From 3e3bb36ee9122fdb211cb08575d6837f8ab522cc Mon Sep 17 00:00:00 2001 From: Tom Lane Date: Tue, 21 Aug 2007 21:08:47 +0000 Subject: [PATCH] First rough cut at text search documentation: bare bones reference pages for the new SQL commands. I also committed Bruce's text search introductory chapter, as-is except for fixing some markup errors, so that there would be a place for the reference pages to link to. --- doc/src/sgml/filelist.sgml | 5 +- doc/src/sgml/postgres.sgml | 3 +- doc/src/sgml/ref/allfiles.sgml | 14 +- doc/src/sgml/ref/alter_tsconfig.sgml | 202 ++ doc/src/sgml/ref/alter_tsdictionary.sgml | 118 + doc/src/sgml/ref/alter_tsparser.sgml | 82 + doc/src/sgml/ref/alter_tstemplate.sgml | 82 + doc/src/sgml/ref/comment.sgml | 18 +- doc/src/sgml/ref/create_tsconfig.sgml | 126 + doc/src/sgml/ref/create_tsdictionary.sgml | 111 + doc/src/sgml/ref/create_tsparser.sgml | 152 ++ doc/src/sgml/ref/create_tstemplate.sgml | 125 + doc/src/sgml/ref/drop_tsconfig.sgml | 118 + doc/src/sgml/ref/drop_tsdictionary.sgml | 117 + doc/src/sgml/ref/drop_tsparser.sgml | 115 + doc/src/sgml/ref/drop_tstemplate.sgml | 116 + doc/src/sgml/reference.sgml | 14 +- doc/src/sgml/textsearch.sgml | 3716 +++++++++++++++++++++++++++++ 18 files changed, 5224 insertions(+), 10 deletions(-) create mode 100644 doc/src/sgml/ref/alter_tsconfig.sgml create mode 100644 doc/src/sgml/ref/alter_tsdictionary.sgml create mode 100644 doc/src/sgml/ref/alter_tsparser.sgml create mode 100644 doc/src/sgml/ref/alter_tstemplate.sgml create mode 100644 doc/src/sgml/ref/create_tsconfig.sgml create mode 100644 doc/src/sgml/ref/create_tsdictionary.sgml create mode 100644 doc/src/sgml/ref/create_tsparser.sgml create mode 100644 doc/src/sgml/ref/create_tstemplate.sgml create mode 100644 doc/src/sgml/ref/drop_tsconfig.sgml create mode 100644 doc/src/sgml/ref/drop_tsdictionary.sgml create mode 100644 doc/src/sgml/ref/drop_tsparser.sgml create mode 100644 doc/src/sgml/ref/drop_tstemplate.sgml create mode 100644 doc/src/sgml/textsearch.sgml diff --git a/doc/src/sgml/filelist.sgml b/doc/src/sgml/filelist.sgml index fe1fdfd579..8de816db6b 100644 --- a/doc/src/sgml/filelist.sgml +++ b/doc/src/sgml/filelist.sgml @@ -1,4 +1,4 @@ - + @@ -17,7 +17,6 @@ - @@ -26,7 +25,9 @@ + + diff --git a/doc/src/sgml/postgres.sgml b/doc/src/sgml/postgres.sgml index 12a90dcec7..ecacb75bdf 100644 --- a/doc/src/sgml/postgres.sgml +++ b/doc/src/sgml/postgres.sgml @@ -1,4 +1,4 @@ - + @@ -22,6 +22,10 @@ Complete list of usable sgml source files in this directory. + + + + @@ -56,6 +60,10 @@ Complete list of usable sgml source files in this directory. + + + + @@ -83,6 +91,10 @@ Complete list of usable sgml source files in this directory. + + + + diff --git a/doc/src/sgml/ref/alter_tsconfig.sgml b/doc/src/sgml/ref/alter_tsconfig.sgml new file mode 100644 index 0000000000..295ba1df64 --- /dev/null +++ b/doc/src/sgml/ref/alter_tsconfig.sgml @@ -0,0 +1,202 @@ + + + + + ALTER TEXT SEARCH CONFIGURATION + SQL - Language Statements + + + + ALTER TEXT SEARCH CONFIGURATION + change the definition of a text search configuration + + + + ALTER TEXT SEARCH CONFIGURATION + + + + +ALTER TEXT SEARCH CONFIGURATION name ( + PARSER = parser_name +) +ALTER TEXT SEARCH CONFIGURATION name + ADD MAPPING FOR token_type [, ... ] WITH dictionary_name [, ... ] +ALTER TEXT SEARCH CONFIGURATION name + ALTER MAPPING FOR token_type [, ... ] WITH dictionary_name [, ... ] +ALTER TEXT SEARCH CONFIGURATION name + ALTER MAPPING REPLACE old_dictionary WITH new_dictionary +ALTER TEXT SEARCH CONFIGURATION name + ALTER MAPPING FOR token_type [, ... ] REPLACE old_dictionary WITH new_dictionary +ALTER TEXT SEARCH CONFIGURATION name + DROP MAPPING [ IF EXISTS ] FOR token_type [, ... ] +ALTER TEXT SEARCH CONFIGURATION name RENAME TO newname +ALTER TEXT SEARCH CONFIGURATION name OWNER TO newowner + + + + + Description + + + ALTER TEXT SEARCH CONFIGURATION changes the definition of + a text search configuration. You can change which parser it uses, modify + its mapping from token types to dictionaries, + or change the configuration's name or owner. + + + + You must be the owner of the configuration to use + ALTER TEXT SEARCH CONFIGURATION. + + + + + Parameters + + + + name + + + The name (optionally schema-qualified) of an existing text search + configuration. + + + + + + parser_name + + + The name of a new text search parser to use for this configuration. + + + + + + token_type + + + The name of a token type that is emitted by the configuration's + parser. + + + + + + dictionary_name + + + The name of a text search dictionary to be consulted for the + specified token type(s). If multiple dictionaries are listed, + they are consulted in the specified order. + + + + + + old_dictionary + + + The name of a text search dictionary to be replaced in the mapping. + + + + + + old_dictionary + + + The name of a text search dictionary to be substituted for + old_dictionary. + + + + + + newname + + + The new name of the text search configuration. + + + + + + newowner + + + The new owner of the text search configuration. + + + + + + + The ADD MAPPING FOR form installs a list of dictionaries to be + consulted for the specified token type(s); it is an error if there is + already a mapping for any of the token types. + The ALTER MAPPING FOR form does the same, but first removing + any existing mapping for those token types. + The ALTER MAPPING REPLACE forms substitute new_dictionary for old_dictionary anywhere the latter appears. + This is done for only the specified token types when FOR + appears, or for all mappings of the configuration when it doesn't. + The DROP MAPPING form removes all dictionaries for the + specified token type(s), causing tokens of those types to be ignored + by the text search configuration. It is an error if there is no mapping + for the token types, unless IF EXISTS appears. + + + + + + Notes + + + While changing the text search parser used by a configuration is allowed, + this will only work nicely if old and new parsers use the same set of + token types. It is advisable to drop the mappings for any incompatible + token types before changing parsers. + + + + + + Examples + + + The following example replaces the english dictionary + with the swedish dictionary anywhere that english + is used within my_config. + + + +ALTER TEXT SEARCH CONFIGURATION my_config + ALTER MAPPING REPLACE english WITH swedish; + + + + + Compatibility + + + There is no ALTER TEXT SEARCH CONFIGURATION statement in + the SQL standard. + + + + + See Also + + + + + + + diff --git a/doc/src/sgml/ref/alter_tsdictionary.sgml b/doc/src/sgml/ref/alter_tsdictionary.sgml new file mode 100644 index 0000000000..59c3366655 --- /dev/null +++ b/doc/src/sgml/ref/alter_tsdictionary.sgml @@ -0,0 +1,118 @@ + + + + + ALTER TEXT SEARCH DICTIONARY + SQL - Language Statements + + + + ALTER TEXT SEARCH DICTIONARY + change the definition of a text search dictionary + + + + ALTER TEXT SEARCH DICTIONARY + + + + +ALTER TEXT SEARCH DICTIONARY name ( OPTION = init_options ) +ALTER TEXT SEARCH DICTIONARY name RENAME TO newname +ALTER TEXT SEARCH DICTIONARY name OWNER TO newowner + + + + + Description + + + ALTER TEXT SEARCH DICTIONARY changes the definition of + a text search dictionary. You can change the dictionary's initialization + options, or change the dictionary's name or owner. + + + + You must be the owner of the dictionary to use + ALTER TEXT SEARCH DICTIONARY. + + + + + Parameters + + + + name + + + The name (optionally schema-qualified) of an existing text search + dictionary. + + + + + + init_options + + + A new list of initialization options, or NULL to + remove all options. + + + + + + newname + + + The new name of the text search dictionary. + + + + + + newowner + + + The new owner of the text search dictionary. + + + + + + + + Examples + + + The following example command sets the language and stopword list + for a Snowball-based dictionary. + + + +ALTER TEXT SEARCH DICTIONARY my_russian ( option = 'Language=russian, StopWords=my_russian' ); + + + + + Compatibility + + + There is no ALTER TEXT SEARCH DICTIONARY statement in + the SQL standard. + + + + + See Also + + + + + + + diff --git a/doc/src/sgml/ref/alter_tsparser.sgml b/doc/src/sgml/ref/alter_tsparser.sgml new file mode 100644 index 0000000000..a94d3939b8 --- /dev/null +++ b/doc/src/sgml/ref/alter_tsparser.sgml @@ -0,0 +1,82 @@ + + + + + ALTER TEXT SEARCH PARSER + SQL - Language Statements + + + + ALTER TEXT SEARCH PARSER + change the definition of a text search parser + + + + ALTER TEXT SEARCH PARSER + + + + +ALTER TEXT SEARCH PARSER name RENAME TO newname + + + + + Description + + + ALTER TEXT SEARCH PARSER changes the definition of + a text search parser. Currently, the only supported functionality + is to change the parser's name. + + + + You must be a superuser to use ALTER TEXT SEARCH PARSER. + + + + + Parameters + + + + name + + + The name (optionally schema-qualified) of an existing text search parser. + + + + + + newname + + + The new name of the text search parser. + + + + + + + + Compatibility + + + There is no ALTER TEXT SEARCH PARSER statement in + the SQL standard. + + + + + See Also + + + + + + + diff --git a/doc/src/sgml/ref/alter_tstemplate.sgml b/doc/src/sgml/ref/alter_tstemplate.sgml new file mode 100644 index 0000000000..4ee9e82bfb --- /dev/null +++ b/doc/src/sgml/ref/alter_tstemplate.sgml @@ -0,0 +1,82 @@ + + + + + ALTER TEXT SEARCH TEMPLATE + SQL - Language Statements + + + + ALTER TEXT SEARCH TEMPLATE + change the definition of a text search template + + + + ALTER TEXT SEARCH TEMPLATE + + + + +ALTER TEXT SEARCH TEMPLATE name RENAME TO newname + + + + + Description + + + ALTER TEXT SEARCH TEMPLATE changes the definition of + a text search template. Currently, the only supported functionality + is to change the template's name. + + + + You must be a superuser to use ALTER TEXT SEARCH TEMPLATE. + + + + + Parameters + + + + name + + + The name (optionally schema-qualified) of an existing text search template. + + + + + + newname + + + The new name of the text search template. + + + + + + + + Compatibility + + + There is no ALTER TEXT SEARCH TEMPLATE statement in + the SQL standard. + + + + + See Also + + + + + + + diff --git a/doc/src/sgml/ref/comment.sgml b/doc/src/sgml/ref/comment.sgml index 733f75ab3b..c8993e915b 100644 --- a/doc/src/sgml/ref/comment.sgml +++ b/doc/src/sgml/ref/comment.sgml @@ -1,5 +1,5 @@ @@ -42,6 +42,10 @@ COMMENT ON SCHEMA object_name | SEQUENCE object_name | TABLESPACE object_name | + TEXT SEARCH CONFIGURATION object_name | + TEXT SEARCH DICTIONARY object_name | + TEXT SEARCH PARSER object_name | + TEXT SEARCH TEMPLATE object_name | TRIGGER trigger_name ON table_name | TYPE object_name | VIEW object_name @@ -65,9 +69,8 @@ COMMENT ON - Comments can be - easily retrieved with the psql commands - \dd, \d+, and \l+. + Comments can be viewed using psql's + \d family of commands. Other user interfaces to retrieve comments can be built atop the same built-in functions that psql uses, namely obj_description, col_description, @@ -93,7 +96,8 @@ COMMENT ON The name of the object to be commented. Names of tables, aggregates, domains, functions, indexes, operators, operator classes, - operator families, sequences, types, and views can be schema-qualified. + operator families, sequences, text search objects, types, and views can + be schema-qualified. @@ -255,6 +259,10 @@ COMMENT ON SCHEMA my_schema IS 'Departmental data'; COMMENT ON SEQUENCE my_sequence IS 'Used to generate primary keys'; COMMENT ON TABLE my_schema.my_table IS 'Employee Information'; COMMENT ON TABLESPACE my_tablespace IS 'Tablespace for indexes'; +COMMENT ON TEXT SEARCH CONFIGURATION my_config IS 'Special word filtering'; +COMMENT ON TEXT SEARCH DICTIONARY swedish IS 'Snowball stemmer for swedish language'; +COMMENT ON TEXT SEARCH PARSER my_parser IS 'Splits text into words'; +COMMENT ON TEXT SEARCH TEMPLATE snowball IS 'Snowball stemmer'; COMMENT ON TRIGGER my_trigger ON my_table IS 'Used for RI'; COMMENT ON TYPE complex IS 'Complex number data type'; COMMENT ON VIEW my_view IS 'View of departmental costs'; diff --git a/doc/src/sgml/ref/create_tsconfig.sgml b/doc/src/sgml/ref/create_tsconfig.sgml new file mode 100644 index 0000000000..49be9411d5 --- /dev/null +++ b/doc/src/sgml/ref/create_tsconfig.sgml @@ -0,0 +1,126 @@ + + + + + CREATE TEXT SEARCH CONFIGURATION + SQL - Language Statements + + + + CREATE TEXT SEARCH CONFIGURATION + define a new text search configuration + + + + CREATE TEXT SEARCH CONFIGURATION + + + + +CREATE TEXT SEARCH CONFIGURATION name ( + PARSER = parser_name | + COPY = source_config +) + + + + + Description + + + CREATE TEXT SEARCH CONFIGURATION creates a new text + search configuration. A text search configuration specifies a text + search parser that can divide a string into tokens, plus dictionaries + that can be used to determine which tokens are of interest for searching. + + + + If only the parser is specified, then the new text search configuration + initially has no mappings from token types to dictionaries, and therefore + will ignore all words. Subsequent ALTER TEXT SEARCH + CONFIGURATION commands must be used to create mappings to + make the configuration useful. Alternatively, an existing text search + configuration can be copied. + + + + If a schema name is given then the text search configuration is created in + the specified schema. Otherwise it is created in the current schema. + + + + The user who defines a text search configuration becomes its owner. + + + + Refer to for further information. + + + + + Parameters + + + + name + + + The name of the text search configuration to be created. The name can be + schema-qualified. + + + + + + parser_name + + + The name of the text search parser to use for this configuration. + + + + + + source_config + + + The name of an existing text search configuration to copy. + + + + + + + + Notes + + + It is allowed to specify both PARSER and COPY, + resulting in the specified parser being used with whatever mappings + are in the source configuration. This is generally inadvisable, + unless you know that both parsers involved use the same token type