OSDN Git Service

Ignore avail freqs when the hrtimer trigger is selected
[android-x86/hardware-intel-libsensors.git] / description.c
index 08d4148..28a3533 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (C) 2014 Intel Corporation.
+ * Copyright (C) 2014-2015 Intel Corporation.
  */
 
 #include <stdlib.h>
 #include "enumeration.h"
 #include "description.h"
 #include "utils.h"
+#include "transform.h"
 
 #define IIO_SENSOR_HAL_VERSION 1
 
+#define MIN_ON_CHANGE_SAMPLING_PERIOD_US   200000 /* For on change sensors (temperature, proximity, ALS, etc.) report we support 5 Hz max (0.2 s min period) */
+#define MAX_ON_CHANGE_SAMPLING_PERIOD_US 10000000 /* 0.1 Hz min (10 s max period)*/
+#define ANDROID_MAX_FREQ 1000 /* 1000 Hz - This is how much Android requests for the fastest frequency */
+
 /*
  * About properties
  *
@@ -80,7 +85,7 @@
  * properties values happen to have its iio device name set to bmg160.
  */
 
-static int sensor_get_st_prop (int s, const char* sel, char val[MAX_NAME_SIZE])
+int sensor_get_st_prop (int s, const char* sel, char val[MAX_NAME_SIZE])
 {
        char prop_name[PROP_NAME_MAX];
        char prop_val[PROP_VALUE_MAX];
@@ -88,6 +93,7 @@ static int sensor_get_st_prop (int s, const char* sel, char val[MAX_NAME_SIZE])
 
        int i                   = sensor[s].catalog_index;
        const char *prefix      = sensor_catalog[i].tag;
+       const char *shorthand = sensor_catalog[i].shorthand;
 
        /* First try most specialized form, like ro.iio.anglvel.bmg160.name */
 
@@ -102,9 +108,19 @@ static int sensor_get_st_prop (int s, const char* sel, char val[MAX_NAME_SIZE])
                return 0;
        }
 
+       if (shorthand[0] != '\0') {
+               /* Try with shorthand instead of prefix */
+               snprintf(prop_name, PROP_NAME_MAX, PROP_BASE, shorthand, extended_sel);
+
+               if (property_get(prop_name, prop_val, "")) {
+                       strncpy(val, prop_val, MAX_NAME_SIZE-1);
+                       val[MAX_NAME_SIZE-1] = '\0';
+                       return 0;
+               }
+       }
        /* Fall back to simple form, like ro.iio.anglvel.name */
 
-       sprintf(prop_name, PROP_BASE, prefix, sel);
+       snprintf(prop_name, PROP_NAME_MAX, PROP_BASE, prefix, sel);
 
        if (property_get(prop_name, prop_val, "")) {
                strncpy(val, prop_val, MAX_NAME_SIZE-1);
@@ -148,7 +164,7 @@ char* sensor_get_name (int s)
                switch (sensor[s].type) {
                        case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
                        case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
-                               strcpy(buf, sensor[sensor[s].base_idx[0]].friendly_name);
+                               strcpy(buf, sensor[sensor[s].base[0]].friendly_name);
                                snprintf(sensor[s].friendly_name,
                                         MAX_NAME_SIZE,
                                         "%s %s", "Uncalibrated", buf);
@@ -181,7 +197,7 @@ char* sensor_get_vendor (int s)
                switch (sensor[s].type) {
                        case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
                        case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
-                               return sensor[sensor[s].base_idx[0]].vendor_name;
+                               return sensor[sensor[s].base[0]].vendor_name;
                        break;
 
                        default:
@@ -203,57 +219,82 @@ int sensor_get_version (__attribute__((unused)) int s)
        return IIO_SENSOR_HAL_VERSION;
 }
 
-
-float sensor_get_max_range (int s)
+void sensor_update_max_range(int s)
 {
-       if (sensor[s].is_virtual) {
-               switch (sensor[s].type) {
-                       case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
-                       case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
-                               return sensor[sensor[s].base_idx[0]].max_range;
+       if (sensor[s].max_range)
+               return;
 
-                       default:
-                               return 0.0;
+       if (sensor[s].num_channels && sensor[s].channel[0].type_info.realbits) {
+               switch (sensor[s].type) {
+               case SENSOR_TYPE_MAGNETIC_FIELD:
+                       sensor[s].max_range = (1ULL << sensor[s].channel[0].type_info.realbits) *
+                                       CONVERT_MICROTESLA_TO_GAUSS(sensor[s].resolution) +
+                                       (sensor[s].offset || sensor[s].channel[0].offset);
+                       sensor[s].max_range = CONVERT_GAUSS_TO_MICROTESLA(sensor[s].max_range);
+                       break;
+               case SENSOR_TYPE_PROXIMITY:
+                       break;
+               default:
+                       sensor[s].max_range =  (1ULL << sensor[s].channel[0].type_info.realbits) *
+                               sensor[s].resolution + (sensor[s].offset || sensor[s].channel[0].offset);
+                       break;
                }
        }
 
