From df2bad0f0d531c5ac7e97b92e0d1ddc671774e71 Mon Sep 17 00:00:00 2001 From: FFjet Date: Fri, 26 Apr 2019 15:56:06 +0800 Subject: [PATCH] Update mobius.md --- docs/math/mobius.md | 55 +++++++++++++++++++++++++++-------------------------- 1 file changed, 28 insertions(+), 27 deletions(-) diff --git a/docs/math/mobius.md b/docs/math/mobius.md index bce4edb8..f5427521 100644 --- a/docs/math/mobius.md +++ b/docs/math/mobius.md @@ -683,7 +683,7 @@ signed main(){ 求 $$ -\sum_{i=1}^n\sum_{j=1}^ni\cdot j\cdot gcd(i,j)\bmod p\\ +\sum_{i=1}^n\sum_{j=1}^ni\cdot j\cdot \gcd(i,j)\bmod p\\ n\leq10^{10},5\times10^8\leq p\leq1.1\times10^9,\text{p 是质数} $$ @@ -692,22 +692,23 @@ $$ 我们利用 $\varphi\ast1=ID$ 反演 $$ -\begin{split} -&\sum_{i=1}^n\sum_{j=1}^ni\cdot j +\begin{eqnarray} +&& \sum_{i=1}^n\sum_{j=1}^ni\cdot j\cdot \gcd(i,j)\\ +&=&\sum_{i=1}^n\sum_{j=1}^ni\cdot j \sum_{d|i,d|j}\varphi(d)\\ -&\sum_{d=1}^n\sum_{i=1}^n +&=&\sum_{d=1}^n\sum_{i=1}^n \sum_{j=1}^n[d|i,d|j]\cdot i\cdot j \cdot\varphi(d)\\ -&\sum_{d=1}^n +&=&\sum_{d=1}^n \sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor} \sum_{j=1}^{\left\lfloor\frac{n}{d}\right\rfloor} d^2\cdot i\cdot j\cdot\varphi(d)\\ -&\sum_{d=1}^nd^2\cdot\varphi(d) +&=&\sum_{d=1}^nd^2\cdot\varphi(d) \sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}i \sum_{j=1}^{\left\lfloor\frac{n}{d}\right\rfloor}j\\ -&\sum_{d=1}^nF^2\left(\left\lfloor\frac{n}{d}\right\rfloor\right)\cdot d^2\varphi(d) +&=&\sum_{d=1}^nF^2\left(\left\lfloor\frac{n}{d}\right\rfloor\right)\cdot d^2\varphi(d) \left(F(n)=\frac{1}{2}n\left(n+1\right)\right)\\ -\end{split} +\end{eqnarray} $$ 对 $\sum_{d=1}^nF\left(\left\lfloor\frac{n}{d}\right\rfloor\right)^2$ 做数论分块,$d^2\varphi(d)$ 的前缀和用杜教筛处理: @@ -798,38 +799,38 @@ $$ 我们证明一下 $$ -\begin{split} -&g(n)=\sum_{i=1}^n\mu(i)t(i)f\left(\left\lfloor\frac{n}{i}\right\rfloor\right)\\ -=&\sum_{i=1}^n\mu(i)t(i) +\begin{eqnarray} +&&g(n)=\sum_{i=1}^n\mu(i)t(i)f\left(\left\lfloor\frac{n}{i}\right\rfloor\right)\\ +&=&\sum_{i=1}^n\mu(i)t(i) \sum_{j=1}^{\left\lfloor\frac{n}{i}\right\rfloor}t(j) g\left(\left\lfloor\frac{\left\lfloor\frac{n}{i}\right\rfloor}{j}\right\rfloor\right)\\ -=&\sum_{i=1}^n\mu(i)t(i) +&=&\sum_{i=1}^n\mu(i)t(i) \sum_{j=1}^{\left\lfloor\frac{n}{i}\right\rfloor}t(j) g\left(\left\lfloor\frac{n}{ij}\right\rfloor\right)\\ -=&\sum_{T=1}^n +&=&\sum_{T=1}^n \sum_{i=1}^n\mu(i)t(i) \sum_{j=1}^{\left\lfloor\frac{n}{i}\right\rfloor}[ij=T] t(j)g\left(\left\lfloor\frac{n}{T}\right\rfloor\right) -&\text{【先枚举 ij 乘积】}\\ -=&\sum_{T=1}^n +&&\text{【先枚举 ij 乘积】}\\ +&=&\sum_{T=1}^n \sum_{i|T}\mu(i)t(i) t\left(\frac{T}{i}\right)g\left(\left\lfloor\frac{n}{T}\right\rfloor\right) -&\text{【}\sum_{j=1}^{\left\lfloor\frac{n}{i}\right\rfloor}[ij=T] \text{对答案的贡献为 1,于是省略】}\\ -=&\sum_{T=1}^ng\left(\left\lfloor\frac{n}{T}\right\rfloor\right) +&&\text{【}\sum_{j=1}^{\left\lfloor\frac{n}{i}\right\rfloor}[ij=T] \text{对答案的贡献为 1,于是省略】}\\ +&=&\sum_{T=1}^ng\left(\left\lfloor\frac{n}{T}\right\rfloor\right) \sum_{i|T}\mu(i)t(i)t\left(\frac{T}{i}\right)\\ -=&\sum_{T=1}^ng\left(\left\lfloor\frac{n}{T}\right\rfloor\right) +&=&\sum_{T=1}^ng\left(\left\lfloor\frac{n}{T}\right\rfloor\right) \sum_{i|T}\mu(i)t(T) -&\text{【t 是完全积性函数】}\\ -=&\sum_{T=1}^ng\left(\left\lfloor\frac{n}{T}\right\rfloor\right)t(T) +&&\text{【t 是完全积性函数】}\\ +&=&\sum_{T=1}^ng\left(\left\lfloor\frac{n}{T}\right\rfloor\right)t(T) \sum_{i|T}\mu(i)\\ -=&\sum_{T=1}^ng\left(\left\lfloor\frac{n}{T}\right\rfloor\right)t(T) +&=&\sum_{T=1}^ng\left(\left\lfloor\frac{n}{T}\right\rfloor\right)t(T) \varepsilon(T) -&\text{【}\mu\ast 1= \varepsilon\text{】}\\ -=&g(n)t(1) -&\text{【当且仅当 T=1,}\varepsilon(T)=1\text{时】}\\ -=&g(n) -&&& \square -\end{split} +&&\text{【}\mu\ast 1= \varepsilon\text{】}\\ +&=&g(n)t(1) +&&\text{【当且仅当 T=1,}\varepsilon(T)=1\text{时】}\\ +&=&g(n) +&& \square +\end{eqnarray} $$ ======= -- 2.11.0