set. + + + + + + Compatibility + + + There is no CREATE TEXT SEARCH CONFIGURATION statement + in the SQL standard. + + + + + See Also + + + + + + + diff --git a/doc/src/sgml/ref/create_tsdictionary.sgml b/doc/src/sgml/ref/create_tsdictionary.sgml new file mode 100644 index 0000000000..81c6a0c6ed --- /dev/null +++ b/doc/src/sgml/ref/create_tsdictionary.sgml @@ -0,0 +1,111 @@ + + + + + CREATE TEXT SEARCH DICTIONARY + SQL - Language Statements + + + + CREATE TEXT SEARCH DICTIONARY + define a new text search dictionary + + + + CREATE TEXT SEARCH DICTIONARY + + + + +CREATE TEXT SEARCH DICTIONARY name ( + TEMPLATE = template + [, OPTION = init_options ] +) + + + + + Description + + + CREATE TEXT SEARCH DICTIONARY creates a new text search + dictionary. A text search dictionary specifies a way of recognizing + interesting or uninteresting words for searching. A dictionary depends + on a text search template, which specifies the functions that actually + perform the work. Typically the dictionary provides some options that + control the detailed behavior of the template's functions. + + + + If a schema name is given then the text search dictionary is created in the + specified schema. Otherwise it is created in the current schema. + + + + The user who defines a text search dictionary becomes its owner. + + + + Refer to for further information. + + + + + Parameters + + + + name + + + The name of the text search dictionary to be created. The name can be + schema-qualified. + + + + + + template + + + The name of the text search template that will define the basic + behavior of this dictionary. + + + + + + init_options + + + A list of initialization options for the template functions. + This is a string containing keyword = + value pairs. The specific keywords allowed + vary depending on the text search template. + + + + + + + + Compatibility + + + There is no CREATE TEXT SEARCH DICTIONARY statement in + the SQL standard. + + + + + See Also + + + + + + + diff --git a/doc/src/sgml/ref/create_tsparser.sgml b/doc/src/sgml/ref/create_tsparser.sgml new file mode 100644 index 0000000000..5f612cf0d9 --- /dev/null +++ b/doc/src/sgml/ref/create_tsparser.sgml @@ -0,0 +1,152 @@ + + + + + CREATE TEXT SEARCH PARSER + SQL - Language Statements + + + + CREATE TEXT SEARCH PARSER + define a new text search parser + + + + CREATE TEXT SEARCH PARSER + + + + +CREATE TEXT SEARCH PARSER name ( + START = start_function , + GETTOKEN = gettoken_function , + END = end_function , + LEXTYPES = lextypes_function + [, HEADLINE = headline_function ] +) + + + + + Description + + + CREATE TEXT SEARCH PARSER creates a new text search + parser. A text search parser defines a method for splitting a text + string into tokens and assigning types (categories) to the tokens. + A parser is not particularly useful by itself, but must be bound into a + text search configuration along with some text search dictionaries + to be used for searching. + + + + If a schema name is given then the text search parser is created in the + specified schema. Otherwise it is created in the current schema. + + + + You must be a superuser to use CREATE TEXT SEARCH PARSER. + (This restriction is made because an erroneous text search parser + definition could confuse or even crash the server.) + + + + Refer to for further information. + + + + + Parameters + + + + name + + + The name of the text search parser to be created. The name can be + schema-qualified. + + + + + + start_function + + + The name of the start function for the parser. + + + + + + gettoken_function + + + The name of the get-next-token function for the parser. + + + + + + end_function + + + The name of the end function for the parser. + + + + + + lextypes_function + + + The name of the lextypes function for the parser (a function that + returns information about the set of token types it produces). + + + + + + headline_function + + + The name of the headline function for the parser (a function that + summarizes a set of tokens). + + + + + + + The function names can be schema-qualified if necessary. Argument types + are not given, since the argument list for each type of function is + predetermined. All except the headline function are required. + + + + The arguments can appear in any order, not only the one shown above. + + + + + Compatibility + + + There is no + CREATE TEXT SEARCH PARSER statement in the SQL + standard. + + + + + See Also + + + + + + + diff --git a/doc/src/sgml/ref/create_tstemplate.sgml b/doc/src/sgml/ref/create_tstemplate.sgml new file mode 100644 index 0000000000..5abadb76be --- /dev/null +++ b/doc/src/sgml/ref/create_tstemplate.sgml @@ -0,0 +1,125 @@ + + + + + CREATE TEXT SEARCH TEMPLATE + SQL - Language Statements + + + + CREATE TEXT SEARCH TEMPLATE + define a new text search template + + + + CREATE TEXT SEARCH TEMPLATE + + + + +CREATE TEXT SEARCH TEMPLATE name ( + [ INIT = init_function , ] + LEXIZE = lexize_function +) + + + + + Description + + + CREATE TEXT SEARCH TEMPLATE creates a new text search + template. Text search templates define the functions that implement + text search dictionaries. A template is not useful by itself, but must + be instantiated as a dictionary to be used. The dictionary typically + specifies parameters to be given to the template functions. + + + + If a schema name is given then the text search template is created in the + specified schema. Otherwise it is created in the current schema. + + + + You must be a superuser to use CREATE TEXT SEARCH + TEMPLATE. This restriction is made because an erroneous text + search template definition could confuse or even crash the server. + The reason for separating templates from dictionaries is that a template + encapsulates the unsafe aspects of defining a dictionary. + The parameters that can be set when defining a dictionary are safe for + unprivileged users to set, and so creating a dictionary need not be a + privileged operation. + + + + Refer to for further information. + + + + + Parameters + + + + name + + + The name of the text search template to be created. The name can be + schema-qualified. + + + + + + init_function + + + The name of the init function for the template. + + + + + + lexize_function + + + The name of the lexize function for the template. + + + + + + + The function names can be schema-qualified if necessary. Argument types + are not given, since the argument list for each type of function is + predetermined. The lexize function is required, but the init function + is optional. + + + + The arguments can appear in any order, not only the one shown above. + + + + + Compatibility + + + There is no + CREATE TEXT SEARCH TEMPLATE statement in the SQL + standard. + + + + + See Also + + + + + + + diff --git a/doc/src/sgml/ref/drop_tsconfig.sgml b/doc/src/sgml/ref/drop_tsconfig.sgml new file mode 100644 index 0000000000..5cc8e3caf3 --- /dev/null +++ b/doc/src/sgml/ref/drop_tsconfig.sgml @@ -0,0 +1,118 @@ + + + + + DROP TEXT SEARCH CONFIGURATION + SQL - Language Statements + + + + DROP TEXT SEARCH CONFIGURATION + remove a text search configuration + + + + DROP TEXT SEARCH CONFIGURATION + + + + +DROP TEXT SEARCH CONFIGURATION [ IF EXISTS ] name [ CASCADE | RESTRICT ] + + + + + Description + + + DROP TEXT SEARCH CONFIGURATION drops an existing text + search configuration. To execute this command you must be the owner of the + configuration. + + + + + Parameters + + + + + IF EXISTS + + + Do not throw an error if the text search configuration does not exist. + A notice is issued in this case. + + + + + + name + + + The name (optionally schema-qualified) of an existing text search + configuration. + + + + + + CASCADE + + + Automatically drop objects that depend on the text search configuration. + + + + + + RESTRICT + + + Refuse to drop the text search configuration if any objects depend on it. + This is the default. + + + + + + + + Examples + + + Remove the text search configuration my_english: + + +DROP TEXT SEARCH CONFIGURATION my_english; + + + This command will not succeed if there are any existing indexes + that reference the configuration in to_tsvector calls. + Add CASCADE to + drop such indexes along with the text search configuration. + + + + + Compatibility + + + There is no DROP TEXT SEARCH CONFIGURATION statement in + the SQL standard. + + + + + See Also + + + + + + + + diff --git a/doc/src/sgml/ref/drop_tsdictionary.sgml b/doc/src/sgml/ref/drop_tsdictionary.sgml new file mode 100644 index 0000000000..683d4dc9b2 --- /dev/null +++ b/doc/src/sgml/ref/drop_tsdictionary.sgml @@ -0,0 +1,117 @@ + + + + + DROP TEXT SEARCH DICTIONARY + SQL - Language Statements + + + + DROP TEXT SEARCH DICTIONARY + remove a text search dictionary + + + + DROP TEXT SEARCH DICTIONARY + + + + +DROP TEXT SEARCH DICTIONARY [ IF EXISTS ] name [ CASCADE | RESTRICT ] + + + + + Description + + + DROP TEXT SEARCH DICTIONARY drops an existing text + search dictionary. To execute this command you must be the owner of the + dictionary. + + + + + Parameters + + + + + IF EXISTS + + + Do not throw an error if the text search dictionary does not exist. + A notice is issued in this case. + + + + + + name + + + The name (optionally schema-qualified) of an existing text search + dictionary. + + + + + + CASCADE + + + Automatically drop objects that depend on the text search dictionary. + + + + + + RESTRICT + + + Refuse to drop the text search dictionary if any objects depend on it. + This is the default. + + + + + + + + Examples + + + Remove the text search dictionary english: + + +DROP TEXT SEARCH DICTIONARY english; + + + This command will not succeed if there are any existing text search + configurations that use the dictionary. Add CASCADE to + drop such configurations along with the dictionary. + + + + + Compatibility + + + There is no DROP TEXT SEARCH DICTIONARY statement in the + SQL standard. + + + + + See Also + + + + + + + + diff --git a/doc/src/sgml/ref/drop_tsparser.sgml b/doc/src/sgml/ref/drop_tsparser.sgml new file mode 100644 index 0000000000..7a482283ad --- /dev/null +++ b/doc/src/sgml/ref/drop_tsparser.sgml @@ -0,0 +1,115 @@ + + + + + DROP TEXT SEARCH PARSER + SQL - Language Statements + + + + DROP TEXT SEARCH PARSER + remove a text search parser + + + + DROP TEXT SEARCH PARSER + + + + +DROP TEXT SEARCH PARSER [ IF EXISTS ] name [ CASCADE | RESTRICT ] + + + + + Description + + + DROP TEXT SEARCH PARSER drops an existing text search + parser. You must be a superuser to use this command. + + + + + Parameters + + + + + IF EXISTS + + + Do not throw an error if the text search parser does not exist. + A notice is issued in this case. + + + + + + name + + + The name (optionally schema-qualified) of an existing text search parser. + + + + + + CASCADE + + + Automatically drop objects that depend on the text search parser. + + + + + + RESTRICT + + + Refuse to drop the text search parser if any objects depend on it. + This is the default. + + + + + + + + Examples + + + Remove the text search parser my_parser: + + +DROP TEXT SEARCH PARSER my_parser; + + + This command will not succeed if there are any existing text search + configurations that use the parser. Add CASCADE to + drop such configurations along with the parser. + + + + + Compatibility + + + There is no DROP TEXT SEARCH PARSER statement in the + SQL standard. + + + + + See Also + + + + + + + + diff --git a/doc/src/sgml/ref/drop_tstemplate.sgml b/doc/src/sgml/ref/drop_tstemplate.sgml new file mode 100644 index 0000000000..6a776d1da9 --- /dev/null +++ b/doc/src/sgml/ref/drop_tstemplate.sgml @@ -0,0 +1,116 @@ + + + + + DROP TEXT SEARCH TEMPLATE + SQL - Language Statements + + + + DROP TEXT SEARCH TEMPLATE + remove a text search template + + + + DROP TEXT SEARCH TEMPLATE + + + + +DROP TEXT SEARCH TEMPLATE [ IF EXISTS ] name [ CASCADE | RESTRICT ] + + + + + Description + + + DROP TEXT SEARCH TEMPLATE drops an existing text search + template. You must be a superuser to use this command. + + + + + Parameters + + + + + IF EXISTS + + + Do not throw an error if the text search template does not exist. + A notice is issued in this case. + + + + + + name + + + The name (optionally schema-qualified) of an existing text search + template. + + + + + + CASCADE + + + Automatically drop objects that depend on the text search template. + + + + + + RESTRICT + + + Refuse to drop the text search template if any objects depend on it. + This is the default. + + + + + + + + Examples + + + Remove the text search template thesaurus: + + +DROP TEXT SEARCH TEMPLATE thesaurus; + + + This command will not succeed if there are any existing text search + dictionaries that use the template. Add CASCADE to + drop such dictionaries along with the template. + + + + + Compatibility + + + There is no DROP TEXT SEARCH TEMPLATE statement in the + SQL standard. + + + + + See Also + + + + + + + + diff --git a/doc/src/sgml/reference.sgml b/doc/src/sgml/reference.sgml index a52fe7a964..1e8e546531 100644 --- a/doc/src/sgml/reference.sgml +++ b/doc/src/sgml/reference.sgml @@ -1,4 +1,4 @@ - + Reference @@ -50,6 +50,10 @@ &alterSequence; &alterTable; &alterTableSpace; + &alterTSConfig; + &alterTSDictionary; + &alterTSParser; + &alterTSTemplate; &alterTrigger; &alterType; &alterUser; @@ -83,6 +87,10 @@ &createTable; &createTableAs; &createTableSpace; + &createTSConfig; + &createTSDictionary; + &createTSParser; + &createTSTemplate; &createTrigger; &createType; &createUser; @@ -110,6 +118,10 @@ &dropSequence; &dropTable; &dropTableSpace; + &dropTSConfig; + &dropTSDictionary; + &dropTSParser; + &dropTSTemplate; &dropTrigger; &dropType; &dropUser; diff --git a/doc/src/sgml/textsearch.sgml b/doc/src/sgml/textsearch.sgml new file mode 100644 index 0000000000..a6601d6edb --- /dev/null +++ b/doc/src/sgml/textsearch.sgml @@ -0,0 +1,3716 @@ + +Full Text Search + + + +Introduction + + +Full Text Searching (text search) allows the +searching of documents that satisfy a query, and +optionally returns them in some order. The most common search is to find +all documents containing query terms and return them +in order of their similarity to the +query. Notions of query and +similarity are very flexible and depend on the specific +application. The