OSDN Git Service

Reverse the default orientation of accelerometer
[android-x86/hardware-intel-libsensors.git] / control.c
index e63695c..b366917 100644 (file)
--- a/control.c
+++ b/control.c
@@ -1,6 +1,18 @@
 /*
- * Copyright (C) 2014 Intel Corporation.
- */
+// Copyright (c) 2015 Intel Corporation
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+*/
 
 #include <stdlib.h>
 #include <ctype.h>
@@ -9,9 +21,11 @@
 #include <time.h>
 #include <math.h>
 #include <sys/epoll.h>
+#include <sys/ioctl.h>
 #include <sys/socket.h>
 #include <utils/Log.h>
 #include <hardware/sensors.h>
+#include <linux/ioctl.h>
 #include "control.h"
 #include "enumeration.h"
 #include "utils.h"
 #include "calibration.h"
 #include "description.h"
 #include "filtering.h"
+#ifndef __NO_EVENTS__
+#include <linux/iio/events.h>
+#include <linux/iio/types.h>
+#endif
+#include <errno.h>
 
 /* Currently active sensors count, per device */
 static int poll_sensors_per_dev[MAX_DEVICES];          /* poll-mode sensors                            */
 static int trig_sensors_per_dev[MAX_DEVICES];          /* trigger, event based                         */
 
 static int device_fd[MAX_DEVICES];                     /* fd on the /dev/iio:deviceX file              */
+static int events_fd[MAX_DEVICES];                     /* fd on the /sys/bus/iio/devices/iio:deviceX/events/<event_name> file */
 static int has_iio_ts[MAX_DEVICES];                    /* ts channel available on this iio dev         */
 static int expected_dev_report_size[MAX_DEVICES];      /* expected iio scan len                        */
 static int poll_fd;                                    /* epoll instance covering all enabled sensors  */
 
 static int active_poll_sensors;                                /* Number of enabled poll-mode sensors          */
 
+static int flush_event_fd[2];                          /* Pipe used for flush signaling */
+
 /* We use pthread condition variables to get worker threads out of sleep */
 static pthread_condattr_t thread_cond_attr     [MAX_SENSORS];
 static pthread_cond_t     thread_release_cond  [MAX_SENSORS];
 static pthread_mutex_t    thread_release_mutex [MAX_SENSORS];
 
+#define FLUSH_REPORT_TAG                       900
 /*
  * We associate tags to each of our poll set entries. These tags have the following values:
  * - a iio device number if the fd is a iio character device fd
@@ -128,6 +151,21 @@ static int setup_trigger (int s, const char* trigger_val)
        return ret;
 }
 
+static int enable_event(int dev_num, const char *name, int enabled)
+{
+       char sysfs_path[PATH_MAX];
+
+       sprintf(sysfs_path, EVENTS_PATH "%s", dev_num, name);
+       return sysfs_write_int(sysfs_path, enabled);
+}
+
+static int enable_sensor(int dev_num, const char *tag, int enabled)
+{
+       char sysfs_path[PATH_MAX];
+
+       sprintf(sysfs_path, SENSOR_ENABLE_PATH, dev_num, tag);
+       return sysfs_write_int(sysfs_path, enabled);
+}
 
 static void enable_iio_timestamp (int dev_num, int known_channels)
 {
@@ -282,6 +320,8 @@ void build_sensor_report_maps (int dev_num)
                        known_channels++;
                }
 
+               sensor_update_max_range(s);
+
                /* Stop sampling - if we are recovering from hal restart */
                 enable_buffer(dev_num, 0);
                 setup_trigger(s, "\n");
@@ -343,6 +383,7 @@ int adjust_counters (int s, int enabled, int from_virtual)
         * Adjust counters based on sensor enable action. Return values are:
         *  0 if the operation was completed and we're all set
         *  1 if we toggled the state of the sensor and there's work left
+        * -1 in case of an error
         */
 
        int dev_num = sensor[s].dev_num;
@@ -354,12 +395,16 @@ int adjust_counters (int s, int enabled, int from_virtual)
                ALOGI("Enabling sensor %d (iio device %d: %s)\n", s, dev_num, sensor[s].friendly_name);
 
                switch (sensor[s].type) {
+                       case SENSOR_TYPE_ACCELEROMETER:
+                               accel_cal_init(s);
+                               break;
+
                        case SENSOR_TYPE_MAGNETIC_FIELD:
-                               compass_read_data(&sensor[s]);
+                               compass_read_data(s);
                                break;
 
