From 63cac75d59311c55ba86b8d531493364ae637517 Mon Sep 17 00:00:00 2001 From: FFjet Date: Sat, 13 Jul 2019 20:39:35 +0800 Subject: [PATCH] Update leftist-tree.md MIME-Version: 1.0 Content-Type: text/plain; charset=utf8 Content-Transfer-Encoding: 8bit 修了一下格式 --- docs/ds/leftist-tree.md | 34 +++++++++++++++++----------------- 1 file changed, 17 insertions(+), 17 deletions(-) diff --git a/docs/ds/leftist-tree.md b/docs/ds/leftist-tree.md index 8917010a..8889ad5e 100644 --- a/docs/ds/leftist-tree.md +++ b/docs/ds/leftist-tree.md @@ -4,23 +4,23 @@ ## dist 的定义和性质 -对于一棵二叉树,我们定义 **外节点** 为左儿子或右儿子为空的节点,定义一个外节点的 $dist​$ 为 $1​$,一个不是外节点的节点 $dist​$ 为其到子树中最近的外节点的距离加一。空节点的 $dist​$ 为 $0​$。 +对于一棵二叉树,我们定义 **外节点** 为左儿子或右儿子为空的节点,定义一个外节点的 $\mathrm{dist}$ 为 $1$,一个不是外节点的节点 $\mathrm{dist}$ 为其到子树中最近的外节点的距离加一。空节点的 $\mathrm{dist}$ 为 $0$。 -> 注:很多其它教程中定义的 $dist$ 都是本文中的 $dist$ 减去 $1$,本文这样定义是因为代码写起来方便。 +> 注:很多其它教程中定义的 $\mathrm{dist}$ 都是本文中的 $\mathrm{dist}$ 减去 $1$,本文这样定义是因为代码写起来方便。 -一棵有 $n$ 个节点的二叉树,根的 $dist$ 不超过 $\left\lceil\log (n+1)\right\rceil$,因为一棵根的 $dist$ 为 $x$ 的二叉树至少有 $x-1$ 层是满二叉树,那么就至少有 $2^x-1​$ 个节点。注意这个性质是所有二叉树都具有的,并不是左偏树所特有的。 +一棵有 $n$ 个节点的二叉树,根的 $\mathrm{dist}$ 不超过 $\left\lceil\log (n+1)\right\rceil$,因为一棵根的 $\mathrm{dist}$ 为 $x$ 的二叉树至少有 $x-1$ 层是满二叉树,那么就至少有 $2^x-1$ 个节点。注意这个性质是所有二叉树都具有的,并不是左偏树所特有的。 ## 左偏树的定义和性质 -左偏树是一棵二叉树,它不仅具有堆的性质,并且是 “左偏” 的:每个节点左儿子的 $dist$ 都大于等于右儿子的 $dist$。 +左偏树是一棵二叉树,它不仅具有堆的性质,并且是「左偏」 的:每个节点左儿子的 $\mathrm{dist}$ 都大于等于右儿子的 $\mathrm{dist}$。 -因此,左偏树每个节点的 $dist​$ 都等于其右儿子的 $dist​$ 加一。 +因此,左偏树每个节点的 $\mathrm{dist}$ 都等于其右儿子的 $\mathrm{dist}$ 加一。 -需要注意的是,$dist​$ 不是深度,**左偏树的深度没有保证**,一条向左的链也是左偏树。 +需要注意的是,$\mathrm{dist}$ 不是深度,**左偏树的深度没有保证**,一条向左的链也是左偏树。 -## 左偏树的核心操作:合并(merge) +## 核心操作:合并(merge) -合并两个堆时,由于要满足堆性质,先取值较小(为了方便,本文讨论小根堆)的那个根作为合并后堆的根节点,然后将这个根的左儿子作为合并后堆的左儿子,递归地合并其右儿子与另一个堆,作为合并后的堆的右儿子。为了满足左偏性质,合并后若左儿子的 $dist$ 小于右儿子的 $dist​$,就交换两个儿子。 +合并两个堆时,由于要满足堆性质,先取值较小(为了方便,本文讨论小根堆)的那个根作为合并后堆的根节点,然后将这个根的左儿子作为合并后堆的左儿子,递归地合并其右儿子与另一个堆,作为合并后的堆的右儿子。为了满足左偏性质,合并后若左儿子的 $\mathrm{dist}$ 小于右儿子的 $\mathrm{dist}$,就交换两个儿子。 参考代码: @@ -36,9 +36,9 @@ int merge(int x, int y) } ``` -由于左偏性质,每递归一层,其中一个堆根节点的 $dist$ 就会减小 $1$,而 “一棵有 $n$ 个节点的二叉树,根的 $dist$ 不超过 $\left\lceil\log (n+1)\right\rceil$”,所以合并两个大小分别为 ​$n$ 和 ​$m$ 的堆复杂度是 ​$\mathcal O(\log n+\log m)$。 +由于左偏性质,每递归一层,其中一个堆根节点的 $\mathrm{dist}$ 就会减小 $1$,而 “一棵有 $n$ 个节点的二叉树,根的 $\mathrm{dist}$ 不超过 $\left\lceil\log (n+1)\right\rceil$”,所以合并两个大小分别为 $n$ 和 $m$ 的堆复杂度是 $\mathcal O(\log n+\log m)$。 -左偏树还有一种无需交换左右儿子的写法:将 $dist​$ 较大的儿子视作左儿子,$dist​$ 较小的儿子视作右儿子: +左偏树还有一种无需交换左右儿子的写法:将 $\mathrm{dist}$ 较大的儿子视作左儿子,$\mathrm{dist}$ 较小的儿子视作右儿子: ```cpp int& rs(int x) @@ -70,7 +70,7 @@ int merge(int x, int y) #### 做法 -先将左右儿子合并,然后自底向上更新 $dist​$、不满足左偏性质时交换左右儿子,当 $dist​$ 无需更新时结束递归: +先将左右儿子合并,然后自底向上更新 $\mathrm{dist}$、不满足左偏性质时交换左右儿子,当 $\mathrm{dist}$ 无需更新时结束递归: ```cpp int& rs(int x) @@ -100,14 +100,14 @@ void pushup(int x) #### 复杂度证明 -我们令当前 `pushup` 的这个节点为 $x​$,其父亲为 $y​$,一个节点的 “初始 $dist​$” 为它在 `pushup` 前的 $dist​$。我们先 `pushup` 一下删除的节点,然后从其父亲开始起讨论复杂度。 +我们令当前 `pushup` 的这个节点为 $x$,其父亲为 $y$,一个节点的 “初始 $\mathrm{dist}$” 为它在 `pushup` 前的 $\mathrm{dist}$。我们先 `pushup` 一下删除的节点,然后从其父亲开始起讨论复杂度。 继续递归下去有两种情况: -1. $x$ 是 $y$ 的右儿子,此时 $y$ 的初始 $dist$ 为 $x$ 的初始 $dist$ 加一。 -2. $x$ 是 $y$ 的左儿子,只有 $y$ 的左右儿子初始 $dist$ 相等时(此时左儿子 $dist$ 减一会导致左右儿子互换)才会继续递归下去,因此 $y$ 的初始 $dist$ 仍然是 $x$ 的初始 $dist$ 加一。 +1. $x$ 是 $y$ 的右儿子,此时 $y$ 的初始 $\mathrm{dist}$ 为 $x$ 的初始 $\mathrm{dist}$ 加一。 +2. $x$ 是 $y$ 的左儿子,只有 $y$ 的左右儿子初始 $\mathrm{dist}$ 相等时(此时左儿子 $\mathrm{dist}$ 减一会导致左右儿子互换)才会继续递归下去,因此 $y$ 的初始 $\mathrm{dist}$ 仍然是 $x$ 的初始 $\mathrm{dist}$ 加一。 -所以,我们得到,除了第一次 `pushup`(因为被删除节点的父亲的初始 $dist​$ 不一定等于被删除节点左右儿子合并后的初始 $dist​$ 加一),每递归一层 $x​$ 的初始 $dist​$ 就会加一,因此最多递归 $\mathcal O(\log n)​$ 层。 +所以,我们得到,除了第一次 `pushup`(因为被删除节点的父亲的初始 $\mathrm{dist}$ 不一定等于被删除节点左右儿子合并后的初始 $\mathrm{dist}$ 加一),每递归一层 $x$ 的初始 $\mathrm{$\mathrm{dist}$}$ 就会加一,因此最多递归 $\mathcal O(\log n)$ 层。 ### 整个堆加上 / 减去一个值、乘上一个正数 @@ -148,7 +148,7 @@ int pop(int x) 1. 合并前要检查是否已经在同一堆中。 -2. 左偏树的深度可能达到 $\mathcal O(n)​$,因此找一个点所在的堆顶要用并查集维护,不能直接暴力跳父亲。(虽然很多题数据水,暴力跳父亲可以过..)(用并查集维护根时要保证原根指向新根,新根指向自己。) +2. 左偏树的深度可能达到 $\mathcal O(n)$,因此找一个点所在的堆顶要用并查集维护,不能直接暴力跳父亲。(虽然很多题数据水,暴力跳父亲可以过..)(用并查集维护根时要保证原根指向新根,新根指向自己。) ??? " 罗马游戏参考代码 " @@ -410,7 +410,7 @@ int pop(int x) 再考虑单点查询,若用普通的方法打标记,就得查询点到根路径上的标记之和,最坏情况下可以达到 $\mathcal O(n)$ 的复杂度。如果只有堆顶有标记,就可以快速地查询了,但如何做到呢? -可以用类似启发式合并的方式,每次合并的时候把较小的那个堆标记暴力下传到每个节点,然后把较大的堆的标记作为合并后的堆的标记。由于合并后有另一个堆的标记,所以较小的堆下传标记时要下传其标记减去另一个堆的标记。由于每个节点每被合并一次所在堆的大小至少乘二,所以每个节点最多被下放 $\mathcal O(\log n)​$ 次标记,暴力下放标记的总复杂度就是 $\mathcal O(n\log n)​$。 +可以用类似启发式合并的方式,每次合并的时候把较小的那个堆标记暴力下传到每个节点,然后把较大的堆的标记作为合并后的堆的标记。由于合并后有另一个堆的标记,所以较小的堆下传标记时要下传其标记减去另一个堆的标记。由于每个节点每被合并一次所在堆的大小至少乘二,所以每个节点最多被下放 $\mathcal O(\log n)$ 次标记,暴力下放标记的总复杂度就是 $\mathcal O(n\log n)$。 再考虑单点加,先删除,再更新,最后插入即可。 -- 2.11.0