simplest search considers query as a +set of words and similarity as the frequency of query +words in the document. Full text indexing can be done inside the +database or outside. Doing indexing inside the database allows easy access +to document metadata to assist in indexing and display. + + + +Textual search operators have existed in databases for years. +PostgreSQL has +~,~*, LIKE, +ILIKE operators for textual datatypes, but they lack +many essential properties required by modern information systems: + + + + +There is no linguistic support, even for English. Regular expressions are +not sufficient because they cannot easily handle derived words, +e.g., satisfies and satisfy. You might +miss documents which contain satisfies, although you +probably would like to find them when searching for +satisfy. It is possible to use OR +to search any of them, but it is tedious and error-prone +(some words can have several thousand derivatives). + + + +They provide no ordering (ranking) of search results, which makes them +ineffective when thousands of matching documents are found. + + + +They tend to be slow because they process all documents for every search and +there is no index support. + + + + + + +Full text indexing allows documents to be preprocessed +and an index saved for later rapid searching. Preprocessing includes: + + + +Parsing documents into lexemes. It is +useful to identify various lexemes, e.g. digits, words, complex words, +email addresses, so they can be processed differently. In principle +lexemes depend on the specific application but for an ordinary search it +is useful to have a predefined list of lexemes. + + + +Dictionaries allow the conversion of lexemes into +a normalized form so it is not necessary to enter +search words in a specific form. + + + +Store preprocessed documents +optimized for searching. For example, represent each document as a sorted array +of lexemes. Along with lexemes it is desirable to store positional +information to use for proximity ranking, so that a +document which contains a more "dense" region of query words is assigned +a higher rank than one with scattered query words. + + + + + +Dictionaries allow fine-grained control over how lexemes are created. With +dictionaries you can: + + +Define "stop words" that should not be indexed. + + + +Map synonyms to a single word using ispell. + + +Map phrases to a single word using a thesaurus. + + +Map different variations of a word to a canonical form using +an ispell dictionary. + + +Map different variations of a word to a canonical form using +snowball stemmer rules. + + + + + + +A data type (), tsvector +is provided, for storing preprocessed documents, +along with a type tsquery for representing textual +queries. Also, a full text search operator @@ is defined +for these data types (). Full text +searches can be accelerated using indexes (). + + + + +What Is a <firstterm>Document</firstterm>? + + +document + + + +A document can be a simple text file stored in the file system. The full +text indexing engine can parse text files and store associations of lexemes +(words) with their parent document. Later, these associations are used to +search for documents which contain query words. In this case, the database +can be used to store the full text index and for executing searches, and +some unique identifier can be used to retrieve the document from the file +system. + + + +A document can also be any textual database attribute or a combination +(concatenation), which in turn can be stored in various tables or obtained +dynamically. In other words, a document can be constructed from different +parts for indexing and it might not exist as a whole. For example: + +SELECT title || ' ' || author || ' ' || abstract || ' ' || body AS document +FROM messages +WHERE mid = 12; + +SELECT m.title || ' ' || m.author || ' ' || m.abstract || ' ' || d.body AS document +FROM messages m, docs d +WHERE mid = did AND mid = 12; + + + + + +Actually, in the previous example queries, COALESCE + +should be used to prevent a NULL attribute from causing +a NULL result. + + + + + +Data Types + + + + + +tsvector + + + + +tsvector + + + +tsvector is a data type that represents a document and is +optimized for full text searching. In the simplest case, +tsvector is a sorted list of lexemes, so even without indexes +full text searches perform better than standard ~ and +LIKE operations: + +SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector; + tsvector +---------------------------------------------------- + 'a' 'on' 'and' 'ate' 'cat' 'fat' 'mat' 'rat' 'sat' + + +Notice, that space is also a lexeme: + + +SELECT 'space '' '' is a lexeme'::tsvector; + tsvector +---------------------------------- + 'a' 'is' ' ' 'space' 'lexeme' + + +Each lexeme, optionally, can have positional information which is used for +proximity ranking: + +SELECT 'a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12'::tsvector; + tsvector +------------------------------------------------------------------------------- + 'a':1,6,10 'on':5 'and':8 'ate':9 'cat':3 'fat':2,11 'mat':7 'rat':12 'sat':4 + + +Each lexeme position also can be labeled as 'A', +'B', 'C', 'D', +where 'D' is the default. These labels can be used to group +lexemes into different importance or +rankings, for example to reflect document structure. +Actual values can be assigned at search time and used during the calculation +of the document rank. This is very useful for controlling search results. + + +The concatenation operator, e.g. tsvector || tsvector, +can "construct" a document from several parts. The order is important if +tsvector contains positional information. Of course, +it is also possible to build a document using different tables: + + +SELECT 'fat:1 cat:2'::tsvector || 'fat:1 rat:2'::tsvector; + ?column? +--------------------------- + 'cat':2 'fat':1,3 'rat':4 +SELECT 'fat:1 rat:2'::tsvector || 'fat:1 cat:2'::tsvector; + ?column? +--------------------------- + 'cat':4 'fat':1,3 'rat':2 + + + + + + + + + +tsquery + + + +tsquery + + + +Tsquery is a data type for textual queries which supports +the boolean operators & (AND), | (OR), +and parentheses. A Tsquery consists of lexemes +(optionally labeled by letters) with boolean operators in between: + + +SELECT 'fat & cat'::tsquery; + tsquery +--------------- + 'fat' & 'cat' +SELECT 'fat:ab & cat'::tsquery; + tsquery +------------------ + 'fat':AB & 'cat' + +Labels can be used to restrict the search region, which allows the +development of different search engines using the same full text index. + + + +tsqueries can be concatenated using && (AND) +and || (OR) operators: + +SELECT 'a & b'::tsquery && 'c|d'::tsquery; + ?column? +--------------------------- + 'a' & 'b' & ( 'c' | 'd' ) + +SELECT 'a & b'::tsquery || 'c|d'::tsquery; + ?column? +--------------------------- + 'a' & 'b' | ( 'c' | 'd' ) + + + + + + + + + +Performing Searches + + +Full text searching in PostgreSQL provides the +operator @@ for two data types: tsvector +(document) and tsquery (query). Also, this operator +supports TEXT, VARCHAR, and CHAR +data types so simple full text searches can be done, but without ranking +support: + +tsvector @@ tsquery +tsquery @@ tsvector +TEXT | VARCHAR | CHAR @@ TEXT | tsquery + + + + +The full text operator @@ returns true if +tsvector contains tsquery: + +SELECT 'cat & rat'::tsquery @@ 'a fat cat sat on a mat and ate a fat rat'::tsvector; + ?column? +---------- + t +SELECT 'fat & cow'::tsquery @@ 'a fat cat sat on a mat and ate a fat rat'::tsvector; + ?column? +---------- + f + + + + + + + + + + +Tables and Indexes + + +The previous section described how to perform full text searches using +constant strings. This section shows how to search table data, optionally +using indexes. + + + +Searching a Table + + +It is possible to do full text table search with no index. A simple query +to find all title entries that contain the word +friend is: + +SELECT title +FROM pgweb +WHERE to_tsvector('english', body) @@ to_tsquery('friend') + + + + +A more complex query is to select the ten most recent documents which +contain create and table in the title +or body: + +SELECT title +FROM pgweb +WHERE to_tsvector('english', textcat(title, body)) @@ to_tsquery('create & table') +ORDER BY dlm DESC LIMIT 10; + +dlm is the last-modified date in seconds since 1970 so we +used ORDER BY dlm LIMIT 10 to get the most recent +matches. For clarity we omitted the coalesce function +which prevents the unwanted effect of NULL +concatenation. + + + + + +Creating Indexes + + +We can create a GIN () index to speed up the search: + +CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector('english', body)); + +Notice that the 2-argument version of to_tsvector is +used. Only text search functions which specify a configuration name can +be used in expression indexes (). +Casting to a text search data type (::) is also unsupported. +This is because the index contents should be unaffected by +default_text_search_config. If they were affected, the index +contents might be inconsistent because they could contain +tsvectors that were created with different default text search +configurations. Recovering a table from a pg_dump would +also not recreate index tsvectors properly. + + + +Because the two-argument version of to_tsvector was +used in the index above, only a query reference that uses the 2-argument +version of to_tsvector with the same configuration +name will use that index, i.e. WHERE 'a & b' @@ +to_svector('english', body) will use the index, but WHERE +'a & b' @@ to_svector(body)) and WHERE 'a & b' @@ +body::tsvector will not. This guarantees that an index will be used +only with the same configuration used to create the index rows. + + + +It is possible to setup more complex expression indexes where the +configuration name is specified by another column, e.g.: + +CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector(conf_name, body)); + +where conf_name is a column in the pgweb +table. This allows mixed configurations in the same index while +recording which configuration was used for each index row. + + + +Indexes can even concatenate columns: + +CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector('english', textcat(title, body))); + + + + +A more complex case is to create a separate tsvector column +to hold the output of to_tsvector(). This example is a +concatenation of title and body, +with ranking information. We assign different labels to them to encode +information about the origin of each word: + +ALTER TABLE pgweb ADD COLUMN textsearch_index tsvector; +UPDATE pgweb SET textsearch_index = + setweight(to_tsvector('english', coalesce(title,'')), 'A') || ' ' || + setweight(to_tsvector('english', coalesce(body,'')),'D'); + +Then we create a GIN index to speed up the search: + +CREATE INDEX textsearch_idx ON pgweb USING gin(textsearch_index); + +After vacuuming, we are ready to perform a fast full text search: + +SELECT rank_cd(textsearch_index, q) AS rank, title +FROM pgweb, to_tsquery('create & table') q +WHERE q @@ textsearch_index +ORDER BY rank DESC LIMIT 10; + +It is necessary to create a trigger to keep the new tsvector +column current anytime title or body changes. +Keep in mind that, just like with expression indexes, it is important to +specify the configuration name when creating text search data types +inside triggers so the column's contents are not affected by changes to +default_text_search_config. + + + + + + + +Operators and Functions + + +This section outlines all the functions and operators that are available +for full text searching. + + + +Full text search vectors and queries both use lexemes, but for different +purposes. A tsvector represents the lexemes (tokens) parsed +out of a document, with an optional position. A tsquery +specifies a boolean condition using lexemes. + + + +All of the following functions that accept a configuration argument can +use a textual configuration name to select a configuration. If the option +is omitted the configuration specified by +default_text_search_config is used. For more information on +configuration, see . + + + +Search + +The operator @@ is used to perform full text +searches: + + + + + + +TSVECTOR @@ TSQUERY + + + + + +TSVECTOR @@ TSQUERY +TSQUERY @@ TSVECTOR + + + + + +Returns true if TSQUERY is contained +in TSVECTOR, and false if not: + +SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector @@ 'cat & rat'::tsquery; + ?column? + ---------- + t +SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector @@ 'fat & cow'::tsquery; + ?column? + ---------- + f + + + + + + + + + +TEXT @@ TSQUERY + + + + +TEXT @@ TSQUERY +VARCHAR @@ TSQUERY +CHAR @@ TSQUERY + + + + + +Returns true if TSQUERY is contained +in TEXT/VARCHAR, and false if not: + +SELECT 'a fat cat sat on a mat and ate a fat rat'::text @@ 'cat & rat'::tsquery; + ?column? +---------- + t +SELECT 'a fat cat sat on a mat and ate a fat rat'::text @@ 'cat & cow'::tsquery; + ?column? +---------- + f + + + + + + + + + +TEXT @@ TEXT + + + + + +TEXT @@ TEXT +VARCHAR @@ TEXT +CHAR @@ TEXT + + + + + +Returns true if the right +argument (the query) is contained in the left argument, and +false otherwise: + +SELECT 'a fat cat sat on a mat and ate a fat rat' @@ 'cat rat'; + ?column? +---------- + t +SELECT 'a fat cat sat on a mat and ate a fat rat' @@ 'cat cow'; + ?column? +---------- + f + + + + + + + + + + +For index support of full text operators consult . + + + + + + + +tsvector + + + + + + +to_tsvector + + + + +to_tsvector(conf_name, document TEXT) returns TSVECTOR + + + + + +Parses a document into tokens, reduces the tokens to lexemes, and returns a +tsvector which lists the lexemes together with their positions in the document +in lexicographic order. + + + + + + + + +strip + + + + +strip(vector TSVECTOR) returns TSVECTOR + + + + + +Returns a vector which lists the same lexemes as the given vector, but +which lacks any information about where in the document each lexeme +appeared. While the returned vector is useless for relevance ranking it +will usually be much smaller. + + + + + + + + +setweight + + + + +setweight(vector