From ccd356ea2c9208f70c98d12b88e8d6816eb24a17 Mon Sep 17 00:00:00 2001 From: 24OI-bot <15963390+24OI-bot@users.noreply.github.com> Date: Sun, 21 Jul 2019 09:41:12 -0400 Subject: [PATCH] style: format markdown files with remark-lint --- docs/misc/josephus.md | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/docs/misc/josephus.md b/docs/misc/josephus.md index eb53f16c..4cc1b515 100644 --- a/docs/misc/josephus.md +++ b/docs/misc/josephus.md @@ -67,7 +67,8 @@ $$ 下面我们证明该算法的复杂度是 $\Theta (k\log n)$ 的。 -考虑$\displaystyle \lim _{k \rightarrow \infty} k \log \left(1-\frac{1}{k}\right)$,我们有 +考虑 $\displaystyle \lim _{k \rightarrow \infty} k \log \left(1-\frac{1}{k}\right)$ ,我们有 + $$ \begin{aligned} \lim _{k \rightarrow \infty} k \log \left(1-\frac{1}{k}\right)&=\lim _{k \rightarrow \infty} \frac{\log \left(1-\frac{1}{k}\right)}{1 / k}\\ @@ -78,6 +79,7 @@ $$ &=-1 \end{aligned} $$ -所以 $x \sim k \ln n, k\to \infty $,即 $-\dfrac{\ln n}{\ln\left(1-\frac{1}{k}\right)}= \Theta (k\log n)$ + +所以 $x \sim k \ln n, k\to \infty$ ,即 $-\dfrac{\ln n}{\ln\left(1-\frac{1}{k}\right)}= \Theta (k\log n)$ **本页面主要译自博文[Задача Иосифа](https://e-maxx.ru/algo/joseph_problem)与其英文翻译版[Josephus Problem](https://cp-algorithms.com/others/josephus_problem.html)。其中俄文版版权协议为 Public Domain + Leave a Link;英文版版权协议为 CC-BY-SA 4.0。** -- 2.11.0