                        case SENSOR_TYPE_GYROSCOPE:
-                               gyro_cal_init(&sensor[s]);
+                               gyro_cal_init(s);
                                break;
                }
        } else {
@@ -368,39 +413,55 @@ int adjust_counters (int s, int enabled, int from_virtual)
                /* Sensor disabled, lower report available flag */
                sensor[s].report_pending = 0;
 
-               if (sensor[s].type == SENSOR_TYPE_MAGNETIC_FIELD)
-                       compass_store_data(&sensor[s]);
+               /* Save calibration data to persistent storage */
+               switch (sensor[s].type) {
+                       case SENSOR_TYPE_ACCELEROMETER:
+                               accel_cal_store(s);
+                               break;
+
+                       case SENSOR_TYPE_MAGNETIC_FIELD:
+                               compass_store_data(s);
+                               break;
 
-               if (sensor[s].type == SENSOR_TYPE_GYROSCOPE)
-                       gyro_store_data(&sensor[s]);
+                       case SENSOR_TYPE_GYROSCOPE:
+                               gyro_store_data(s);
+                               break;
+               }
        }
 
        /* We changed the state of a sensor: adjust device ref counts */
 
-       if (!sensor[s].is_polling) {
-
-                       if (enabled)
-                               trig_sensors_per_dev[dev_num]++;
-                       else
-                               trig_sensors_per_dev[dev_num]--;
+       switch(sensor[s].mode) {
+       case MODE_TRIGGER:
+               if (enabled)
+                       trig_sensors_per_dev[dev_num]++;
+               else
+                       trig_sensors_per_dev[dev_num]--;
 
+               return 1;
+       case MODE_POLL:
+               if (enabled) {
+                       active_poll_sensors++;
+                       poll_sensors_per_dev[dev_num]++;
                        return 1;
-       }
-
-       if (enabled) {
-               active_poll_sensors++;
-               poll_sensors_per_dev[dev_num]++;
+               } else {
+                       active_poll_sensors--;
+                       poll_sensors_per_dev[dev_num]--;
+                       return 1;
+               }
+       case MODE_EVENT:
                return 1;
+       default:
+               /* Invalid sensor mode */
+               return -1;
        }
-
-       active_poll_sensors--;
-       poll_sensors_per_dev[dev_num]--;
-       return 1;
 }
 
 
-static int get_field_count (int s)
+static int get_field_count (int s, size_t *field_size)
 {
+       *field_size = sizeof(float);
+
        switch (sensor[s].type) {
                case SENSOR_TYPE_ACCELEROMETER:         /* m/s^2        */
                case SENSOR_TYPE_MAGNETIC_FIELD:        /* micro-tesla  */
@@ -409,17 +470,23 @@ static int get_field_count (int s)
                case SENSOR_TYPE_GYROSCOPE:             /* radians/s    */
                        return 3;
 
+               case SENSOR_TYPE_INTERNAL_INTENSITY:
+               case SENSOR_TYPE_INTERNAL_ILLUMINANCE:
                case SENSOR_TYPE_LIGHT:                 /* SI lux units */
                case SENSOR_TYPE_AMBIENT_TEMPERATURE:   /* °C          */
                case SENSOR_TYPE_TEMPERATURE:           /* °C          */
                case SENSOR_TYPE_PROXIMITY:             /* centimeters  */
                case SENSOR_TYPE_PRESSURE:              /* hecto-pascal */
                case SENSOR_TYPE_RELATIVE_HUMIDITY:     /* percent */
+               case SENSOR_TYPE_STEP_DETECTOR:         /* event: always 1 */
                        return 1;
 
                case SENSOR_TYPE_ROTATION_VECTOR:
                        return 4;
 
+               case SENSOR_TYPE_STEP_COUNTER:          /* number of steps */
+                       *field_size = sizeof(uint64_t);
+                       return 1;
                default:
                        ALOGE("Unknown sensor type!\n");
                        return 0;                       /* Drop sample */
@@ -474,6 +541,7 @@ static void* acquisition_routine (void* param)
        int ret;
        struct timespec target_time;
        int64_t timestamp, period, start, stop;
+       size_t field_size;
 
        if (s < 0 || s >= sensor_count) {
                ALOGE("Invalid sensor handle!\n");
@@ -490,9 +558,9 @@ static void* acquisition_routine (void* param)
        /* Initialize data fields that will be shared by all sensor reports */
        data.version    = sizeof(sensors_event_t);
        data.sensor     = s;
-       data.type       = sensor[s].type;
+       data.type       = sensor_desc[s].type;
 