-       if (sensor[s].max_range != 0.0 ||
-               !sensor_get_fl_prop(s, "max_range", &sensor[s].max_range))
-                       return sensor[s].max_range;
-
-       /* Try returning a sensible value given the sensor type */
-
-       /* We should cap returned samples accordingly... */
-
-       switch (sensor[s].type) {
+       if (!sensor[s].max_range) {
+               /* Try returning a sensible value given the sensor type */
+               /* We should cap returned samples accordingly... */
+               switch (sensor[s].type) {
                case SENSOR_TYPE_ACCELEROMETER:         /* m/s^2        */
-                       return 50;
-
+                       sensor[s].max_range = 50;
+                       break;
                case SENSOR_TYPE_MAGNETIC_FIELD:        /* micro-tesla  */
-                       return 500;
-
+                       sensor[s].max_range = 500;
+                       break;
                case SENSOR_TYPE_ORIENTATION:           /* degrees      */
-                       return 360;
-
+                       sensor[s].max_range = 360;
+                       break;
                case SENSOR_TYPE_GYROSCOPE:             /* radians/s    */
-                       return 10;
-
+                       sensor[s].max_range = 10;
+                       break;
                case SENSOR_TYPE_LIGHT:                 /* SI lux units */
-                       return 50000;
-
+                       sensor[s].max_range = 50000;
+                       break;
                case SENSOR_TYPE_AMBIENT_TEMPERATURE:   /* °C          */
                case SENSOR_TYPE_TEMPERATURE:           /* °C          */
                case SENSOR_TYPE_PROXIMITY:             /* centimeters  */
                case SENSOR_TYPE_PRESSURE:              /* hecto-pascal */
                case SENSOR_TYPE_RELATIVE_HUMIDITY:     /* percent */
-                       return 100;
+                       sensor[s].max_range = 100;
+                       break;
+               }
+       }
 
-               default:
-                       return 0;
+       if (sensor[s].max_range)
+               sensor_desc[s].maxRange = sensor[s].max_range;
+}
+
+float sensor_get_max_range (int s)
+{
+       if (sensor[s].is_virtual) {
+               switch (sensor[s].type) {
+                       case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
+                       case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
+                               return sensor[sensor[s].base[0]].max_range;
+
+                       default:
+                               return 0.0;
                }
+       }
+
+       if (sensor[s].max_range != 0.0 ||
+               !sensor_get_fl_prop(s, "max_range", &sensor[s].max_range))
+                       return sensor[s].max_range;
+
+       return 0;
 }
 
-static float sensor_get_min_freq (int s)
+float sensor_get_min_freq (int s)
 {
        /*
         * Check if a low cap has been specified for this sensor sampling rate.
@@ -271,14 +312,14 @@ static float sensor_get_min_freq (int s)
 }
 
 
-static float sensor_get_max_freq (int s)
+float sensor_get_max_freq (int s)
 {
        float max_freq;
 
        if (!sensor_get_fl_prop(s, "max_freq", &max_freq))
                return max_freq;
 
-       return 1000;
+       return ANDROID_MAX_FREQ;
 }
 
 int sensor_get_cal_steps (int s)
@@ -296,7 +337,7 @@ float sensor_get_resolution (int s)
                switch (sensor[s].type) {
                        case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
                        case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
-                               return sensor[sensor[s].base_idx[0]].resolution;
+                               return sensor[sensor[s].base[0]].resolution;
 
                        default:
                                return 0;
@@ -304,10 +345,18 @@ float sensor_get_resolution (int s)
        }
 
        if (sensor[s].resolution != 0.0 ||
-               !sensor_get_fl_prop(s, "resolution", &sensor[s].resolution))
-                       return sensor[s].resolution;
+           !sensor_get_fl_prop(s, "resolution", &sensor[s].resolution)) {
+               return sensor[s].resolution;
+       }
 
-       return 0;
+       sensor[s].resolution = sensor[s].scale;
+       if (!sensor[s].resolution && sensor[s].num_channels)
+               sensor[s].resolution = sensor[s].channel[0].scale;
+
+       if (sensor[s].type == SENSOR_TYPE_MAGNETIC_FIELD)
+               sensor[s].resolution = CONVERT_GAUSS_TO_MICROTESLA(sensor[s].resolution);
+
+       return sensor[s].resolution ? : 1;
 }
 
