 4 - * 10 12 9 5 3 6 14 11 5 0 0 14 12 9 7 2 - * 7 2 11 1 4 14 1 7 9 4 12 10 14 8 2 13 - * 0 15 6 12 10 9 13 0 15 3 3 5 5 6 8 11 - * - * P is a 32-to-32 bit permutation. Its output contains the following - * bits of its input (listed in order MSB to LSB of output). - * - * 16 25 12 11 3 20 4 15 31 17 9 6 27 14 1 22 - * 30 24 8 18 0 5 29 23 13 19 2 26 10 21 28 7 - * - * PC1 is a 64-to-56 bit selection function. Its output is in two words, - * C and D. The word C contains the following bits of its input (listed - * in order MSB to LSB of output). - * - * 7 15 23 31 39 47 55 63 6 14 22 30 38 46 - * 54 62 5 13 21 29 37 45 53 61 4 12 20 28 - * - * And the word D contains these bits. - * - * 1 9 17 25 33 41 49 57 2 10 18 26 34 42 - * 50 58 3 11 19 27 35 43 51 59 36 44 52 60 - * - * PC2 is a 56-to-48 bit selection function. Its input is in two words, - * C and D. These are treated as one 56-bit word (with C more significant, - * so that bits 55 to 28 of the word are bits 27 to 0 of C, and bits 27 to - * 0 of the word are bits 27 to 0 of D). The output contains the following - * bits of this 56-bit input word (listed in order MSB to LSB of output). - * - * 42 39 45 32 55 51 53 28 41 50 35 46 33 37 44 52 30 48 40 49 29 36 43 54 - * 15 4 25 19 9 1 26 16 5 11 23 8 12 7 17 0 22 3 10 14 6 20 27 24 - */ - -/* - * Implementation details - * ---------------------- - * - * If you look at the code in this module, you'll find it looks - * nothing _like_ the above algorithm. Here I explain the - * differences... - * - * Key setup has not been heavily optimised here. We are not - * concerned with key agility: we aren't codebreakers. We don't - * mind a little delay (and it really is a little one; it may be a - * factor of five or so slower than it could be but it's still not - * an appreciable length of time) while setting up. The only tweaks - * in the key setup are ones which change the format of the key - * schedule to speed up the actual encryption. I'll describe those - * below. - * - * The first and most obvious optimisation is the S-boxes. Since - * each S-box always targets the same four bits in the final 32-bit - * word, so the output from (for example) S-box 0 must always be - * shifted left 28 bits, we can store the already-shifted outputs - * in the lookup tables. This reduces lookup-and-shift to lookup, - * so the S-box step is now just a question of ORing together eight - * table lookups. - * - * The permutation P is just a bit order change; it's invariant - * with respect to OR, in that P(x)|P(y) = P(x|y). Therefore, we - * can apply P to every entry of the S-box tables and then we don't - * have to do it in the code of f(). This yields a set of tables - * which might be called SP-boxes. - * - * The bit-selection function E is our next target. Note that E is - * immediately followed by the operation of splitting into 6-bit - * chunks. Examining the 6-bit chunks coming out of E we notice - * they're all contiguous within the word (speaking cyclically - - * the end two wrap round); so we can extract those bit strings - * individually rather than explicitly running E. This would yield - * code such as - * - * y |= SPboxes[0][ (rotl(R, 5) ^ top6bitsofK) & 0x3F ]; - * t |= SPboxes[1][ (rotl(R,11) ^ next6bitsofK) & 0x3F ]; - * - * and so on; and the key schedule preparation would have to - * provide each 6-bit chunk separately. - * - * Really we'd like to XOR in the key schedule element before - * looking up bit strings in R. This we can't do, naively, because - * the 6-bit strings we want overlap. But look at the strings: - * - * 3322222222221111111111 - * bit 10987654321098765432109876543210 - * - * box0 XXXXX X - * box1 XXXXXX - * box2 XXXXXX - * box3 XXXXXX - * box4 XXXXXX - * box5 XXXXXX - * box6 XXXXXX - * box7 X XXXXX - * - * The bit strings we need to XOR in for boxes 0, 2, 4 and 6 don't - * overlap with each other. Neither do the ones for boxes 1, 3, 5 - * and 7. So we could provide the key schedule in the form of two - * words that we can separately XOR into R, and then every S-box - * index is available as a (cyclically) contiguous 6-bit substring - * of one or the other of the results. - * - * The comments in Eric Young's libdes implementation point out - * that two of these bit strings require a rotation (rather than a - * simple shift) to extract. It's unavoidable that at least _one_ - * must do; but we can actually run the whole inner algorithm (all - * 16 rounds) rotated one bit to the left, so that what the `real' - * DES description sees as L=0x80000001 we see as L=0x00000003. - * This requires rotating all our SP-box entries one bit to the - * left, and rotating each word of the key schedule elements one to - * the left, and rotating L and R one bit left just after IP and - * one bit right again just before FP. And in each round we convert - * a rotate into a shift, so we've saved a few per cent. - * - * That's about it for the inner loop; the SP-box tables as listed - * below are what I've described here (the original S value, - * shifted to its final place in the input to P, run through P, and - * then rotated one bit left). All that remains is to optimise the - * initial permutation IP. - * - * IP is not an arbitrary permutation. It has the nice property - * that if you take any bit number, write it in binary (6 bits), - * permute those 6 bits and invert some of them, you get the final - * position of that bit. Specifically, the bit whose initial - * position is given (in binary) as fedcba ends up in position - * AcbFED (where a capital letter denotes the inverse of a bit). - * - * We have the 64-bit data in two 32-bit words L and R, where bits - * in L are those with f=1 and bits in R are those with f=0. We - * note that we can do a simple transformation: suppose we exchange - * the bits with f=1,c=0 and the bits with f=0,c=1. This will cause - * the bit fedcba to be in position cedfba - we've `swapped' bits c - * and f in the position of each bit! - * - * Better still, this transformation is easy. In the example above, - * bits in L with c=0 are bits 0x0F0F0F0F, and those in R with c=1 - * are 0xF0F0F0F0. So we can do - * - * difference = ((R >> 4) ^ L) & 0x0F0F0F0F - * R ^= (difference << 4) - * L ^= difference - * - * to perform the