-       num_fields = get_field_count(s);
+       num_fields = get_field_count(s, &field_size);
 
        /*
         * Each condition variable is associated to a mutex that has to be locked by the thread that's waiting on it. We use these condition
@@ -509,7 +577,10 @@ static void* acquisition_routine (void* param)
 
                /* Read values through sysfs */
                for (c=0; c<num_fields; c++) {
-                       data.data[c] = acquire_immediate_value(s, c);
+                       if (field_size == sizeof(uint64_t))
+                               data.u64.data[c] = acquire_immediate_uint64_value(s, c);
+                       else
+                               data.data[c] = acquire_immediate_float_value(s, c);
 
                        /* Check and honor termination requests */
                        if (sensor[s].thread_data_fd[1] == -1)
@@ -525,7 +596,7 @@ static void* acquisition_routine (void* param)
                        ret = write(sensor[s].thread_data_fd[1], &data, sizeof(sensors_event_t));
 
                        if (ret != sizeof(sensors_event_t))
-                               ALOGE("S%d write failure: wrote %d, got %d\n", s, sizeof(sensors_event_t), ret);
+                               ALOGE("S%d write failure: wrote %zd, got %d\n", s, sizeof(sensors_event_t), ret);
                }
 
                /* Check and honor termination requests */
@@ -579,6 +650,10 @@ static void start_acquisition_thread (int s)
 
        /* Add incoming side of pipe to our poll set, with a suitable tag */
        ret = epoll_ctl(poll_fd, EPOLL_CTL_ADD, incoming_data_fd , &ev);
+       if (ret == -1) {
+               ALOGE("Failed adding %d to poll set (%s)\n",
+                       incoming_data_fd, strerror(errno));
+       }
 
        /* Create and start worker thread */
        ret = pthread_create(&sensor[s].acquisition_thread, NULL, acquisition_routine, (void*) (size_t) s);
@@ -674,25 +749,66 @@ static float get_group_max_sampling_rate (int s)
        return arbitrated_rate;
 }
 
+extern float sensor_get_max_freq (int s);
+
+static float select_closest_available_rate(int s, float requested_rate)
+{
+       float sr;
+       int j;
+       float selected_rate = 0;
+       float max_rate_from_prop = sensor_get_max_freq(s);
+
+       if (!sensor[s].avail_freqs_count)
+               return requested_rate;
+
+       for (j = 0; j < sensor[s].avail_freqs_count; j++) {
+
+               sr = sensor[s].avail_freqs[j];
+
+               /* If this matches the selected rate, we're happy.  Have some tolerance for rounding errors and avoid needless jumps to higher rates */
+               if ((fabs(requested_rate - sr) <= 0.01) && (sr <= max_rate_from_prop)) {
+                       return sr;
+               }
+
+               /* Select rate if it's less than max freq */
+               if ((sr > selected_rate) && (sr <= max_rate_from_prop)) {
+                       selected_rate = sr;
+               }
+
+               /*
+                * If we reached a higher value than the desired rate, adjust selected rate so it matches the first higher available one and
+                * stop parsing - this makes the assumption that rates are sorted by increasing value in the allowed frequencies string.
+                */
+               if (sr > requested_rate) {
+                       return selected_rate;
+               }
+       }
+
+       /* Check for wrong values */
+       if (selected_rate < 0.1) {
+               return requested_rate;
+       } else {
+               return selected_rate;
+       }
+}
 
 static int sensor_set_rate (int s, float requested_rate)
 {
        /* Set the rate at which a specific sensor should report events. See Android sensors.h for indication on sensor trigger modes */
 
        char sysfs_path[PATH_MAX];
-       char avail_sysfs_path[PATH_MAX];
        int dev_num             =       sensor[s].dev_num;
        int i                   =       sensor[s].catalog_index;
        const char *prefix      =       sensor_catalog[i].tag;
        int per_sensor_sampling_rate;
        int per_device_sampling_rate;
-       char freqs_buf[100];
-       char* cursor;
        int n;
        float sr;
        float group_max_sampling_rate;
        float cur_sampling_rate; /* Currently used sampling rate              */
        float arb_sampling_rate; /* Granted sampling rate after arbitration   */
+       char hrtimer_sampling_path[PATH_MAX];
+       char trigger_path[PATH_MAX];
 