TSVECTOR, letter) returns TSVECTOR + + + + + +This function returns a copy of the input vector in which every location +has been labeled with either the letter 'A', +'B', or 'C', or the default label +'D' (which is the default for new vectors +and as such is usually not displayed). These labels are retained +when vectors are concatenated, allowing words from different parts of a +document to be weighted differently by ranking functions. + + + + + + + + + +tsvector concatenation + + + + +vector1 || vector2 +concat(vector1 TSVECTOR, vector2 TSVECTOR) returns TSVECTOR + + + + + +Returns a vector which combines the lexemes and positional information of +the two vectors given as arguments. Positional weight labels (described +in the previous paragraph) are retained during the concatenation. This +has at least two uses. First, if some sections of your document need to be +parsed with different configurations than others, you can parse them +separately and then concatenate the resulting vectors. Second, you can +weigh words from one section of your document differently than the others +by parsing the sections into separate vectors and assigning each vector +a different position label with the setweight() +function. You can then concatenate them into a single vector and provide +a weights argument to the rank() function that assigns +different weights to positions with different labels. + + + + + + + +length(tsvector) + + + + +length(vector TSVECTOR) returns INT4 + + + + + +Returns the number of lexemes stored in the vector. + + + + + + + +text::tsvector + + + + +text::TSVECTOR returns TSVECTOR + + + + + +Directly casting text to a tsvector allows you +to directly inject lexemes into a vector with whatever positions and +positional weights you choose to specify. The text should be formatted to +match the way a vector is displayed by SELECT. + + + + + + + + +trigger + + + + +tsvector_update_trigger(vector_column_name, filter_name, text_column_name , ... ) + + + + + +The tsvector_update_trigger() trigger is used to +automatically update vector_column_name. +filter_name is the function name to preprocess +text_column_name. There can be many functions +and text columns specified in a +tsvector_update_trigger() trigger. If multiple +functions are specified, they apply to the following columns until the +next function appears. As an example of using a filter, function +dropatsymbol replaces all entries of the +@ sign with a space: + + +CREATE FUNCTION dropatsymbol(text) +RETURNS text +AS 'SELECT replace($1, ''@'', '' '');' +LANGUAGE SQL; + +CREATE TRIGGER tsvectorupdate BEFORE UPDATE OR INSERT +ON tblMessages FOR EACH ROW EXECUTE PROCEDURE +tsvector_update_trigger(tsvector_column, dropatsymbol, strMessage); + + + + + + + + + +stat + + + + +stat(sqlquery text , weight text ) returns SETOF statinfo + + + + + + +Here statinfo is a type, defined as: + +CREATE TYPE statinfo AS (word text, ndoc int4, nentry int4); + +and sqlquery is a query which returns a +tsvector column's contents. stat returns +statistics about a tsvector column, i.e., the number of +documents, ndoc, and the total number of words in the +collection, nentry. It is useful for checking your +configuration and to find stop word candidates. For example, to find +the ten most frequent words: + + +SELECT * FROM stat('SELECT vector from apod') +ORDER BY ndoc DESC, nentry DESC, word +LIMIT 10; + + +Optionally, one can specify weight to obtain +statistics about words with a specific weight: + + +SELECT * FROM stat('SELECT vector FROM apod','a') +ORDER BY ndoc DESC, nentry DESC, word +LIMIT 10; + + + + + + + + + +Btree operations for tsvector + + + + +TSVECTOR < TSVECTOR +TSVECTOR <= TSVECTOR +TSVECTOR = TSVECTOR +TSVECTOR >= TSVECTOR +TSVECTOR > TSVECTOR + + + + + +All btree operations are defined for the tsvector type. +tsvectors are compared with each other using +lexicographical ordering. + + + + + + + + + + + +tsquery + + + + + + + +to_tsquery + + + + +to_tsquery(conf_name, querytext text) returns TSQUERY + + + + + +Accepts querytext, which should consist of single tokens +separated by the boolean operators & (and), | +(or) and ! (not), which can be grouped using parentheses. +In other words, to_tsquery expects already parsed text. +Each token is reduced to a lexeme using the specified or current configuration. +A weight class can be assigned to each lexeme entry to restrict the search region +(see setweight for an explanation). For example: + +'fat:a & rats' + +The to_tsquery function can also accept a text +string. In this case querytext should +be quoted. This may be useful, for example, to use with a thesaurus +dictionary. In the example below, a thesaurus contains rule supernovae +stars : sn: + +SELECT to_tsquery('''supernovae stars'' & !crab'); + to_tsquery +---------------- + 'sn' & !'crab' + +Without quotes to_tsquery will generate a syntax error. + + + + + + + + + + +plainto_tsquery + + + + +plainto_tsquery(conf_name, querytext text) returns TSQUERY + + + + + +Transforms unformatted text querytext to tsquery. +It is the same as to_tsquery but accepts text +without quotes and will call the parser to break it into tokens. +plainto_tsquery assumes the & boolean +operator between words and does not recognize weight classes. + + + + + + + + + +querytree + + + + +querytree(query TSQUERY) returns TEXT + + + + + +This returns the query used for searching an index. It can be used to test +for an empty query. The SELECT below returns NULL, +which corresponds to an empty query since GIN indexes do not support queries with negation + +(a full index scan is inefficient): + +SELECT querytree(to_tsquery('!defined')); + querytree +----------- + + + + + + + + + + +text::tsquery casting + + + + +text::TSQUERY returns TSQUERY + + + + + +Directly casting text to a tsquery +allows you to directly inject lexemes into a query using whatever positions +and positional weight flags you choose to specify. The text should be +formatted to match the way a vector is displayed by +SELECT. + + + + + + + + +numnode + + + + +numnode(query TSQUERY) returns INTEGER + + + + + +This returns the number of nodes in a query tree. This function can be +used to determine if query is meaningful +(returns > 0), or contains only stop words (returns 0): + +SELECT numnode(plainto_tsquery('the any')); +NOTICE: query contains only stopword(s) or does not contain lexeme(s), +ignored + numnode +--------- + 0 +SELECT numnode(plainto_tsquery('the table')); + numnode +--------- + 1 +SELECT numnode(plainto_tsquery('long table')); + numnode +--------- + 3 + + + + + + + + +TSQUERY && TSQUERY + + + + +TSQUERY && TSQUERY returns TSQUERY + + + + + +Returns AND-ed TSQUERY + + + + + + + +TSQUERY || TSQUERY + + + + +TSQUERY || TSQUERY returns TSQUERY + + + + + +Returns OR-ed TSQUERY + + + + + + + +!! TSQUERY + + + + +!! TSQUERY returns TSQUERY + + + + + +negation of TSQUERY + + + + + + + +Btree operations for tsquery + + + + +TSQUERY < TSQUERY +TSQUERY <= TSQUERY +TSQUERY = TSQUERY +TSQUERY >= TSQUERY +TSQUERY > TSQUERY + + + + + +All btree operations are defined for the tsquery type. +tsqueries are compared to each other using lexicographical +ordering. + + + + + + + +Query Rewriting + + +Query rewriting is a set of functions and operators for the +tsquery data type. It allows control at search +query time without reindexing (the opposite of the +thesaurus). For example, you can expand the search using synonyms +(new york, big apple, nyc, +gotham) or narrow the search to direct the user to some hot +topic. + + + +The rewrite() function changes the original query by +replacing part of the query with some other string of type tsquery, +as defined by the rewrite rule. Arguments to rewrite() +can be names of columns of type tsquery. + + + +CREATE TABLE aliases (t TSQUERY PRIMARY KEY, s TSQUERY); +INSERT INTO aliases VALUES('a', 'c'); + + + + + + +rewrite - 1 + + + + +rewrite (query TSQUERY, target TSQUERY, sample TSQUERY) returns TSQUERY + + + + + + +SELECT rewrite('a & b'::tsquery, 'a'::tsquery, 'c'::tsquery); + rewrite + ----------- + 'b' & 'c' + + + + + + + + +rewrite - 2 + + + + +rewrite(ARRAY[query TSQUERY, target TSQUERY, sample TSQUERY]) returns TSQUERY + + + + + + +SELECT rewrite(ARRAY['a & b'::tsquery, t,s]) FROM aliases; + rewrite + ----------- + 'b' & 'c' + + + + + + + + +rewrite - 3 + + + + +rewrite (query TSQUERY,'SELECT target ,sample FROM test'::text) returns TSQUERY + + + + + + +SELECT rewrite('a & b'::tsquery, 'SELECT t,s FROM aliases'); + rewrite + ----------- + 'b' & 'c' + + + + + + + +What if there are several instances of rewriting? For example, query +'a & b' can be rewritten as +'b & c' and 'cc'. + + +SELECT * FROM aliases; + t | s +-----------+------ + 'a' | 'c' + 'x' | 'z' + 'a' & 'b' | 'cc' + +This ambiguity can be resolved by specifying a sort order: + +SELECT rewrite('a & b', 'SELECT t, s FROM aliases ORDER BY t DESC'); + rewrite +--------- + 'cc' +SELECT rewrite('a & b', 'SELECT t, s FROM aliases ORDER BY t ASC'); + rewrite +----------- + 'b' & 'c' + + + + +Let's consider a real-life astronomical example. We'll expand query +supernovae using table-driven rewriting rules: + +CREATE TABLE aliases (t tsquery primary key, s tsquery); +INSERT INTO aliases VALUES(to_tsquery('supernovae'), to_tsquery('supernovae|sn')); +SELECT rewrite(to_tsquery('supernovae'), 'SELECT * FROM aliases') && to_tsquery('crab'); + ?column? +--------------------------------- + ( 'supernova' | 'sn' ) & 'crab' + +Notice, that we can change the rewriting rule online: + +UPDATE aliases SET s=to_tsquery('supernovae|sn & !nebulae') WHERE t=to_tsquery('supernovae'); +SELECT rewrite(to_tsquery('supernovae'), 'SELECT * FROM aliases') && to_tsquery('crab'); + ?column? +--------------------------------------------- + ( 'supernova' | 'sn' & !'nebula' ) & 'crab' + + + + + +Operators For tsquery + + +Rewriting can be slow for many rewriting rules since it checks every rule +for a possible hit. To filter out obvious non-candidate rules there are containment +operators for the tsquery type. In the example below, we select only those +rules which might contain the original query: + +SELECT rewrite(ARRAY['a & b'::tsquery, t,s]) +FROM aliases +WHERE 'a & b' @> t; + rewrite +----------- + 'b' & 'c' + + + + + +Two operators are defined for tsquery: + + + + + + +TSQUERY @> TSQUERY + + + + +TSQUERY @> TSQUERY + + + + + +Returns true if the right argument might be contained in left argument. + + + + + + + +tsquery <@ tsquery + + + + +TSQUERY <@ TSQUERY + + + + + +Returns true if the left argument might be contained in right argument. + + + + + + + + + +Index For tsquery + + +To speed up operators <@ and @> for +tsquery one can use a GiST index with +a tsquery_ops opclass: + + +CREATE INDEX t_idx ON aliases USING gist (t tsquery_ops); + + + + + + + + + + +Additional Controls + + +To implement full text searching there must be a function to create a +tsvector from a document and a tsquery from a +user query. Also, we need to return results in some order, i.e., we need +a function which compares documents with respect to their relevance to +the tsquery. Full text searching in +PostgreSQL provides support for all of these +functions. + + + +Parsing + + +Full text searching in PostgreSQL provides +function to_tsvector, which converts a document to +the tsvector data type. More details are available in , but for now consider a simple example: + +SELECT to_tsvector('english', 'a fat cat sat on a mat - it ate a fat rats'); + to_tsvector +----------------------------------------------------- + 'ate':9 'cat':3 'fat':2,11 'mat':7 'rat':12 'sat':4 + + + + +In the example above we see that the resulting tsvector does not +contain the words a, on, or +it, the word rats became +rat, and the punctuation sign - was +ignored. + + + +The to_tsvector function internally calls a parser +which breaks the document (a fat cat sat on a mat - it ate a +fat rats) into words and corresponding types. The default parser +recognizes 23 types. Each word, depending on its type, passes through a +group of dictionaries (). At the +end of this step we obtain lexemes. For example, +rats became rat because one of the +dictionaries recognized that the word rats is a plural +form of rat. Some words are treated as "stop words" +() and ignored since they occur too +frequently and have little informational value. In our example these are +a, on, and it. +The punctuation sign - was also ignored because its +type (Space symbols) is not indexed. All information +about the parser, dictionaries and what types of lexemes to index is +documented in the full text configuration section (). It is possible to have +several different configurations in the same database, and many predefined +system configurations are available for different languages. In our example +we used the default configuration english for the +English language. + + + +As another example, below is the output from the ts_debug +function ( ), which shows all details +of the full text machinery: + +SELECT * FROM ts_debug('english','a fat cat sat on a mat - it ate a fat rats'); + Alias | Description | Token | Dicts list | Lexized token +-------+---------------+-------+----------------------+--------------------------- + lword | Latin word | a | {pg_catalog.en_stem} | pg_catalog.en_stem: {} + blank | Space symbols | | | + lword | Latin word | fat | {pg_catalog.en_stem} | pg_catalog.en_stem: {fat} + blank | Space symbols | | | + lword | Latin word | cat | {pg_catalog.en_stem} | pg_catalog.en_stem: {cat} + blank | Space symbols | | | + lword | Latin word | sat | {pg_catalog.en_stem} | pg_catalog.en_stem: {sat} + blank | Space symbols | | | + lword | Latin word | on | {pg_catalog.en_stem} | pg_catalog.en_stem: {} + blank | Space symbols | | | + lword | Latin word | a | {pg_catalog.en_stem} | pg_catalog.en_stem: {} + blank | Space symbols | | | + lword | Latin word | mat | {pg_catalog.en_stem} | pg_catalog.en_stem: {mat} + blank | Space symbols | | | + blank | Space symbols | - | | + lword | Latin word | it | {pg_catalog.en_stem} | pg_catalog.en_stem: {} + blank | Space symbols | | | + lword | Latin word | ate | {pg_catalog.en_stem} | pg_catalog.en_stem: {ate} + blank | Space symbols | | | + lword | Latin word | a | {pg_catalog.en_stem} | pg_catalog.en_stem: {} + blank | Space symbols | | | + lword | Latin word | fat | {pg_catalog.en_stem} | pg_catalog.en_stem: {fat} + blank | Space symbols | | | + lword | Latin word | rats | {pg_catalog.en_stem} | pg_catalog.en_stem: {rat} +(24 rows) + + + + +Function setweight() is used to label +tsvector. The typical usage of this is to mark out the +different parts of a document, perhaps by importance. Later, this can be +used for ranking of search results in addition to positional information +(distance between query terms). If no ranking is required, positional +information can be removed from tsvector using the +strip() function to save space. + + + +Because to_tsvector(NULL) can +return NULL, it is recommended to use +coalesce. Here is the safe method for creating a +tsvector from a structured document: + +UPDATE tt SET ti= + setweight(to_tsvector(coalesce(title,'')), 'A') || ' ' || + setweight(to_tsvector(coalesce(keyword,'')), 'B') || ' ' || + setweight(to_tsvector(coalesce(abstract,'')), 'C') || ' ' || + setweight(to_tsvector(coalesce(body,'')), 'D'); + + + + +The following functions allow manual parsing control: + + + + + + +parse + + + + +parse(parser, document TEXT) returns SETOF tokenout + + + + + +Parses the given document and returns a series +of records, one for each token produced by parsing. Each record includes +a tokid giving its type and a token +which gives its content: + +SELECT * FROM parse('default','123 - a number'); + tokid | token +-------+-------- + 22 | 123 + 12 | + 12 | - + 1 | a + 12 | + 1 | number + + + + + + + +token_type + + + + +token_type(parser ) returns SETOF tokentype + + + + + +Returns a table which describes each kind of token the +parser might produce as output. For each token +type the table gives the tokid which the +parser uses to label each +token of that type, the alias which +names the token type, and a short description: + +SELECT * FROM token_type('default'); + tokid | alias | description +-------+--------------+----------------------------------- + 1 | lword | Latin word + 2 | nlword | Non-latin word + 3 | word | Word + 4 | email | Email + 5 | url | URL + 6 | host | Host + 7 | sfloat | Scientific notation + 8 | version | VERSION + 9 | part_hword | Part of hyphenated word + 10 | nlpart_hword | Non-latin part of hyphenated word + 11 | lpart_hword | Latin part of hyphenated word + 12 | blank | Space symbols + 13 | tag | HTML Tag + 14 | protocol | Protocol head + 15 | hword | Hyphenated word + 16 | lhword | Latin hyphenated word + 17 | nlhword | Non-latin hyphenated word + 18 | uri | URI + 19 | file | File or path name + 20 | float | Decimal notation + 21 | int | Signed integer + 22 | uint | Unsigned integer + 23 | entity | HTML Entity + + + + + + + + + + + + +Ranking Search Results + + +Ranking attempts to measure how relevant documents are to a particular +query by inspecting the number of times each search word appears in the +document, and whether different search terms occur near each other. Full +text searching provides two predefined ranking functions which attempt to +produce a measure of how a document is relevant to the query. In spite +of that, the concept of relevancy is vague and very application-specific. +These functions try to take into account lexical, proximity, and structural +information. Different applications might require additional information +for ranking, e.g. document modification time. + + + +The lexical part of ranking reflects how often the query terms appear in +the document, how close the document query terms are, and in what part of +the document they occur. Note that ranking functions that use positional +information will only work on unstripped tsvectors because stripped +tsvectors lack positional information. + + + +The two ranking functions currently available are: + + + + + + +rank + + + + +rank( weights float4[], vector TSVECTOR, query TSQUERY, normalization int4 ) returns float4 + + + + + +This ranking function offers the ability to weigh word instances more +heavily depending on how you have classified them. The weights specify +how heavily to weigh each category of word: + +{D-weight, C-weight, B-weight, A-weight} + +If no weights are provided, +then these defaults are used: + +{0.1, 0.2, 0.4, 1.0} + +Often weights are used to mark words from special areas of the document, +like the title or an initial abstract, and make them more or less important +than words in the document body. + + + + + + + +rank_cd + + + + +rank_cd( weights float4[], vector TSVECTOR, query TSQUERY, normalization int4 ) returns float4 + + + + + +This function computes the cover density ranking for +the given document vector and query, as described in Clarke, Cormack, and +Tudhope's "Relevance Ranking for One to Three Term Queries" in the +"Information Processing and Management", 1999. + + + + + + + + + +Since a longer document has a greater chance of containing a query term +it is reasonable to take into account document size, i.e. a hundred-word +document with five instances of a search word is probably more relevant +than a thousand-word document with five instances. Both ranking functions +take an integer normalization option that +specifies whether a document's length should impact its rank. The integer +option controls several behaviors which is done using bit-wise fields and +| (for example, 2|4): + + + +0 (the default) ignores the document length + + +1 divides the rank by 1 + the logarithm of the document length + + +2 divides the rank by the length itself + + + +4 divides the rank by the mean harmonic distance between extents + + +8 divides the rank by the number of unique words in document + + +16 divides the rank by 1 + logarithm of the number of unique words in document + + + + + + +It is important to note that ranking functions do not use any global +information so it is impossible to produce a fair normalization to 1% or +100%, as sometimes required. However, a simple technique like +rank/(rank+1) can be applied. Of course, this is just +a cosmetic change, i.e., the ordering of the search results will not change. + + + +Several examples are shown below; note that the second example uses +normalized ranking: + +SELECT title, rank_cd('{0.1, 0.2, 0.4, 1.0}',textsearch, query) AS rnk +FROM apod, to_tsquery('neutrino|(dark & matter)') query +WHERE query @@ textsearch +ORDER BY rnk DESC LIMIT 10; + title | rnk +-----------------------------------------------+---------- + Neutrinos in the Sun | 3.1 + The Sudbury Neutrino Detector | 2.4 + A MACHO View of Galactic Dark Matter | 2.01317 + Hot Gas and Dark Matter | 1.91171 + The Virgo Cluster: Hot Plasma and Dark Matter | 1.90953 + Rafting for Solar Neutrinos | 1.9 + NGC 4650A: Strange Galaxy and Dark Matter | 1.85774 + Hot Gas and Dark Matter | 1.6123 + Ice Fishing for Cosmic Neutrinos | 1.6 + Weak Lensing Distorts the Universe | 0.818218 + +SELECT title, rank_cd('{0.1, 0.2, 0.4, 1.0}',textsearch, query)/ +(rank_cd('{0.1, 0.2, 0.4, 1.0}',textsearch, query) + 1) AS rnk +FROM apod, to_tsquery('neutrino|(dark & matter)') query +WHERE query @@ textsearch +ORDER BY rnk DESC LIMIT 10; + title | rnk +-----------------------------------------------+------------------- + Neutrinos in the Sun | 0.756097569485493 + The Sudbury Neutrino Detector | 0.705882361190954 + A MACHO View of Galactic Dark Matter | 0.668123210574724 + Hot Gas and Dark Matter | 0.65655958650282 + The Virgo Cluster: Hot Plasma and Dark Matter | 0.656301290640973 + Rafting for Solar Neutrinos | 0.655172410958162 + NGC 4650A: Strange Galaxy and Dark Matter | 0.650072921219637 + Hot Gas and Dark Matter | 0.617195790024749 + Ice Fishing for Cosmic Neutrinos | 0.615384618911517 + Weak Lensing Distorts the Universe | 0.450010798361481 + + + + +The first argument in rank_cd ('{0.1, 0.2, +0.4, 1.0}') is an optional parameter which specifies the +weights for labels D, C, +B, and A used in function +setweight. These default values show that lexemes +labeled as A are ten times more important than ones +that are labeled with D. + + + +Ranking can be expensive since it requires consulting the +tsvector of all documents, which can be I/O bound and +therefore slow. Unfortunately, it is almost impossible to avoid since full +text searching in a database should work without indexes . Moreover an index can be lossy (a GiST +index, for example) so it must check documents to avoid false hits. + + + +Note that the ranking functions above are only examples. You can write +your own ranking functions and/or combine additional factors to fit your +specific needs. + + + + + + +Highlighting Results + + +headline + + + +To present search results it is ideal to show a part of each document and +how it is related to the query. Usually, search engines show fragments of +the document with marked search terms. PostgreSQL full +text searching provides the function headline that +implements such functionality. + + + + + + + + +headline( conf_name text, document text, query TSQUERY, options text ) returns text + + + + + +The headline() function accepts a document along with +a query, and returns one or more ellipsis-separated excerpts from the +document in which terms from the query are highlighted. The configuration +used to parse the document can be specified by its +conf_name; if none is specified, the current +configuration is used. + + + + + + + + +If an options string is specified it should +consist of a comma-separated list of one or more 'option=value' pairs. +The available options are: + + + +StartSel, StopSel: the strings with which +query words appearing in the document should be delimited to distinguish +them from other excerpted words. + + +MaxWords, MinWords: limit the shortest and +longest headlines to output + + +ShortWord: this prevents your headline from beginning +or ending with a word which has this many characters or less. The default +value of three eliminates the English articles. + + +HighlightAll: boolean flag; if +true the whole document will be highlighted + + + +Any unspecified options receive these defaults: + +StartSel=<b>, StopSel=</b>, MaxWords=35, MinWords=15, ShortWord=3, HighlightAll=FALSE + + + + +For example: + + +SELECT headline('a b c', 'c'::tsquery); + headline +-------------- + a b <b>c</b> +SELECT headline('a b c', 'c'::tsquery, 'StartSel=<,StopSel=>'); + headline +---------- + a b <c> + + + + +headline uses the original document, not +tsvector, so it can be slow and should be used with care. +A typical mistake is to call headline() for +every matching document when only ten documents are +shown. SQL subselects can help here; below is an +example: + + +SELECT id,headline(body,q), rank +FROM (SELECT id,body,q, rank_cd (ti,q) AS rank FROM apod, to_tsquery('stars') q + WHERE ti @@ q + ORDER BY rank DESC LIMIT 10) AS foo; + + + + +Note that the cascade dropping of the parser function +causes dropping of the headline used in the full text search +configuration conf_name. + + + + + + + +Dictionaries + + +Dictionaries are used to specify words that should not be considered in +a search and for the normalization of words to allow the user to use any +derived form of a word in a query. Also, normalization can reduce the size of +tsvector. Normalization does not always have linguistic +meaning and usually depends on application semantics. + + + +Some examples of normalization: + + + + + Linguistic - ispell dictionaries try to reduce input words to a +normalized form; stemmer dictionaries remove word endings + + + Identical URL locations are identified and canonicalized: + + + +http://www.pgsql.ru/db/mw/index.html + + +http://www.pgsql.ru/db/mw/ + + +http://www.pgsql.ru/db/../db/mw/index.html + + + + + +Colour names are substituted by their hexadecimal values, e.g., +red, green, blue, magenta -> FF0000, 00FF00, 0000FF, FF00FF + + +Remove some numeric fractional digits to reduce the range of possible +numbers, so 3.14159265359, +3.1415926, 3.14 will be the same +after normalization if only two digits are kept after the decimal point. + + + + + + +A dictionary is a program which accepts lexemes as +input and returns: + + +an array of lexemes if the input lexeme is known to the dictionary + + +a void array if the dictionary knows the lexeme, but it is a stop word + + +NULL if the dictionary does not recognize the input lexeme + + + +WARNING: +Data files used by dictionaries should be in the server_encoding +so all encodings are consistent across databases. + + + +Full text searching provides predefined dictionaries for many languages, +and SQL commands to manipulate them. There are also +several predefined template dictionaries that can be used to create new +dictionaries by overriding their default parameters. Besides this, it is +possible to develop custom dictionaries using an API; +see the dictionary for integers () as an example. + + + +The ALTER TEXT SEARCH CONFIGURATION public.pg ADD +MAPPING command binds specific types of lexemes and a set of +dictionaries to process them. (Mappings can also be specified as part of +configuration creation.) Lexemes are processed by a stack of dictionaries +until some dictionary identifies it as a known word or it turns out to be +a stop word. If no dictionary recognizes a lexeme, it will be discarded +and not indexed. A general rule for configuring a stack of dictionaries +is to place first the most narrow, most specific dictionary, then the more +general dictionaries and finish it with a very general dictionary, like +the snowball stemmer or simple, which +recognizes everything. For example, for an astronomy-specific search +(astro_en configuration) one could bind +lword (latin word) with a synonym dictionary of astronomical +terms, a general English dictionary and a snowball English +stemmer: + +ALTER TEXT SEARCH CONFIGURATION astro_en ADD MAPPING FOR lword WITH astrosyn, en_ispell, en_stem; + + + + +Function lexize can be used to test dictionaries, +for example: + +SELECT lexize('en_stem', 'stars'); + lexize +-------- + {star} +(1 row) + +Also, the ts_debug function () +can be used for