swap. Let's denote this by bitswap(4,0x0F0F0F0F). - * Also, we can invert the bit at the top just by exchanging L and - * R. So in a few swaps and a few of these bit operations we can - * do: - * - * Initially the position of bit fedcba is fedcba - * Swap L with R to make it Fedcba - * Perform bitswap( 4,0x0F0F0F0F) to make it cedFba - * Perform bitswap(16,0x0000FFFF) to make it ecdFba - * Swap L with R to make it EcdFba - * Perform bitswap( 2,0x33333333) to make it bcdFEa - * Perform bitswap( 8,0x00FF00FF) to make it dcbFEa - * Swap L with R to make it DcbFEa - * Perform bitswap( 1,0x55555555) to make it acbFED - * Swap L with R to make it AcbFED - * - * (In the actual code the four swaps are implicit: R and L are - * simply used the other way round in the first, second and last - * bitswap operations.) - * - * The final permutation is just the inverse of IP, so it can be - * performed by a similar set of operations. - */ - -struct des_context { - quint32 k0246[16], k1357[16]; -}; - -#define rotl(x, c) ( (x << c) | (x >> (32-c)) ) -#define rotl28(x, c) ( ( (x << c) | (x >> (28-c)) ) & 0x0FFFFFFF) - -static quint32 bitsel(quint32 * input, const int *bitnums, int size) -{ - quint32 ret = 0; - while (size--) { - int bitpos = *bitnums++; - ret <<= 1; - if (bitpos >= 0) - ret |= 1 & (input[bitpos / 32] >> (bitpos % 32)); - } - return ret; -} - -static inline void des_key_setup(quint32 key_msw, quint32 key_lsw, - struct des_context *sched) -{ - /* Tables are modified to work with 56-bit key */ - static const int PC1_Cbits[] = { - 6, 13, 20, 27, 34, 41, 48, 55, 5, 12, 19, 26, 33, 40, - 47, 54, 4, 11, 18, 25, 32, 39, 46, 53, 3, 10, 17, 24 - }; - static const int PC1_Dbits[] = { - 0, 7, 14, 21, 28, 35, 42, 49, 1, 8, 15, 22, 29, 36, - 43, 50, 2, 9, 16, 23, 30, 37, 44, 51, 31, 38, 45, 52 - }; - /* - * The bit numbers in the two lists below don't correspond to - * the ones in the above description of PC2, because in the - * above description C and D are concatenated so `bit 28' means - * bit 0 of C. In this implementation we're using the standard - * `bitsel' function above and C is in the second word, so bit - * 0 of C is addressed by writing `32' here. - */ - static const int PC2_0246[] = { - 49, 36, 59, 55, -1, -1, 37, 41, 48, 56, 34, 52, -1, -1, 15, 4, - 25, 19, 9, 1, -1, -1, 12, 7, 17, 0, 22, 3, -1, -1, 46, 43 - }; - static const int PC2_1357[] = { - -1, -1, 57, 32, 45, 54, 39, 50, -1, -1, 44, 53, 33, 40, 47, 58, - -1, -1, 26, 16, 5, 11, 23, 8, -1, -1, 10, 14, 6, 20, 27, 24 - }; - static const int leftshifts[] = { - 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 - }; - - quint32 C, D; - quint32 buf[2]; - int i; - - buf[0] = key_lsw; - buf[1] = key_msw; - - C = bitsel(buf, PC1_Cbits, 28); - D = bitsel(buf, PC1_Dbits, 28); - - for (i = 0; i < 16; i++) { - C = rotl28(C, leftshifts[i]); - D = rotl28(D, leftshifts[i]); - buf[0] = D; - buf[1] = C; - sched->k0246[i] = bitsel(buf, PC2_0246, 32); - sched->k1357[i] = bitsel(buf, PC2_1357, 32); - } -} - -static const quint32 SPboxes[8][64] = { - {0x01010400, 0x00000000, 0x00010000, 0x01010404, - 0x01010004, 0x00010404, 0x00000004, 