        ALOGV("Sampling rate %g requested on sensor %d (%s)\n", requested_rate, s, sensor[s].friendly_name);
 
@@ -725,7 +841,7 @@ static int sensor_set_rate (int s, float requested_rate)
                return 0;
 
        /* If we're dealing with a poll-mode sensor */
-       if (sensor[s].is_polling) {
+       if (sensor[s].mode == MODE_POLL) {
                if (is_enabled(s))
                        pthread_cond_signal(&thread_release_cond[s]); /* Wake up thread so the new sampling rate gets used */
                return 0;
@@ -752,58 +868,28 @@ static int sensor_set_rate (int s, float requested_rate)
                return -ENOSYS;
        }
 
-       /* Check if we have contraints on allowed sampling rates */
-
-       sprintf(avail_sysfs_path, DEVICE_AVAIL_FREQ_PATH, dev_num);
-
-       if (sysfs_read_str(avail_sysfs_path, freqs_buf, sizeof(freqs_buf)) > 0) {
-               cursor = freqs_buf;
-
-               /* Decode allowed sampling rates string, ex: "10 20 50 100" */
-
-               /* While we're not at the end of the string */
-               while (*cursor && cursor[0]) {
-
-                       /* Decode a single value */
-                       sr = strtod(cursor, NULL);
-
-                       /* If this matches the selected rate, we're happy.  Have some tolerance for rounding errors and avoid needless jumps to higher rates */
-                       if (fabs(arb_sampling_rate - sr) <= 0.001) {
-                               arb_sampling_rate = sr;
-                               break;
-                       }
-
-                       /*
-                        * If we reached a higher value than the desired rate, adjust selected rate so it matches the first higher available one and
-                        * stop parsing - this makes the assumption that rates are sorted by increasing value in the allowed frequencies string.
-                        */
-                       if (sr > arb_sampling_rate) {
-                               arb_sampling_rate = sr;
-                               break;
-                       }
-
-                       /* Skip digits */
-                       while (cursor[0] && !isspace(cursor[0]))
-                               cursor++;
-
-                       /* Skip spaces */
-                       while (cursor[0] && isspace(cursor[0]))
-                                       cursor++;
-               }
+       if (sensor[s].hrtimer_trigger_name[0] != '\0') {
+               snprintf(trigger_path, PATH_MAX, "%s%s%d/", IIO_DEVICES, "trigger", sensor[s].trigger_nr);
+               snprintf(hrtimer_sampling_path, PATH_MAX, "%s%s", trigger_path, "sampling_frequency");
+               /* Enforce frequency update when software trigger
+                * frequency and current sampling rate are different */
+               if (sysfs_read_float(hrtimer_sampling_path, &sr) != -1 && sr != cur_sampling_rate)
+                       cur_sampling_rate = -1;
+       } else {
+               arb_sampling_rate = select_closest_available_rate(s, arb_sampling_rate);
        }
 
-       if (sensor[s].max_supported_rate &&
-               arb_sampling_rate > sensor[s].max_supported_rate) {
-               arb_sampling_rate = sensor[s].max_supported_rate;
-       }
+       /* Record the rate that was agreed upon with the sensor taken in isolation ; this avoid uncontrolled ripple effects between colocated sensor rates */
+       sensor[s].semi_arbitrated_rate = arb_sampling_rate;
 
        /* Coordinate with others active sensors on the same device, if any */
        if (per_device_sampling_rate)
                for (n=0; n<sensor_count; n++)
-                       if (n != s && sensor[n].dev_num == dev_num && sensor[n].num_channels && is_enabled(n) && sensor[n].sampling_rate > arb_sampling_rate) {
+                       if (n != s && sensor[n].dev_num == dev_num && sensor[n].num_channels && is_enabled(n) &&
+                               sensor[n].semi_arbitrated_rate > arb_sampling_rate) {
                                ALOGV("Sampling rate shared between %s and %s, using %g instead of %g\n", sensor[s].friendly_name, sensor[n].friendly_name,
-                                                                                                         sensor[n].sampling_rate, arb_sampling_rate);
-                               arb_sampling_rate = sensor[n].sampling_rate;
+                                                                                                         sensor[n].semi_arbitrated_rate, arb_sampling_rate);
+                               arb_sampling_rate = sensor[n].semi_arbitrated_rate;
                        }
 
        sensor[s].sampling_rate = arb_sampling_rate;
@@ -820,10 +906,17 @@ static int sensor_set_rate (int s, float requested_rate)
 