 
@@ -318,7 +367,7 @@ float sensor_get_power (int s)
                switch (sensor[s].type) {
                        case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
                        case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
-                               return sensor[sensor[s].base_idx[0]].power;
+                               return sensor[sensor[s].base[0]].power;
 
                        default:
                                return 0;
@@ -367,6 +416,27 @@ uint32_t sensor_get_quirks (int s)
                if (strstr(quirks_buf, "noisy"))
                        sensor[s].quirks |= QUIRK_NOISY;
 
+               if (strstr(quirks_buf, "biased"))
+                       sensor[s].quirks |= QUIRK_BIASED;
+
+               if (strstr(quirks_buf, "spotty"))
+                       sensor[s].quirks |= QUIRK_SPOTTY;
+
+               if (strstr(quirks_buf, "no-event"))
+                       sensor[s].quirks |= QUIRK_NO_EVENT_MODE;
+
+               if (strstr(quirks_buf, "no-trig"))
+                       sensor[s].quirks |= QUIRK_NO_TRIG_MODE;
+
+               if (strstr(quirks_buf, "no-poll"))
+                       sensor[s].quirks |= QUIRK_NO_POLL_MODE;
+
+               if (strstr(quirks_buf, "hrtimer"))
+                       sensor[s].quirks |= QUIRK_HRTIMER;
+
+               if (strstr(quirks_buf, "secondary"))
+                       sensor[s].quirks |= QUIRK_SECONDARY;
+
                sensor[s].quirks |= QUIRK_ALREADY_DECODED;
        }
 
@@ -397,15 +467,96 @@ int sensor_get_order (int s, unsigned char map[MAX_CHANNELS])
        return 1;       /* OK to use modified ordering map */
 }
 
-char* sensor_get_string_type (int s)
+int sensor_get_available_frequencies (int s)
+{
+       int dev_num = sensor[s].dev_num, err, i;
+       char avail_sysfs_path[PATH_MAX], freqs_buf[100];
+       char *p, *end;
+       float f;
+
+       sensor[s].avail_freqs_count = 0;
+       sensor[s].avail_freqs = 0;
+
+       sprintf(avail_sysfs_path, DEVICE_AVAIL_FREQ_PATH, dev_num);
+
+       err = sysfs_read_str(avail_sysfs_path, freqs_buf, sizeof(freqs_buf));
+       if (err < 0)
+               return 0;
+
+       for (p = freqs_buf, f = strtof(p, &end); p != end; p = end, f = strtof(p, &end))
+               sensor[s].avail_freqs_count++;
+
+       if (sensor[s].avail_freqs_count) {
+               sensor[s].avail_freqs = (float*) calloc(sensor[s].avail_freqs_count, sizeof(float));
+
+               for (p = freqs_buf, f = strtof(p, &end), i = 0; p != end; p = end, f = strtof(p, &end), i++)
+                       sensor[s].avail_freqs[i] = f;
+       }
+
+       return 0;
+}
+
+int sensor_get_mounting_matrix (int s, float mm[9])
 {
+       int dev_num = sensor[s].dev_num, err, i;
+       char mm_path[PATH_MAX], mm_buf[100];
+       char *tmp1 = mm_buf, *tmp2;
+
        switch (sensor[s].type) {
                case SENSOR_TYPE_ACCELEROMETER:
+               case SENSOR_TYPE_MAGNETIC_FIELD:
+               case SENSOR_TYPE_GYROSCOPE:
+               case SENSOR_TYPE_PROXIMITY:
+                       break;
+               default:
+                       return 0;
+       }
+
+       sprintf(mm_path, MOUNTING_MATRIX_PATH, dev_num);
+
+       err = sysfs_read_str(mm_path, mm_buf, sizeof(mm_buf));
+       if (err < 0)
+               return 0;
+
+       for(i = 0; i < 9; i++) {
+               float f;
+
+               f = strtof(tmp1, &tmp2);
+               if (!f && tmp1 == tmp2)
+                       return 0;
+               mm[i] = f;
+               tmp1 = tmp2 + 1;
+       }
+
+       /*
+        * For proximity sensors, interpret a negative final z value as a hint that the sensor is back mounted. In that case, mark the sensor as secondary to
+        * ensure that it gets listed after other sensors of same type that would be front-mounted. Most applications will only ask for the default proximity
+        * sensor and it makes more sense to point to, say, the IR based proximity sensor rather than SAR based one if we have both, as on SoFIA LTE MRD boards.
+        */
+        if (sensor[s].type == SENSOR_TYPE_PROXIMITY) {
+               if (mm[8] < 0) {
+                       sensor[s].quirks |= QUIRK_SECONDARY;
+               }
+               return 0;
+       }
+
+       ALOGI("%s: %f %f %f %f %f %f %f %f %f\n", __func__, mm[0], mm[1], mm[2], mm[3], mm[4], mm[5], mm[6], mm[7], mm[8]);
+       return 1;
+}
+
+
+char* sensor_get_string_type (int s)
+{
+       switch (sensor_desc[s].type) {
+               case SENSOR_TYPE_ACCELEROMETER:
                        return SENSOR_STRING_TYPE_ACCELEROMETER;
 