0x00010000, - 0x00000400, 0x01010400, 0x01010404, 0x00000400, - 0x01000404, 0x01010004, 0x01000000, 0x00000004, - 0x00000404, 0x01000400, 0x01000400, 0x00010400, - 0x00010400, 0x01010000, 0x01010000, 0x01000404, - 0x00010004, 0x01000004, 0x01000004, 0x00010004, - 0x00000000, 0x00000404, 0x00010404, 0x01000000, - 0x00010000, 0x01010404, 0x00000004, 0x01010000, - 0x01010400, 0x01000000, 0x01000000, 0x00000400, - 0x01010004, 0x00010000, 0x00010400, 0x01000004, - 0x00000400, 0x00000004, 0x01000404, 0x00010404, - 0x01010404, 0x00010004, 0x01010000, 0x01000404, - 0x01000004, 0x00000404, 0x00010404, 0x01010400, - 0x00000404, 0x01000400, 0x01000400, 0x00000000, - 0x00010004, 0x00010400, 0x00000000, 0x01010004}, - - {0x80108020, 0x80008000, 0x00008000, 0x00108020, - 0x00100000, 0x00000020, 0x80100020, 0x80008020, - 0x80000020, 0x80108020, 0x80108000, 0x80000000, - 0x80008000, 0x00100000, 0x00000020, 0x80100020, - 0x00108000, 0x00100020, 0x80008020, 0x00000000, - 0x80000000, 0x00008000, 0x00108020, 0x80100000, - 0x00100020, 0x80000020, 0x00000000, 0x00108000, - 0x00008020, 0x80108000, 0x80100000, 0x00008020, - 0x00000000, 0x00108020, 0x80100020, 0x00100000, - 0x80008020, 0x80100000, 0x80108000, 0x00008000, - 0x80100000, 0x80008000, 0x00000020, 0x80108020, - 0x00108020, 0x00000020, 0x00008000, 0x80000000, - 0x00008020, 0x80108000, 0x00100000, 0x80000020, - 0x00100020, 0x80008020, 0x80000020, 0x00100020, - 0x00108000, 0x00000000, 0x80008000, 0x00008020, - 0x80000000, 0x80100020, 0x80108020, 0x00108000}, - - {0x00000208, 0x08020200, 0x00000000, 0x08020008, - 0x08000200, 0x00000000, 0x00020208, 0x08000200, - 0x00020008, 0x08000008, 0x08000008, 0x00020000, - 0x08020208, 0x00020008, 0x08020000, 0x00000208, - 0x08000000, 0x00000008, 0x08020200, 0x00000200, - 0x00020200, 0x08020000, 0x08020008, 0x00020208, - 0x08000208, 0x00020200, 0x00020000, 0x08000208, - 0x00000008, 0x08020208, 0x00000200, 0x08000000, - 0x08020200, 0x08000000, 0x00020008, 0x00000208, - 0x00020000, 0x08020200, 0x08000200, 0x00000000, - 0x00000200, 0x00020008, 0x08020208, 0x08000200, - 0x08000008, 0x00000200, 0x00000000, 0x08020008, - 0x08000208, 0x00020000, 0x08000000, 0x08020208, - 0x00000008, 0x00020208, 0x00020200, 0x08000008, - 0x08020000, 0x08000208, 0x00000208, 0x08020000, - 0x00020208, 0x00000008, 0x08020008, 0x00020200}, - - {0x00802001, 0x00002081, 0x00002081, 0x00000080, - 0x00802080, 0x00800081, 0x00800001, 0x00002001, - 0x00000000, 0x00802000, 0x00802000, 0x00802081, - 0x00000081, 0x00000000, 0x00800080, 0x00800001, - 0x00000001, 0x00002000, 0x00800000, 0x00802001, - 0x00000080, 0x00800000, 0x00002001, 0x00002080, - 0x00800081, 0x00000001, 0x00002080, 0x00800080, - 0x00002000, 0x00802080, 0x00802081, 0x00000081, - 0x00800080, 0x00800001, 0x00802000, 0x00802081, - 0x00000081, 0x00000000, 0x00000000, 0x00802000, - 0x00002080, 0x00800080, 0x00800081, 0x00000001, - 0x00802001, 0x00002081, 0x00002081, 0x00000080, - 0x00802081, 0x00000081, 0x00000001, 0x00002000, - 0x00800001, 0x00002001, 0x00802080, 0x00800081, - 0x00002001, 0x00002080, 0x00800000, 0x00802001, - 0x00000080, 0x00800000, 0x00002000, 0x00802080}, - - {0x00000100, 