        ALOGI("Sensor %d (%s) sampling rate set to %g\n", s, sensor[s].friendly_name, arb_sampling_rate);
 
+       if (sensor[s].hrtimer_trigger_name[0] != '\0')
+               sysfs_write_float(hrtimer_sampling_path, ceilf(arb_sampling_rate));
+
        if (trig_sensors_per_dev[dev_num])
                enable_buffer(dev_num, 0);
 
-       sysfs_write_float(sysfs_path, arb_sampling_rate);
+       if (sensor[s].hrtimer_trigger_name[0] != '\0') {
+               sysfs_write_float(sysfs_path, select_closest_available_rate(s, arb_sampling_rate));
+       } else {
+               sysfs_write_float(sysfs_path, arb_sampling_rate);
+       }
 
        /* Check if it makes sense to use an alternate trigger */
        tentative_switch_trigger(s);
@@ -843,7 +936,7 @@ static void reapply_sampling_rates (int s)
         * that ended up being used after arbitration.
         */
 
-       int i, j, base, user;
+       int i, j, base;
 
        if (sensor[s].is_virtual) {
                /* Take care of downwards dependencies */
@@ -900,9 +993,11 @@ int sensor_activate (int s, int enabled, int from_virtual)
 {
        char device_name[PATH_MAX];
        struct epoll_event ev = {0};
-       int dev_fd;
-       int ret;
+       int dev_fd, event_fd;
+       int ret, c, d;
        int dev_num = sensor[s].dev_num;
+       size_t field_size;
+       int catalog_index = sensor[s].catalog_index;
 
        if (sensor[s].is_virtual)
                return sensor_activate_virtual(s, enabled, from_virtual);
@@ -919,10 +1014,10 @@ int sensor_activate (int s, int enabled, int from_virtual)
        sensor[s].event_count = 0;
        sensor[s].meta_data_pending = 0;
 
-       if (enabled && (sensor[s].quirks & QUIRK_NOISY))
+       if (enabled)
                setup_noise_filtering(s);       /* Initialize filtering data if required */
 
-       if (!sensor[s].is_polling) {
+       if (sensor[s].mode == MODE_TRIGGER) {
 
                /* Stop sampling */
                enable_buffer(dev_num, 0);
@@ -932,9 +1027,17 @@ int sensor_activate (int s, int enabled, int from_virtual)
                if (trig_sensors_per_dev[dev_num]) {
 
                        /* Start sampling */
-                       setup_trigger(s, sensor[s].init_trigger_name);
+                       if (sensor[s].hrtimer_trigger_name[0] != '\0')
+                               setup_trigger(s, sensor[s].hrtimer_trigger_name);
+                       else
+                               setup_trigger(s, sensor[s].init_trigger_name);
+
                        enable_buffer(dev_num, 1);
                }
+       } else if (sensor[s].mode == MODE_POLL) {
+               if (sensor[s].needs_enable) {
+                       enable_sensor(dev_num, sensor_catalog[catalog_index].tag, enabled);
+               }
        }
 
        /*
@@ -944,7 +1047,7 @@ int sensor_activate (int s, int enabled, int from_virtual)
        dev_fd = device_fd[dev_num];
 
        if (!enabled) {
-               if (sensor[s].is_polling)
+               if (sensor[s].mode == MODE_POLL)
                        stop_acquisition_thread(s);
 
                if (dev_fd != -1 && !poll_sensors_per_dev[dev_num] && !trig_sensors_per_dev[dev_num]) {
@@ -955,6 +1058,20 @@ int sensor_activate (int s, int enabled, int from_virtual)
                                device_fd[dev_num] = -1;
                }
 
+               if (sensor[s].mode == MODE_EVENT) {
+                       event_fd = events_fd[dev_num];
+
+                       for (c = 0; c < sensor_catalog[catalog_index].num_channels; c++) {
+                               for (d = 0; d < sensor_catalog[catalog_index].channel[c].num_events; d++)
+                                       enable_event(dev_num, sensor_catalog[catalog_index].channel[c].event[d].ev_en_path, enabled);
+                       }
+
+                       epoll_ctl(poll_fd, EPOLL_CTL_DEL, event_fd, NULL);
+                       close(event_fd);
+                       events_fd[dev_num] = -1;
+
+               }
+
                /* Release any filtering data we may have accumulated */
                release_noise_filtering_data(s);
 