this. + + + +Stop Words + +Stop words are words which are very common, appear in almost +every document, and have no discrimination value. Therefore, they can be ignored +in the context of full text searching. For example, every English text contains +words like a although it is useless to store them in an index. +However, stop words do affect the positions in tsvector, +which in turn, do affect ranking: + +SELECT to_tsvector('english','in the list of stop words'); + to_tsvector +---------------------------- + 'list':3 'stop':5 'word':6 + +The gaps between positions 1-3 and 3-5 are because of stop words, so ranks +calculated for documents with and without stop words are quite different: + +SELECT rank_cd ('{1,1,1,1}', to_tsvector('english','in the list of stop words'), to_tsquery('list & stop')); + rank_cd +--------- + 0.5 + +SELECT rank_cd ('{1,1,1,1}', to_tsvector('english','list stop words'), to_tsquery('list & stop')); + rank_cd +--------- + 1 + + + + + +It is up to the specific dictionary how it treats stop words. For example, +ispell dictionaries first normalize words and then +look at the list of stop words, while stemmers +first check the list of stop words. The reason for the different +behaviour is an attempt to decrease possible noise. + + + +Here is an example of a dictionary that returns the input word as lowercase +or NULL if it is a stop word; it also specifies the location +of the file of stop words. It uses the simple dictionary as +a template: + +CREATE TEXT SEARCH DICTIONARY public.simple_dict + TEMPLATE pg_catalog.simple + OPTION 'english.stop'; + +Relative paths in OPTION resolve relative to +share/. Now we can test our +dictionary: + +SELECT lexize('public.simple_dict','YeS'); + lexize +-------- + {yes} +SELECT lexize('public.simple_dict','The'); + lexize +-------- + {} + + + + + + + +Synonym Dictionary + + +This dictionary template is used to create dictionaries which replace a +word with a synonym. Phrases are not supported (use the thesaurus +dictionary () if you need them). Synonym +dictionary can be used to overcome linguistic problems, for example, to +prevent an English stemmer dictionary from reducing the word 'Paris' to +'pari'. In that case, it is enough to have a Paris +paris line in the synonym dictionary and put it before the +en_stem dictionary: + +SELECT * FROM ts_debug('english','Paris'); + Alias | Description | Token | Dicts list | Lexized token +-------+-------------+-------+----------------------+---------------------------- + lword | Latin word | Paris | {pg_catalog.en_stem} | pg_catalog.en_stem: {pari} +(1 row) +ALTER TEXT SEARCH CONFIGURATION ADD MAPPING ON english FOR lword WITH synonym, en_stem; +ALTER TEXT SEARCH MAPPING +Time: 340.867 ms +SELECT * FROM ts_debug('english','Paris'); + Alias | Description | Token | Dicts list | Lexized token +-------+-------------+-------+-----------------------------------------+----------------------------- + lword | Latin word | Paris | {pg_catalog.synonym,pg_catalog.en_stem} | pg_catalog.synonym: {paris} +(1 row) + + + + + + +Thesaurus Dictionary + + +A thesaurus dictionary (sometimes abbreviated as TZ) is +a collection of words which includes information about the relationships +of words and phrases, i.e., broader terms (BT), narrower +terms (NT), preferred terms, non-preferred terms, related +terms, etc. + + +Basically a thesaurus dictionary replaces all non-preferred terms by one +preferred term and, optionally, preserves them for indexing. Thesauruses +are used during indexing so any change in the thesaurus requires +reindexing. The current implementation of the thesaurus +dictionary is an extension of the synonym dictionary with added +phrase support. A thesaurus is a plain file of the +following format: + +# this is a comment +sample word(s) : indexed word(s) +............................... + +where the colon (:) symbol acts as a delimiter. + + + +A thesaurus dictionary uses a subdictionary (which +should be defined in the full text configuration) to normalize the +thesaurus text. It is only possible to define one dictionary. Notice that +the subdictionary will produce an error if it can +not recognize a word. In that case, you should remove the definition of +the word or teach the subdictionary to about it. +Use an asterisk (*) at the beginning of an indexed word to +skip the subdictionary. It is still required that sample words are known. + + + +The thesaurus dictionary looks for the longest match. + + + +Stop words recognized by the subdictionary are replaced by a 'stop word +placeholder' to record their position. To break possible ties the thesaurus +uses the last definition. To illustrate this, consider a thesaurus (with +a simple subdictionary) with pattern +'swsw', where 's' designates any stop word and +'w', any known word: + +a one the two : swsw +the one a two : swsw2 + +Words 'a' and 'the' are stop words defined in the +configuration of a subdictionary. The thesaurus considers 'the +one the two' and 'that one then two' as equal +and will use definition 'swsw2'. + + + +As any normal dictionary, it can be assigned to the specific lexeme types. +Since a thesaurus dictionary has the capability to recognize phrases it +must remember its state and interact with the parser. A thesaurus dictionary +uses these assignments to check if it should handle the next word or stop +accumulation. The thesaurus dictionary compiler must be configured +carefully. For example, if the thesaurus dictionary is assigned to handle +only the lword lexeme, then a thesaurus dictionary +definition like ' one 7' will not work since lexeme type +digit is not assigned to the thesaurus dictionary. + + + + + +Thesaurus Configuration + + +To define a new thesaurus dictionary one can use the thesaurus template. +For example: + + +CREATE TEXT SEARCH DICTIONARY thesaurus_simple + TEMPLATE thesaurus_template + OPTION 'DictFile="dicts_data/thesaurus.txt.sample", Dictionary="en_stem"'; + +Here: + + +thesaurus_simple is the thesaurus dictionary name + + +DictFile="/path/to/thesaurus_simple.txt" is the location of the thesaurus file + + +Dictionary="en_stem" defines the dictionary (snowball +English stemmer) to use for thesaurus normalization. Notice that the +en_stem dictionary has it is own configuration (for example, +stop words). + + + +Now it is possible to bind the thesaurus dictionary thesaurus_simple +and selected tokens, for example: + + +ALTER TEXT SEARCH russian ADD MAPPING FOR lword, lhword, lpart_hword WITH thesaurus_simple; + + + + + + +Thesaurus Example + + +Consider a simple astronomical thesaurus thesaurus_astro, +which contains some astronomical word combinations: + +supernovae stars : sn +crab nebulae : crab + +Below we create a dictionary and bind some token types with +an astronomical thesaurus and english stemmer: + +CREATE TEXT SEARCH DICTIONARY thesaurus_astro OPTION + TEMPLATE thesaurus_template + 'DictFile="dicts_data/thesaurus_astro.txt", Dictionary="en_stem"'; +ALTER TEXT SEARCH CONFIGURATION russian ADD MAPPING FOR lword, lhword, lpart_hword + WITH thesaurus_astro, en_stem; + +Now we can see how it works. Note that lexize cannot +be used for testing the thesaurus (see description of +lexize), but we can use +plainto_tsquery and to_tsvector +which accept text arguments, not lexemes: + + +SELECT plainto_tsquery('supernova star'); + plainto_tsquery +----------------- + 'sn' +SELECT to_tsvector('supernova star'); + to_tsvector +------------- + 'sn':1 + +In principle, one can use to_tsquery if you quote +the argument: + +SELECT to_tsquery('''supernova star'''); + to_tsquery +------------ + 'sn' + +Notice that supernova star matches supernovae +stars in thesaurus_astro because we specified the +en_stem stemmer in the thesaurus definition. + + +To keep an original phrase in full text indexing just add it to the right part +of the definition: + +supernovae stars : sn supernovae stars + +SELECT plainto_tsquery('supernova star'); + plainto_tsquery +----------------------------- + 'sn' & 'supernova' & 'star' + + + + + + +Ispell Dictionary + + +The Ispell template dictionary for full text allows the +creation of morphological dictionaries based on Ispell, which +supports a large number of languages. This dictionary tries to change an +input word to its normalized form. Also, more modern spelling dictionaries +are supported - MySpell (OO < 2.0.1) +and Hunspell +(OO >= 2.0.2). A large list of dictionaries is available on the OpenOffice +Wiki. + + + +The Ispell dictionary allows searches without bothering +about different linguistic forms of a word. For example, a search on +bank would return hits of all declensions and +conjugations of the search term bank, e.g. +banking, banked, banks, +banks', and bank's. + +SELECT lexize('en_ispell','banking'); + lexize +-------- + {bank} +SELECT lexize('en_ispell','bank''s'); + lexize +-------- + {bank} +SELECT lexize('en_ispell','banked'); + lexize +-------- + {bank} + + + + + +To create an ispell dictionary one should use the built-in +ispell_template dictionary and specify several +parameters. + + +CREATE TEXT SEARCH DICTIONARY en_ispell + TEMPLATE ispell_template + OPTION 'DictFile="/usr/local/share/dicts/ispell/english.dict", + AffFile="/usr/local/share/dicts/ispell/english.aff", + StopFile="/usr/local/share/dicts/ispell/english.stop"'; + + +Here, DictFile, AffFile, StopFile +specify the location of the dictionary and stop words files. + + + +Relative paths in OPTION resolve relative to +share/dicts_data: + +CREATE TEXT SEARCH DICTIONARY en_ispell + TEMPLATE ispell_template + OPTION 'DictFile="ispell/english.dict", + AffFile="ispell/english.aff", + StopFile="english.stop"'; + + + + +Ispell dictionaries usually recognize a restricted set of words so it +should be used in conjunction with another broader dictionary; for +example, a stemming dictionary, which recognizes everything. + + + + +Ispell dictionaries support splitting compound words based on an +ispell dictionary. This is a nice feature and full text searching +in PostgreSQL supports it. +Notice that the affix file should specify a special flag using the +compoundwords controlled statement that marks dictionary +words that can participate in compound formation: + +compoundwords controlled z + +Several examples for the Norwegian language: + +SELECT lexize('norwegian_ispell','overbuljongterningpakkmesterassistent'); + {over,buljong,terning,pakk,mester,assistent} +SELECT lexize('norwegian_ispell','sjokoladefabrikk'); + {sjokoladefabrikk,sjokolade,fabrikk} + + + + + +MySpell does not support compound words. +Hunspell has sophisticated support for compound words. At +present, full text searching implements only the basic compound word +operations of Hunspell. + + + + + + +<application>Snowball</> Stemming Dictionary + + +The Snowball template dictionary is based on the project +of Martin Porter, an inventor of the popular Porter's stemming algorithm +for the English language and now supported in many languages (see the Snowball site for more +information). Full text searching contains a large number of stemmers for +many languages. The only option that is accepted by a snowball stemmer is the +location of a file with stop words. It can be defined using the +ALTER TEXT SEARCH DICTIONARY command. + + + +ALTER TEXT SEARCH DICTIONARY en_stem + SET OPTION 'StopFile=english-utf8.stop, Language=english'; + + + + +Relative paths in OPTION resolve relative +share/dicts/data: + +ALTER TEXT SEARCH DICTIONARY en_stem OPTION 'english.stop'; + + + + +The Snowball dictionary recognizes everything, so it is best +to place it at the end of the dictionary stack. It it useless to have it +before any other dictionary because a lexeme will not pass through its stemmer. + + + + + +Dictionary Testing + + +The lexize function facilitates dictionary testing: + + + + + +lexize + + + + +lexize( dict_name text, lexeme text) returns text[] + + + + + +Returns an array of lexemes if the input lexeme +is known to the dictionary dictname, or a void +array if the lexeme is known to the dictionary but it is a stop word, or +NULL if it is an unknown word. + + +SELECT lexize('en_stem', 'stars'); + lexize +-------- + {star} +SELECT lexize('en_stem', 'a'); + lexize +-------- + {} + + + + + + + + + +The lexize function expects a +lexeme, not text. Below is an example: + +SELECT lexize('thesaurus_astro','supernovae stars') is null; + ?column? +---------- + t + +Thesaurus dictionary thesaurus_astro does know +supernovae stars, but lexize fails since it does not +parse the input text and considers it as a single lexeme. Use +plainto_tsquery and to_tsvector to test thesaurus +dictionaries: + +SELECT plainto_tsquery('supernovae stars'); + plainto_tsquery +----------------- + 'sn' + + + + + + + +Configuration Example + + +A full text configuration specifies all options necessary to transform a +document into a tsvector: the parser breaks text into tokens, +and the dictionaries transform each token into a lexeme. Every call to +to_tsvector() and to_tsquery() +needs a configuration to perform its processing. To facilitate management +of full text searching objects, a set of SQL commands +is available, and there are several psql commands which display information +about full text searching objects (). + + + +The GUC variable default_text_search_config +(optionally schema-qualified) defines the name of the current +active configuration. It can be defined in +postgresql.conf or using the SET command. + + + +Predefined full text searching objects are available in the +pg_catalog schema. If you need a custom configuration +you can create a new full text searching object and modify it using SQL +commands. + +New full text searching objects are created in the current schema by default +(usually the public schema), but a schema-qualified +name can be used to create objects in the specified schema. It is owned +by the current user and can be changed using the ALTER TEXT +SEARCH OWNER command. + + + +As an example, we will create a configuration +pg which starts as a duplicate of the +english configuration. To be safe, we do this in a transaction: + +BEGIN; + +CREATE TEXT SEARCH CONFIGURATION public.pg LIKE english WITH MAP; + + + + +We will use a PostgreSQL-specific synonym dictionary +and store it in the share/dicts_data directory. The +dictionary looks like: + +postgres pg +pgsql pg +postgresql pg + + + +CREATE TEXT SEARCH DICTIONARY pg_dict + TEMPLATE synonym + OPTION 'pg_dict.txt'; + + + + + +Then register the ispell dictionary en_ispell using +the ispell_template template: + + +CREATE TEXT SEARCH DICTIONARY en_ispell + TEMPLATE ispell_template + OPTION 'DictFile="english-utf8.dict", + AffFile="english-utf8.aff", + StopFile="english-utf8.stop"'; + + + + +Use the same stop word list for the Snowball stemmer en_stem, +which is available by default: + + +ALTER TEXT SEARCH DICTIONARY en_stem SET OPTION 'english-utf8.stop'; + + + + +Modify mappings for Latin words for configuration 'pg': + + +ALTER TEXT SEARCH CONFIGURATION pg ALTER MAPPING FOR lword, lhword, lpart_hword + WITH pg_dict, en_ispell, en_stem; + + + + +We do not index or search some tokens: + + +ALTER TEXT SEARCH CONFIGURATION pg DROP MAPPING FOR email, url, sfloat, uri, float; + + + + +Now, we can test our configuration: + +SELECT * FROM ts_debug('public.pg', ' +PostgreSQL, the highly scalable, SQL compliant, open source object-relational +database management system, is now undergoing beta testing of the next +version of our software: PostgreSQL 8.2. +'); + +COMMIT; + + + + +With the dictionaries and mappings set up, suppose we have a table +pgweb which contains 11239 documents from the +PostgreSQL web site. Only relevant columns +are shown: + +=> \d pgweb + Table "public.pgweb" + Column | Type | Modifiers +-----------+-------------------+----------- + tid | integer | not null + path | character varying | not null + body | character varying | + title | character varying | + dlm | integer | + + + + +The next step is to set the session to use the new configuration, which was +created in the public schema: + +=> \dF +postgres=# \dF public.