0x02080100, 0x02080000, 0x42000100, - 0x00080000, 0x00000100, 0x40000000, 0x02080000, - 0x40080100, 0x00080000, 0x02000100, 0x40080100, - 0x42000100, 0x42080000, 0x00080100, 0x40000000, - 0x02000000, 0x40080000, 0x40080000, 0x00000000, - 0x40000100, 0x42080100, 0x42080100, 0x02000100, - 0x42080000, 0x40000100, 0x00000000, 0x42000000, - 0x02080100, 0x02000000, 0x42000000, 0x00080100, - 0x00080000, 0x42000100, 0x00000100, 0x02000000, - 0x40000000, 0x02080000, 0x42000100, 0x40080100, - 0x02000100, 0x40000000, 0x42080000, 0x02080100, - 0x40080100, 0x00000100, 0x02000000, 0x42080000, - 0x42080100, 0x00080100, 0x42000000, 0x42080100, - 0x02080000, 0x00000000, 0x40080000, 0x42000000, - 0x00080100, 0x02000100, 0x40000100, 0x00080000, - 0x00000000, 0x40080000, 0x02080100, 0x40000100}, - - {0x20000010, 0x20400000, 0x00004000, 0x20404010, - 0x20400000, 0x00000010, 0x20404010, 0x00400000, - 0x20004000, 0x00404010, 0x00400000, 0x20000010, - 0x00400010, 0x20004000, 0x20000000, 0x00004010, - 0x00000000, 0x00400010, 0x20004010, 0x00004000, - 0x00404000, 0x20004010, 0x00000010, 0x20400010, - 0x20400010, 0x00000000, 0x00404010, 0x20404000, - 0x00004010, 0x00404000, 0x20404000, 0x20000000, - 0x20004000, 0x00000010, 0x20400010, 0x00404000, - 0x20404010, 0x00400000, 0x00004010, 0x20000010, - 0x00400000, 0x20004000, 0x20000000, 0x00004010, - 0x20000010, 0x20404010, 0x00404000, 0x20400000, - 0x00404010, 0x20404000, 0x00000000, 0x20400010, - 0x00000010, 0x00004000, 0x20400000, 0x00404010, - 0x00004000, 0x00400010, 0x20004010, 0x00000000, - 0x20404000, 0x20000000, 0x00400010, 0x20004010}, - - {0x00200000, 0x04200002, 0x04000802, 0x00000000, - 0x00000800, 0x04000802, 0x00200802, 0x04200800, - 0x04200802, 0x00200000, 0x00000000, 0x04000002, - 0x00000002, 0x04000000, 0x04200002, 0x00000802, - 0x04000800, 0x00200802, 0x00200002, 0x04000800, - 0x04000002, 0x04200000, 0x04200800, 0x00200002, - 0x04200000, 0x00000800, 0x00000802, 0x04200802, - 0x00200800, 0x00000002, 0x04000000, 0x00200800, - 0x04000000, 0x00200800, 0x00200000, 0x04000802, - 0x04000802, 0x04200002, 0x04200002, 0x00000002, - 0x00200002, 0x04000000, 0x04000800, 0x00200000, - 0x04200800, 0x00000802, 0x00200802, 0x04200800, - 0x00000802, 0x04000002, 0x04200802, 0x04200000, - 0x00200800, 0x00000000, 0x00000002, 0x04200802, - 0x00000000, 0x00200802, 0x04200000, 0x00000800, - 0x04000002, 0x04000800, 0x00000800, 0x00200002}, - - {0x10001040, 0x00001000, 0x00040000, 0x10041040, - 0x10000000, 0x10001040, 0x00000040, 0x10000000, - 0x00040040, 0x10040000, 0x10041040, 0x00041000, - 0x10041000, 0x00041040, 0x00001000, 0x00000040, - 0x10040000, 0x10000040, 0x10001000, 0x00001040, - 0x00041000, 0x00040040, 0x10040040, 0x10041000, - 0x00001040, 0x00000000, 0x00000000, 0x10040040, - 0x10000040, 0x10001000, 0x00041040, 0x00040000, - 0x00041040, 0x00040000, 0x10041000, 0x00001000, - 0x00000040, 0x10040040, 0x00001000, 0x00041040, - 0x10001000, 0x00000040, 0x10000040, 0x10040000, - 0x10040040, 0x10000000, 0x00040000, 0x10001040, - 0x00000000, 0x10041040, 0x00040040, 0x10000040, - 0x10040000, 0x10001000, 0x10001040, 0x00000000, - 0x10041040, 0x00041000, 