@@ -978,7 +1095,7 @@ int sensor_activate (int s, int enabled, int from_virtual)
 
                ALOGV("Opened %s: fd=%d\n", device_name, dev_fd);
 
-               if (!sensor[s].is_polling) {
+               if (sensor[s].mode == MODE_TRIGGER) {
 
                        /* Add this iio device fd to the set of watched fds */
                        ev.events = EPOLLIN;
@@ -992,13 +1109,51 @@ int sensor_activate (int s, int enabled, int from_virtual)
                        }
 
                        /* Note: poll-mode fds are not readable */
+#ifdef __NO_EVENTS__
                }
+#else
+               } else if (sensor[s].mode == MODE_EVENT) {
+                       event_fd = events_fd[dev_num];
+
+                       ret = ioctl(dev_fd, IIO_GET_EVENT_FD_IOCTL, &event_fd);
+                       if (ret == -1 || event_fd == -1) {
+                               ALOGE("Failed to retrieve event_fd from %d (%s)\n", dev_fd, strerror(errno));
+                               return -1;
+                       }
+                       events_fd[dev_num] = event_fd;
+                       ALOGV("Opened fd=%d to receive events\n", event_fd);
+
+                       /* Add this event fd to the set of watched fds */
+                       ev.events = EPOLLIN;
+                       ev.data.u32 = dev_num;
+
+                       ret = epoll_ctl(poll_fd, EPOLL_CTL_ADD, event_fd, &ev);
+                       if (ret == -1) {
+                               ALOGE("Failed adding %d to poll set (%s)\n", event_fd, strerror(errno));
+                               return -1;
+                       }
+                       for (c = 0; c < sensor_catalog[catalog_index].num_channels; c++) {
+                               int d;
+                               for (d = 0; d < sensor_catalog[catalog_index].channel[c].num_events; d++)
+                                       enable_event(dev_num, sensor_catalog[catalog_index].channel[c].event[d].ev_en_path, enabled);
+                       }
+
+                       if (!poll_sensors_per_dev[dev_num] && !trig_sensors_per_dev[dev_num]) {
+                               close(dev_fd);
+                               device_fd[dev_num] = -1;
+                       }
+               }
+#endif
        }
 
        /* Ensure that on-change sensors send at least one event after enable */
-       sensor[s].prev_val = -1;
+       get_field_count(s, &field_size);
+       if (field_size == sizeof(uint64_t))
+               sensor[s].prev_val.data64 = -1;
+       else
+               sensor[s].prev_val.data = -1;
 
-       if (sensor[s].is_polling)
+       if (sensor[s].mode == MODE_POLL)
                start_acquisition_thread(s);
 
        /* Reevaluate sampling rates of linked sensors */
@@ -1063,12 +1218,16 @@ static void stamp_reports (int dev_num, int64_t ts)
        int s;
 
        for (s=0; s<MAX_SENSORS; s++)
-               if (sensor[s].dev_num == dev_num && is_enabled(s))
-                       set_report_ts(s, ts);
+               if (sensor[s].dev_num == dev_num && is_enabled(s) && sensor[s].mode != MODE_POLL) {
+                       if (sensor[s].quirks & QUIRK_SPOTTY)
+                               set_report_ts(s, ts);
+                       else
+                               sensor[s].report_ts = ts;
+               }
 }
 
 
-static int integrate_device_report (int dev_num)
+static int integrate_device_report_from_dev(int dev_num, int fd)
 {
        int len;
        int s,c;
@@ -1082,18 +1241,12 @@ static int integrate_device_report (int dev_num)
        int64_t boot_to_rt_delta;
 
        /* There's an incoming report on the specified iio device char dev fd */
-
-       if (dev_num < 0 || dev_num >= MAX_DEVICES) {
-               ALOGE("Event reported on unexpected iio device %d\n", dev_num);
-               return -1;
-       }
-
-       if (device_fd[dev_num] == -1) {
+       if (fd == -1) {
                ALOGE("Ignoring stale report on iio device %d\n", dev_num);
                return -1;
        }
 
-       len = read(device_fd[dev_num], buf, expected_dev_report_size[dev_num]);
+       len = read(fd, buf, expected_dev_report_size[dev_num]);
 
        if (len == -1) {
                ALOGE("Could not read report from iio device %d (%s)\n", dev_num, strerror(errno));
@@ -1128,7 +1281,6 @@ static int integrate_device_report (int dev_num)
                        sensor[s].report_pending = DATA_TRIGGER;
                        sensor[s].report_initialized = 1;
 
