From fb96bf6e1d01bc690d4c9776c977a302ff659b2d Mon Sep 17 00:00:00 2001 From: mxr612 Date: Sat, 24 Oct 2020 17:38:08 +0800 Subject: [PATCH] =?utf8?q?=E5=A4=8D=E5=88=B6=E4=BA=86=E5=8D=9A=E5=AE=A2?= =?utf8?q?=E4=B8=8A=E7=9A=84=E8=AF=81=E6=98=8E?= MIME-Version: 1.0 Content-Type: text/plain; charset=utf8 Content-Transfer-Encoding: 8bit --- docs/math/mobius.md | 18 ++++++++++++++++++ 1 file changed, 18 insertions(+) diff --git a/docs/math/mobius.md b/docs/math/mobius.md index 8007926e..f285ba56 100644 --- a/docs/math/mobius.md +++ b/docs/math/mobius.md @@ -318,6 +318,24 @@ $$ 易知如下转化: $f\ast\mu=g*1*\mu\implies f\ast\mu=g$ (其中 $1\ast\mu=\varepsilon$ )。 +对于第二种形式: + +类似上面的方法一, 我们考虑逆推这个式子. +$$ +\begin{aligned} +&\sum_{n|d}{\mu(\frac{d}{n})f(d)} \\ + =& \sum_{k=1}^{+\infty}{\mu(k)f(kn)} + = \sum_{k=1}^{+\infty}{\mu(k)\sum_{kn|d}{g(d)}} \\ + =& \sum_{n|d}{g(d)\sum_{k|\frac{n}{d}}{\mu(k)}} + = \sum_{n|d}{g(d)\epsilon(\frac{n}{d})} \\ + =& g(n) +\end{aligned} +$$ + +我们把$d$表示为$kn$的形式, 然后把$f$的原定义代入式子. +发现枚举$k$再枚举$kn$的倍数可以转换为直接枚举$n$的倍数再求出$k$, +发现后面那一块其实就是$\epsilon$, $g*\epsilon=g$. + * * * ## 问题形式 -- 2.11.0