* +List of fulltext configurations + Schema | Name | Description +--------+------+------------- + public | pg | + +SET default_text_search_config = 'public.pg'; +SET + +SHOW default_text_search_config; + default_text_search_config +---------------------------- + public.pg + + + + + + +Managing Multiple Configurations + + +If you are using the same text search configuration for the entire cluster +just set the value in postgresql.conf. If using a single +text search configuration for an entire database, use ALTER +DATABASE ... SET. + + + +However, if you need to use several text search configurations in the same +database you must be careful to reference the proper text search +configuration. This can be done by either setting +default_text_search_conf in each session or supplying the +configuration name in every function call, e.g. to_tsquery('pg', +'friend'), to_tsvector('pg', col). If you are using an expression index, +you must also be sure to use the proper text search configuration every +time an INSERT or UPDATE is executed because these +will modify the index, or you can embed the configuration name into the +expression index, e.g.: + +CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector('pg', textcat(title, body))); + +And if you do that, make sure you specify the configuration name in the +WHERE clause as well so the expression index will be used. + + + + + + + +GiST and GIN Index Types + + + index + full text + + + + +There are two kinds of indexes which can be used to speed up full text +operators (). +Note that indexes are not mandatory for full text searching. + + + + + + + +index +GIST + + + + +CREATE INDEX name ON table USING gist(column); + + + + + +Creates a GiST (Generalized Search Tree)-based index. + + + + + + + + +index +GIN + + + + +CREATE INDEX name ON table USING gin(column); + + + + + +Creates a GIN (Generalized Inverted Index)-based index. +column is a +TSVECTOR, TEXT, +VARCHAR, or CHAR-type column. + + + + + + + + + +A GiST index is lossy, meaning it is necessary +to consult the heap to check for false results. +PostgreSQL does this automatically; see +Filter: in the example below: + +EXPLAIN SELECT * FROM apod WHERE textsearch @@ to_tsquery('supernovae'); + QUERY PLAN +------------------------------------------------------------------------- + Index Scan using textsearch_gidx on apod (cost=0.00..12.29 rows=2 width=1469) + Index Cond: (textsearch @@ '''supernova'''::tsquery) + Filter: (textsearch @@ '''supernova'''::tsquery) + +GiST index lossiness happens because each document is represented by a +fixed-length signature. The signature is generated by hashing (crc32) each +word into a random bit in an n-bit string and all words combine to produce +an n-bit document signature. Because of hashing there is a chance that +some words hash to the same position and could result in a false hit. +Signatures calculated for each document in a collection are stored in an +RD-tree (Russian Doll tree), invented by Hellerstein, +which is an adaptation of R-tree for sets. In our case +the transitive containment relation is realized by +superimposed coding (Knuth, 1973) of signatures, i.e., a parent is the +result of 'OR'-ing the bit-strings of all children. This is a second +factor of lossiness. It is clear that parents tend to be full of +'1's (degenerates) and become quite useless because of the +limited selectivity. Searching is performed as a bit comparison of a +signature representing the query and an RD-tree entry. +If all '1's of both signatures are in the same position we +say that this branch probably matches the query, but if there is even one +discrepancy we can definitely reject this branch. + + + +Lossiness causes serious performance degradation since random access of +heap records is slow and limits the usefulness of GiST +indexes. The likelihood of false hits depends on several factors, like +the number of unique words, so using dictionaries to reduce this number +is recommended. + + + +Actually, this is not the whole story. GiST indexes have an optimization +for storing small tsvectors (< TOAST_INDEX_TARGET +bytes, 512 bytes). On leaf pages small tsvectors are stored unchanged, +while longer ones are represented by their signatures, which introduces +some lossiness. Unfortunately, the existing index API does not allow for +a return value to say whether it found an exact value (tsvector) or whether +the result needs to be checked. This is why the GiST index is +currently marked as lossy. We hope to improve this in the future. + + + +GIN indexes are not lossy but their performance depends logarithmically on +the number of unique words. + + + +There is one side-effect of the non-lossiness of a GIN index when using +query labels/weights, like 'supernovae:a'. A GIN index +has all the information necessary to determine a match, so the heap is +not accessed. However, if the query has label information it must access +the heap. Therefore, a special full text search operator @@@ +was created which forces the use of the heap to get information about +labels. GiST indexes are lossy so it always reads the heap and there is +no need for a special operator. In the example below, +fulltext_idx is a GIN index: + +EXPLAIN SELECT * FROM apod WHERE textsearch @@@ to_tsquery('supernovae:a'); + QUERY PLAN +------------------------------------------------------------------------ + Index Scan using textsearch_idx on apod (cost=0.00..12.30 rows=2 width=1469) + Index Cond: (textsearch @@@ '''supernova'':A'::tsquery) + Filter: (textsearch @@@ '''supernova'':A'::tsquery) + + + + + +In choosing which index type to use, GiST or GIN, consider these differences: + + +GiN index lookups are three times faster than GiST + + +GiN indexes take three times longer to build than GiST + + +GiN is about ten times slower to update than GiST + + +GiN indexes are two-to-three times larger than GiST + + + + + +In summary, GIN indexes are best for static data because +the indexes are faster for lookups. For dynamic data, GiST indexes are +faster to update. Specifically, GiST indexes are very +good for dynamic data and fast if the number of unique words (lexemes) is +under 100,000, while GIN handles +100,000 lexemes better +but is slower to update. + + + +Partitioning of big collections and the proper use of GiST and GIN indexes +allows the implementation of very fast searches with online update. +Partitioning can be done at the database level using table inheritance +and constraint_exclusion, or distributing documents over +servers and collecting search results using the contrib/dblink +extension module. The latter is possible because ranking functions use +only local information. + + + + + +Limitations + + +The current limitations of Full Text Searching are: + +The length of each lexeme must be less than 2K bytes +The length of a tsvector (lexemes + positions) must be less than 1 megabyte +The number of lexemes must be less than 264 +Positional information must be non-negative and less than 16,383 +No more than 256 positions per lexeme +The number of nodes (lexemes + operations) in tsquery must be less than 32,768 + + + + +For comparison, the PostgreSQL 8.1 documentation +consists of 10,441 unique words, a total of 335,420 words, and the most frequent word +'postgresql' is mentioned 6,127 times in 655 documents. + + + +Another example - the PostgreSQL mailing list archives +consists of 910,989 unique words with 57,491,343 lexemes in 461,020 messages. + + + + + +<application>psql</> Support + + +Information about full text searching objects can be obtained +in psql using a set of commands: + +\dF{,d,p}+ PATTERN + +An optional + produces more details. + + +The optional parameter PATTERN should be the name of +a full text searching object, optionally schema-qualified. If +PATTERN is not specified then information about all +visible objects will be displayed. PATTERN can be a +regular expression and can apply separately to schema +names and object names. The following examples illustrate this: + +=> \dF *fulltext* + List of fulltext configurations + Schema | Name | Description +--------+--------------+------------- + public | fulltext_cfg | + + + +=> \dF *.fulltext* + List of fulltext configurations + Schema | Name | Description +----------+---------------------------- + fulltext | fulltext_cfg | + public | fulltext_cfg | + + + + + + +\dF[+] [PATTERN] + + + + List full text searching configurations (add "+" for more detail) + + + By default (without PATTERN), information about + all visible full text configurations will be + displayed. + + + +=> \dF russian + List of fulltext configurations + Schema | Name | Description +------------+---------+----------------------------------- + pg_catalog | russian | default configuration for Russian + +=> \dF+ russian +Configuration "pg_catalog.russian" +Parser name: "pg_catalog.default" +Locale: 'ru_RU.UTF-8' (default) + Token | Dictionaries +--------------+------------------------- + email | pg_catalog.simple + file | pg_catalog.simple + float | pg_catalog.simple + host | pg_catalog.simple + hword | pg_catalog.ru_stem_utf8 + int | pg_catalog.simple + lhword | public.tz_simple + lpart_hword | public.tz_simple + lword | public.tz_simple + nlhword | pg_catalog.ru_stem_utf8 + nlpart_hword | pg_catalog.ru_stem_utf8 + nlword | pg_catalog.ru_stem_utf8 + part_hword | pg_catalog.simple + sfloat | pg_catalog.simple + uint | pg_catalog.simple + uri | pg_catalog.simple + url | pg_catalog.simple + version | pg_catalog.simple + word | pg_catalog.ru_stem_utf8 + + + + + + +\dFd[+] [PATTERN] + + + List full text dictionaries (add "+" for more detail). + + + By default (without PATTERN), information about + all visible dictionaries will be displayed. + + + +=> \dFd + List of fulltext dictionaries + Schema | Name | Description +------------+------------+----------------------------------------------------------- + pg_catalog | danish | Snowball stemmer for danish language + pg_catalog | dutch | Snowball stemmer for dutch language + pg_catalog | english | Snowball stemmer for english language + pg_catalog | finnish | Snowball stemmer for finnish language + pg_catalog | french | Snowball stemmer for french language + pg_catalog | german | Snowball stemmer for german language + pg_catalog | hungarian | Snowball stemmer for hungarian language + pg_catalog | italian | Snowball stemmer for italian language + pg_catalog | norwegian | Snowball stemmer for norwegian language + pg_catalog | portuguese | Snowball stemmer for portuguese language + pg_catalog | romanian | Snowball stemmer for romanian language + pg_catalog | russian | Snowball stemmer for russian language + pg_catalog | simple | simple dictionary: just lower case and check for stopword + pg_catalog | spanish | Snowball stemmer for spanish language + pg_catalog | swedish | Snowball stemmer for swedish language + pg_catalog | turkish | Snowball stemmer for turkish language + + + + + + + +\dFp[+] [PATTERN] + + + List full text parsers (add "+" for more detail) + + + By default (without PATTERN), information about + all visible full text parsers will be displayed. + + + +=> \dFp + List of fulltext parsers + Schema | Name | Description +------------+---------+--------------------- + pg_catalog | default | default word parser +(1 row) +=> \dFp+ + Fulltext parser "pg_catalog.default" + Method | Function | Description +-------------------+---------------------------+------------- + Start parse | pg_catalog.prsd_start | + Get next token | pg_catalog.prsd_nexttoken | + End parse | pg_catalog.prsd_end | + Get headline | pg_catalog.prsd_headline | + Get lexeme's type | pg_catalog.prsd_lextype | + + Token's types for parser "pg_catalog.default" + Token name | Description +--------------+----------------------------------- + blank | Space symbols + email | Email + entity | HTML Entity + file | File or path name + float | Decimal notation + host | Host + hword | Hyphenated word + int | Signed integer + lhword | Latin hyphenated word + lpart_hword | Latin part of hyphenated word + lword | Latin word + nlhword | Non-latin hyphenated word + nlpart_hword | Non-latin part of hyphenated word + nlword | Non-latin word + part_hword | Part of hyphenated word + protocol | Protocol head + sfloat | Scientific notation + tag | HTML Tag + uint | Unsigned integer + uri | URI + url | URL + version | VERSION + word | Word +(23 rows) + + + + + + + + + + + +Debugging + + +Function ts_debug allows easy testing of your full text searching +configuration. + + + +ts_debug(conf_name, document TEXT) returns SETOF tsdebug + + + +ts_debug displays information about every token of +document as produced by the +parser and processed by the configured dictionaries using the configuration +specified by conf_name. + + +tsdebug type defined as: + +CREATE TYPE tsdebug AS ( + "Alias" text, + "Description" text, + "Token" text, + "Dicts list" text[], + "Lexized token" text + + + + +For a demonstration of how function ts_debug works we +first create a public.english configuration and +ispell dictionary for the English language. You can skip the test step and +play with the standard english configuration. + + +CREATE TEXT SEARCH CONFIGURATION public.english LIKE pg_catalog.english WITH MAP AS DEFAULT; +CREATE TEXT SEARCH DICTIONARY en_ispell + TEMPLATE ispell_template + OPTION 'DictFile="/usr/local/share/dicts/ispell/english-utf8.dict", + AffFile="/usr/local/share/dicts/ispell/english-utf8.aff", + StopFile="/usr/local/share/dicts/english.stop"'; +ALTER TEXT SEARCH MAPPING ON public.english FOR lword WITH en_ispell,en_stem; + + + +SELECT * FROM ts_debug('public.english','The Brightest supernovaes'); + Alias | Description | Token | Dicts list | Lexized token +-------+---------------+-------------+---------------------------------------+--------------------------------- + lword | Latin word | The | {public.en_ispell,pg_catalog.en_stem} | public.en_ispell: {} + blank | Space symbols | | | + lword | Latin word | Brightest | {public.en_ispell,pg_catalog.en_stem} | public.en_ispell: {bright} + blank | Space symbols | | | + lword | Latin word | supernovaes | {public.en_ispell,pg_catalog.en_stem} | pg_catalog.en_stem: {supernova} +(5 rows) + + +In this example, the word 'Brightest' was recognized by a +parser as a Latin word (alias lword) +and came through the dictionaries public.en_ispell and +pg_catalog.en_stem. It was recognized by +public.en_ispell, which reduced it to the noun +bright. The word supernovaes is unknown +by the public.en_ispell dictionary so it was passed to +the next dictionary, and, fortunately, was recognized (in fact, +public.en_stem is a stemming dictionary and recognizes +everything; that is why it was placed at the end of the dictionary stack). + + + +The word The was recognized by public.en_ispell +dictionary as a stop word () and will not be indexed. + + + +You can always explicitly specify which columns you want to see: + +SELECT "Alias", "Token", "Lexized token" +FROM ts_debug('public.english','The Brightest supernovaes'); + Alias | Token | Lexized token +-------+-------------+--------------------------------- + lword | The | public.en_ispell: {} + blank | | + lword | Brightest | public.en_ispell: {bright} + blank | | + lword | supernovaes | pg_catalog.en_stem: {supernova} +(5 rows) + + + + + + +Example of Creating a Rule-Based Dictionary + + +The motivation for this example dictionary is to control the indexing of +integers (signed and unsigned), and, consequently, to minimize the number +of unique words which greatly affects to performance of searching. + + + +The dictionary accepts two options: + + + +The MAXLEN parameter specifies the maximum length of the +number considered as a 'good' integer. The default value is 6. + + + +The REJECTLONG parameter specifies if a 'long' integer +should be indexed or treated as a stop word. If +REJECTLONG=FALSE (default), +the dictionary returns the prefixed part of the integer with length +MAXLEN. If +REJECTLONG=TRUE, the dictionary +considers a long integer as a stop word. + + + + + + + +A similar idea can be applied to the indexing of decimal numbers, for +example, in the DecDict dictionary. The dictionary +accepts two options: the MAXLENFRAC parameter specifies +the maximum length of the fractional part considered as a 'good' decimal. +The default value is 3. The REJECTLONG parameter +controls whether a decimal number with a 'long' fractional part should be indexed +or treated as a stop word. If +REJECTLONG=FALSE (default), +the dictionary returns the decimal number with the length of its fraction part +truncated to MAXLEN. If +REJECTLONG=TRUE, the dictionary +considers the number as a stop word. Notice that +REJECTLONG=FALSE allows the indexing +of 'shortened' numbers and search results will contain documents with +shortened numbers. + + + + +Examples: + +SELECT lexize('intdict', 11234567890); + lexize +---------- + {112345} + + + +Now, we want to ignore long integers: + + +ALTER TEXT SEARCH DICTIONARY intdict SET OPTION 'MAXLEN=6, REJECTLONG=TRUE'; +SELECT lexize('intdict', 11234567890); + lexize +-------- + {} + + + + +Create contrib/dict_intdict directory with files +dict_tmpl.c, Makefile, dict_intdict.sql.in: + +make && make install +psql DBNAME < dict_intdict.sql + + + + +This is a dict_tmpl.c file: + + + +#include "postgres.h" +#include "utils/builtins.h" +#include "fmgr.h" + +#ifdef PG_MODULE_MAGIC +PG_MODULE_MAGIC; +#endif + +#include "utils/ts_locale.h" +#include "utils/ts_public.h" +#include "utils/ts_utils.h" + + typedef struct { + int maxlen; + bool rejectlong; + } DictInt; + + + PG_FUNCTION_INFO_V1(dinit_intdict); + Datum dinit_intdict(PG_FUNCTION_ARGS); + + Datum + dinit_intdict(PG_FUNCTION_ARGS) { + DictInt *d = (DictInt*)malloc( sizeof(DictInt) ); + Map *cfg, *pcfg; + text *in; + + if (!d) + elog(ERROR, "No memory"); + memset(d, 0, sizeof(DictInt)); + + /* Your INIT code */ +/* defaults */ + d->maxlen = 6; + d->rejectlong = false; + + if ( PG_ARGISNULL(0) || PG_GETARG_POINTER(0) == NULL ) /* no options */ + PG_RETURN_POINTER(d); + + in = PG_GETARG_TEXT_P(0); + parse_keyvalpairs(in, &cfg); + PG_FREE_IF_COPY(in, 0); + pcfg=cfg; + + while (pcfg->key) + { + if (strcasecmp("MAXLEN", pcfg->key) == 0) + d->maxlen=atoi(pcfg->value); + else if ( strcasecmp("REJECTLONG", pcfg->key) == 0) + { + if ( strcasecmp("true", pcfg->value) == 0 ) + d->rejectlong=true; + else if ( strcasecmp("false", pcfg->value) == 0) + d->rejectlong=false; + else + elog(ERROR,"Unknown value: %s => %s", pcfg->key, pcfg->value); + } + else + elog(ERROR,"Unknown option: %s => %s", pcfg->key, pcfg->value); + + pfree(pcfg->key); + pfree(pcfg->value); + pcfg++; + } + pfree(cfg); + + PG_RETURN_POINTER(d); + } + +PG_FUNCTION_INFO_V1(dlexize_intdict); +Datum dlexize_intdict(PG_FUNCTION_ARGS); +Datum +dlexize_intdict(PG_FUNCTION_ARGS) +{ + DictInt *d = (DictInt*)PG_GETARG_POINTER(0); + char *in = (char*)PG_GETARG_POINTER(1); + char *txt = pnstrdup(in, PG_GETARG_INT32(2)); + TSLexeme *res = palloc(sizeof(TSLexeme) * 2); + + /* Your INIT dictionary code */ + res[1].lexeme = NULL; + + if (PG_GETARG_INT32(2) > d->maxlen) + { + if (d->rejectlong) + { /* stop, return void array */ + pfree(txt); + res[0].lexeme = NULL; + } + else + { /* cut integer */ + txt[d->maxlen] = '\0'; + res[0].lexeme = txt; + } + } + else + res[0].lexeme = txt; + + PG_RETURN_POINTER(res); +} + + + +This is the Makefile: + +subdir = contrib/dict_intdict +top_builddir = ../.. +include $(top_builddir)/src/Makefile.global + +MODULE_big = dict_intdict +OBJS = dict_tmpl.o +DATA_built = dict_intdict.sql +DOCS = + +include $(top_srcdir)/contrib/contrib-global.mk + + + + +This is a dict_intdict.sql.in: + +SET default_text_search_config = 'english'; + +BEGIN; + +CREATE OR REPLACE FUNCTION dinit_intdict(internal) +RETURNS internal +AS 'MODULE_PATHNAME' +LANGUAGE 'C'; + +CREATE OR REPLACE FUNCTION dlexize_intdict(internal,internal,internal,internal) +RETURNS internal +AS 'MODULE_PATHNAME' +LANGUAGE 'C' +WITH (isstrict); + +CREATE TEXT SEARCH DICTIONARY intdict + LEXIZE 'dlexize_intdict' INIT 'dinit_intdict' + OPTION 'MAXLEN=6,REJECTLONG = false'; + +COMMENT ON TEXT SEARCH DICTIONARY intdict IS 'Dictionary for Integers'; + +END; + + + + + + +Example of Creating a Parser + + +SQL command CREATE TEXT SEARCH PARSER creates +a parser for full text searching. In our example we will implement +a simple parser which recognizes space-delimited words and +has only two types (3, word, Word; 12, blank, Space symbols). Identifiers +were chosen to keep compatibility with the default headline() function +since we do not implement our own version. + + + +To implement a parser one needs to create a minimum of four functions. + + + + + + + +START = start_function + + + + +Initialize the parser. Arguments are a pointer to the parsed text and its +length. + + +Returns a pointer to the internal structure of a parser. Note that it should +be malloced or palloced in the +TopMemoryContext. We name it ParserState. + + + + + + + +GETTOKEN = gettoken_function + + + + +Returns the next token. +Arguments are ParserState *, char **, int *. + + +This procedure will be called as long as the procedure returns token type zero. + + + + + + + +END = end_function, + + + + +This void function will be called after parsing is finished to free +allocated resources in this procedure (ParserState). The argument +is ParserState *. + + + + + + + +LEXTYPES = lextypes_function + + + + +Returns an array containing the id, alias, and the description of the tokens +in the parser. See LexDescr in src/include/utils/ts_public.h. + + + + + + + +Below is the source code of our test parser, organized as a contrib module. + + + +Testing: + +SELECT * FROM parse('testparser','That''s my first own parser'); + tokid | token +-------+-------- + 3 | That's + 12 | + 3 | my + 12 | + 3 | first + 12 | + 3 | own + 12 | + 3 | parser +SELECT to_tsvector('testcfg','That''s my first own parser'); + to_tsvector +------------------------------------------------- + 'my':2 'own':4 'first':3 'parser':5 'that''s':1 +SELECT headline('testcfg','Supernovae stars are the brightest phenomena in galaxies', to_tsquery('testcfg', 'star')); + headline +----------------------------------------------------------------- + Supernovae <b>stars</b> are the brightest phenomena in galaxies + + + + + +This test parser is an example adopted from a tutorial by Valli, parser +HOWTO. + + + +To compile the example just do: + +make +make install +psql regression < test_parser.sql + + + + +This is a test_parser.c: + + +#ifdef PG_MODULE_MAGIC +PG_MODULE_MAGIC; +#endif + +/* + * types + */ + +/* self-defined type */ +typedef struct { + char * buffer; /* text to parse */ + int len; /* length of the text in buffer */ + int pos; /* position of the parser */ +} ParserState; + +/* copy-paste from wparser.h of tsearch2 */ +typedef struct { + int lexid; + char *alias; + char *descr; +} LexDescr; + +/* + * prototypes + */ +PG_FUNCTION_INFO_V1(testprs_start); +Datum testprs_start(PG_FUNCTION_ARGS); + +PG_FUNCTION_INFO_V1(testprs_getlexeme); +Datum testprs_getlexeme(PG_FUNCTION_ARGS); + +PG_FUNCTION_INFO_V1(testprs_end); +Datum testprs_end(PG_FUNCTION_ARGS); + +PG_FUNCTION_INFO_V1(testprs_lextype); +Datum testprs_lextype(PG_FUNCTION_ARGS); + +/* + * functions + */ +Datum testprs_start(PG_FUNCTION_ARGS) +{ + ParserState *pst = (ParserState *) palloc(sizeof(ParserState)); + pst->buffer = (char *) PG_GETARG_POINTER(0); + pst->len = PG_GETARG_INT32(1); + pst->pos = 0; + + PG_RETURN_POINTER(pst); +} + +Datum testprs_getlexeme(PG_FUNCTION_ARGS) +{ + ParserState *pst = (ParserState *) PG_GETARG_POINTER(0); + char **t = (char **) PG_GETARG_POINTER(1); + int *tlen = (int *) PG_GETARG_POINTER(2); + int type; + + *tlen = pst->pos; + *t = pst->buffer + pst->pos; + + if ((pst->buffer)[pst->pos] == ' ') + { + /* blank type */ + type = 12; + /* go to the next non-white-space character */ + while ((pst->buffer)[pst->pos] == ' ' && + pst->pos < pst->len) + (pst->pos)++; + } else { + /* word type */ + type = 3; + /* go to the next white-space character */ + while ((pst->buffer)[pst->pos] != ' ' && + pst->pos < pst->len) + (pst->pos)++; + } + + *tlen = pst->pos - *tlen; + + /* we are finished if (*tlen == 0) */ + if (*tlen == 0) + type=0; + + PG_RETURN_INT32(type); +} +Datum testprs_end(PG_FUNCTION_ARGS) +{ + ParserState *pst = (ParserState *) PG_GETARG_POINTER(0); + pfree(pst); + PG_RETURN_VOID(); +} + +Datum testprs_lextype(PG_FUNCTION_ARGS) +{ + /* + Remarks: + - we have to return the blanks for headline reason + - we use the same lexids like Teodor in the default + word parser; in this way we can reuse the headline + function of the default word parser. + */ + LexDescr *descr = (LexDescr *) palloc(sizeof(LexDescr) * (2+1)); + + /* there are only two types in this parser */ + descr[0].lexid = 3; + descr[0].alias = pstrdup("word"); + descr[0].descr = pstrdup("Word"); + descr[1].lexid = 12; + descr[1].alias = pstrdup("blank"); + descr[1].descr = pstrdup("Space symbols"); + descr[2].lexid = 0; + + PG_RETURN_POINTER(descr); +} + + + +This is a Makefile + + +override CPPFLAGS := -I. $(CPPFLAGS) + +MODULE_big = test_parser +OBJS = test_parser.o + +DATA_built = test_parser.sql +DATA = +DOCS = README.test_parser +REGRESS = test_parser + + +ifdef USE_PGXS +PGXS := $(shell pg_config --pgxs) +include $(PGXS) +else +subdir = contrib/test_parser +top_builddir = ../.. +include $(top_builddir)/src/Makefile.global +include $(top_srcdir)/contrib/contrib-global.mk +endif + + +This is a test_parser.sql.in: + + +SET default_text_search_config = 'english'; + +BEGIN; + +CREATE FUNCTION testprs_start(internal,int4) +RETURNS internal +AS 'MODULE_PATHNAME' +LANGUAGE 'C' with (isstrict); + +CREATE FUNCTION testprs_getlexeme(internal,internal,internal) +RETURNS internal +AS 'MODULE_PATHNAME' +LANGUAGE 'C' with (isstrict); + +CREATE FUNCTION testprs_end(internal) +RETURNS void +AS 'MODULE_PATHNAME' +LANGUAGE 'C' with (isstrict); + +CREATE FUNCTION testprs_lextype(internal) +RETURNS internal +AS 'MODULE_PATHNAME' +LANGUAGE 'C' with (isstrict); + + +CREATE TEXT SEARCH PARSER testparser + START 'testprs_start' + GETTOKEN 'testprs_getlexeme' + END 'testprs_end' + LEXTYPES 'testprs_lextype' +; + +CREATE TEXT SEARCH CONFIGURATION testcfg PARSER 'testparser'; +CREATE TEXT SEARCH CONFIGURATION testcfg ADD MAPPING FOR word WITH simple; + +END; + + + + + + + -- 2.11.0