-                       ts_offset += sr_offset;
                }
 
        /* Tentatively switch to an any-motion trigger if conditions are met */
@@ -1148,7 +1300,7 @@ static int integrate_device_report (int dev_num)
                }
 
        /* Align on a 64 bits boundary */
-       ts_offset = (ts_offset + 7)/8*8;
+       ts_offset = expected_dev_report_size[dev_num] - sizeof(int64_t);
 
        /* If we read an amount of data consistent with timestamp presence */
        if (len == expected_dev_report_size[dev_num])
@@ -1160,7 +1312,7 @@ static int integrate_device_report (int dev_num)
                return 0;
        }
 
-       ALOGV("Driver timestamp on iio device %d: ts=%lld\n", dev_num, ts);
+       ALOGV("Driver timestamp on iio device %d: ts=%jd\n", dev_num, ts);
 
        boot_to_rt_delta = get_timestamp_boot() - get_timestamp_realtime();
 
@@ -1169,6 +1321,69 @@ static int integrate_device_report (int dev_num)
        return 0;
 }
 
+#ifndef __NO_EVENTS__
+static int integrate_device_report_from_event(int dev_num, int fd)
+{
+       int len, s;
+       int64_t ts;
+       struct iio_event_data event;
+       int64_t boot_to_rt_delta = get_timestamp_boot() - get_timestamp_realtime();
+
+       /* There's an incoming report on the specified iio device char dev fd */
+       if (fd == -1) {
+               ALOGE("Ignoring stale report on event fd %d of device %d\n",
+                       fd, dev_num);
+               return -1;
+       }
+
+       len = read(fd, &event, sizeof(event));
+
+       if (len == -1) {
+               ALOGE("Could not read event from fd %d of device %d (%s)\n",
+                       fd, dev_num, strerror(errno));
+               return -1;
+       }
+
+       ts = event.timestamp + boot_to_rt_delta;
+
+       ALOGV("Read event %lld from fd %d of iio device %d - ts %jd\n", event.id, fd, dev_num, ts);
+
+       /* Map device report to sensor reports */
+       for (s = 0; s < MAX_SENSORS; s++)
+               if (sensor[s].dev_num == dev_num &&
+                   is_enabled(s)) {
+                       sensor[s].event_id = event.id;
+                       sensor[s].report_ts = ts;
+                       sensor[s].report_pending = 1;
+                       sensor[s].report_initialized = 1;
+                       ALOGV("Sensor %d report available (1 byte)\n", s);
+               }
+       return 0;
+}
+#endif
+
+static int integrate_device_report(int dev_num)
+{
+       int ret = 0;
+
+       if (dev_num < 0 || dev_num >= MAX_DEVICES) {
+               ALOGE("Event reported on unexpected iio device %d\n", dev_num);
+               return -1;
+       }
+
+#ifndef __NO_EVENTS__
+       if (events_fd[dev_num] != -1) {
+               ret = integrate_device_report_from_event(dev_num, events_fd[dev_num]);
+               if (ret < 0)
+                       return ret;
+       }
+#endif
+
+       if (device_fd[dev_num] != -1)
+               ret = integrate_device_report_from_dev(dev_num, device_fd[dev_num]);
+
+       return ret;
+}
 
 static int propagate_vsensor_report (int s, sensors_event_t *data)
 {
@@ -1177,7 +1392,7 @@ static int propagate_vsensor_report (int s, sensors_event_t *data)
        memcpy(data, &sensor[s].sample, sizeof(sensors_event_t));
 
        data->sensor    = s;
-       data->type      = sensor[s].type;
+       data->type      = sensor_desc[s].type; /* sensor_desc[s].type can differ from sensor[s].type ; internal types are remapped */
        return 1;
 }
 
@@ -1186,7 +1401,8 @@ static int propagate_sensor_report (int s, sensors_event_t *data)
 {
        /* There's a sensor report pending for this sensor ; transmit it */
 
-       int num_fields    = get_field_count(s);
+       size_t field_size;
+       int num_fields    = get_field_count(s, &field_size);
        int c;
        unsigned char* current_sample;
        int ret;
@@ -1197,7 +1413,7 @@ static int propagate_sensor_report (int s, sensors_event_t *data)
 