0x00041000, 0x00001040, - 0x00001040, 0x00040040, 0x10000000, 0x10041000} -}; - -#define f(R, K0246, K1357) (\ - s0246 = R ^ K0246, \ - s1357 = R ^ K1357, \ - s0246 = rotl(s0246, 28), \ - SPboxes[0] [(s0246 >> 24) & 0x3F] | \ - SPboxes[1] [(s1357 >> 24) & 0x3F] | \ - SPboxes[2] [(s0246 >> 16) & 0x3F] | \ - SPboxes[3] [(s1357 >> 16) & 0x3F] | \ - SPboxes[4] [(s0246 >> 8) & 0x3F] | \ - SPboxes[5] [(s1357 >> 8) & 0x3F] | \ - SPboxes[6] [(s0246 ) & 0x3F] | \ - SPboxes[7] [(s1357 ) & 0x3F]) - -#define bitswap(L, R, n, mask) (\ - swap = mask & ( (R >> n) ^ L ), \ - R ^= swap << n, \ - L ^= swap) - -/* Initial permutation */ -#define IP(L, R) (\ - bitswap(R, L, 4, 0x0F0F0F0F), \ - bitswap(R, L, 16, 0x0000FFFF), \ - bitswap(L, R, 2, 0x33333333), \ - bitswap(L, R, 8, 0x00FF00FF), \ - bitswap(R, L, 1, 0x55555555)) - -/* Final permutation */ -#define FP(L, R) (\ - bitswap(R, L, 1, 0x55555555), \ - bitswap(L, R, 8, 0x00FF00FF), \ - bitswap(L, R, 2, 0x33333333), \ - bitswap(R, L, 16, 0x0000FFFF), \ - bitswap(R, L, 4, 0x0F0F0F0F)) - -static void -des_encipher(quint32 *output, quint32 L, quint32 R, - struct des_context *sched) -{ - quint32 swap, s0246, s1357; - - IP(L, R); - - L = rotl(L, 1); - R = rotl(R, 1); - - L ^= f(R, sched->k0246[0], sched->k1357[0]); - R ^= f(L, sched->k0246[1], sched->k1357[1]); - L ^= f(R, sched->k0246[2], sched->k1357[2]); - R ^= f(L, sched->k0246[3], sched->k1357[3]); - L ^= f(R, sched->k0246[4], sched->k1357[4]); - R ^= f(L, sched->k0246[5], sched->k1357[5]); - L ^= f(R, sched->k0246[6], sched->k1357[6]); - R ^= f(L, sched->k0246[7], sched->k1357[7]); - L ^= f(R, sched->k0246[8], sched->k1357[8]); - R ^= f(L, sched->k0246[9], sched->k1357[9]); - L ^= f(R, sched->k0246[10], sched->k1357[10]); - R ^= f(L, sched->k0246[11], sched->k1357[11]); - L ^= f(R, sched->k0246[12], sched->k1357[12]); - R ^= f(L, sched->k0246[13], sched->k1357[13]); - L ^= f(R, sched->k0246[14], sched->k1357[14]); - R ^= f(L, sched->k0246[15], sched->k1357[15]); - - L = rotl(L, 31); - R = rotl(R, 31); - - swap = L; - L = R; - R = swap; - - FP(L, R); - - output[0] = L; - output[1] = R; -} - -#define GET_32BIT_MSB_FIRST(cp) \ - (((unsigned long)(unsigned char)(cp)[3]) | \ - ((unsigned long)(unsigned char)(cp)[2] << 8) | \ - ((unsigned long)(unsigned char)(cp)[1] << 16) | \ - ((unsigned long)(unsigned char)(cp)[0] << 24)) - -#define PUT_32BIT_MSB_FIRST(cp, value) do { \ - (cp)[3] = (value); \ - (cp)[2] = (value) >> 8; \ - (cp)[1] = (value) >> 16; \ - (cp)[0] = (value) >> 24; } while (0) - -static inline void -des_cbc_encrypt(unsigned char *dest, const unsigned char *src, - struct des_context *sched) -{ - quint32 out[2], L, R; - - L = GET_32BIT_MSB_FIRST(src); - R = GET_32BIT_MSB_FIRST(src + 4); - des_encipher(out, L, R, sched); - PUT_32BIT_MSB_FIRST(dest, out[0]); - PUT_32BIT_MSB_FIRST(dest + 4, out[1]); -} - - -static unsigned char * -deshash(unsigned char *dst, const unsigned char *key, - const unsigned char *src) -{ - struct des_context ctx; - - des_key_setup(GET_32BIT_MSB_FIRST(key) >> 8, - GET_32BIT_MSB_FIRST(key + 3), &ctx); - - des_cbc_encrypt(dst, src, &ctx); - - return dst; -} -- 2.11.0