        ALOGV("Sample on sensor %d (type %d):\n", s, sensor[s].type);
 
-       if (sensor[s].is_polling) {
+       if (sensor[s].mode == MODE_POLL) {
                /* We received a good sample but we're not directly enabled so we'll drop */
                if (!sensor[s].directly_enabled)
                        return 0;
@@ -1212,9 +1428,32 @@ static int propagate_sensor_report (int s, sensors_event_t *data)
 
        data->version   = sizeof(sensors_event_t);
        data->sensor    = s;
-       data->type      = sensor[s].type;
+       data->type      = sensor_desc[s].type;  /* sensor_desc[s].type can differ from sensor[s].type ; internal types are remapped */
        data->timestamp = sensor[s].report_ts;
 
+#ifndef __NO_EVENTS__
+       if (sensor[s].mode == MODE_EVENT) {
+               ALOGV("Reporting event\n");
+               /* Android requires events to return 1.0 */
+               int dir = IIO_EVENT_CODE_EXTRACT_DIR(sensor[s].event_id);
+               switch (sensor[s].type) {
+                       case SENSOR_TYPE_PROXIMITY:
+                               if (dir == IIO_EV_DIR_FALLING)
+                                       data->data[0] = 0.0;
+                               else
+                                       data->data[0] = 1.0;
+                               break;
+                       default:
+                               data->data[0] = 1.0;
+                               break;
+
+               }
+               data->data[1] = 0.0;
+               data->data[2] = 0.0;
+               return 1;
+       }
+#endif
+
        /* Convert the data into the expected Android-level format */
 
        current_sample = sensor[s].report_buffer;
@@ -1345,7 +1584,6 @@ int sensor_poll (sensors_event_t* data, int count)
        struct epoll_event ev[MAX_DEVICES];
        int returned_events;
        int event_count;
-       int uncal_start;
 
        /* Get one or more events from our collection of sensors */
 return_available_sensor_reports:
@@ -1421,6 +1659,12 @@ await_event:
                                        /* Get report from acquisition thread */
                                        integrate_thread_report(ev[i].data.u32);
                                        break;
+                               case FLUSH_REPORT_TAG:
+                                       {
+                                               char flush_event_content;
+                                               read(flush_event_fd[0], &flush_event_content, sizeof(flush_event_content));
+                                               break;
+                                       }
 
                                default:
                                        ALOGW("Unexpected event source!\n");
@@ -1436,7 +1680,7 @@ int sensor_set_delay (int s, int64_t ns)
        float requested_sampling_rate;
 
        if (ns <= 0) {
-               ALOGE("Invalid delay requested on sensor %d: %lld\n", s, ns);
+               ALOGE("Invalid delay requested on sensor %d: %jd\n", s, ns);
                return -EINVAL;
        }
 
@@ -1460,21 +1704,26 @@ int sensor_set_delay (int s, int64_t ns)
 
 int sensor_flush (int s)
 {
+       char flush_event_content = 0;
        /* If one shot or not enabled return -EINVAL */
        if (sensor_desc[s].flags & SENSOR_FLAG_ONE_SHOT_MODE || !is_enabled(s))
                return -EINVAL;
 
        sensor[s].meta_data_pending++;
+       write(flush_event_fd[1], &flush_event_content, sizeof(flush_event_content));
        return 0;
 }
 
 
 int allocate_control_data (void)
 {
-       int i;
+       int i, ret;
+       struct epoll_event ev = {0};
 
-       for (i=0; i<MAX_DEVICES; i++)
+       for (i=0; i<MAX_DEVICES; i++) {
                device_fd[i] = -1;
+               events_fd[i] = -1;
+       }
 
        poll_fd = epoll_create(MAX_DEVICES);
 
@@ -1483,6 +1732,21 @@ int allocate_control_data (void)
                return -1;
        }
 
+       ret = pipe(flush_event_fd);
+       if (ret) {
+               ALOGE("Cannot create flush_event_fd");
+               return -1;
+       }
+
+       ev.events = EPOLLIN;
+       ev.data.u32 = FLUSH_REPORT_TAG;
+       ret = epoll_ctl(poll_fd, EPOLL_CTL_ADD, flush_event_fd[0] , &ev);
+       if (ret == -1) {
+               ALOGE("Failed adding %d to poll set (%s)\n",
+                       flush_event_fd[0], strerror(errno));
+               return -1;
+       }
+
        return poll_fd;
 }