                case SENSOR_TYPE_MAGNETIC_FIELD:
                        return SENSOR_STRING_TYPE_MAGNETIC_FIELD;
 
+               case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
+                       return SENSOR_STRING_TYPE_MAGNETIC_FIELD_UNCALIBRATED;
+
                case SENSOR_TYPE_ORIENTATION:
                        return SENSOR_STRING_TYPE_ORIENTATION;
 
@@ -438,24 +589,17 @@ char* sensor_get_string_type (int s)
                }
 }
 
+
 flag_t sensor_get_flags (int s)
 {
-       flag_t flags = 0x0;
-
-       switch (sensor[s].type) {
-               case SENSOR_TYPE_ACCELEROMETER:
-               case SENSOR_TYPE_MAGNETIC_FIELD:
-               case SENSOR_TYPE_ORIENTATION:
-               case SENSOR_TYPE_GYROSCOPE:
-               case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
-               case SENSOR_TYPE_PRESSURE:
-                       flags |= SENSOR_FLAG_CONTINUOUS_MODE;
-                       break;
+       flag_t flags = 0;
 
+       switch (sensor_desc[s].type) {
                case SENSOR_TYPE_LIGHT:
                case SENSOR_TYPE_AMBIENT_TEMPERATURE:
                case SENSOR_TYPE_TEMPERATURE:
                case SENSOR_TYPE_RELATIVE_HUMIDITY:
+               case SENSOR_TYPE_STEP_COUNTER:
                        flags |= SENSOR_FLAG_ON_CHANGE_MODE;
                        break;
 
@@ -464,97 +608,93 @@ flag_t sensor_get_flags (int s)
                        flags |= SENSOR_FLAG_WAKE_UP;
                        flags |= SENSOR_FLAG_ON_CHANGE_MODE;
                        break;
-
+               case SENSOR_TYPE_STEP_DETECTOR:
+                       flags |= SENSOR_FLAG_SPECIAL_REPORTING_MODE;
+                       break;
                default:
-                       ALOGI("Unknown sensor");
+                       break;
                }
        return flags;
 }
 
-int get_cdd_freq (int s, int must)
+
+static int get_cdd_freq (int s, int must)
 {
-       switch (sensor[s].type) {
+       switch (sensor_desc[s].type) {
                case SENSOR_TYPE_ACCELEROMETER:
                        return (must ? 100 : 200); /* must 100 Hz, should 200 Hz, CDD compliant */
+
                case SENSOR_TYPE_GYROSCOPE:
-               case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
                        return (must ? 200 : 200); /* must 200 Hz, should 200 Hz, CDD compliant */
+
                case SENSOR_TYPE_MAGNETIC_FIELD:
                        return (must ? 10 : 50);   /* must 10 Hz, should 50 Hz, CDD compliant */
+
                case SENSOR_TYPE_LIGHT:
                case SENSOR_TYPE_AMBIENT_TEMPERATURE:
                case SENSOR_TYPE_TEMPERATURE:
                        return (must ? 1 : 2);     /* must 1 Hz, should 2Hz, not mentioned in CDD */
+
                default:
-                       return 0;
+                       return 1; /* Use 1 Hz by default, e.g. for proximity */
        }
 }
 
-/* This value is defined only for continuous mode and on-change sensors. It is the delay between
- * two sensor events corresponding to the lowest frequency that this sensor supports. When lower
- * frequencies are requested through batch()/setDelay() the events will be generated at this
- * frequency instead. It can be used by the framework or applications to estimate when the batch
- * FIFO may be full.
- *
- * NOTE: 1) period_ns is in nanoseconds where as maxDelay/minDelay are in microseconds.
- *              continuous, on-change: maximum sampling period allowed in microseconds.
- *              one-shot, special : 0
- *   2) maxDelay should always fit within a 32 bit signed integer. It is declared as 64 bit
- *      on 64 bit architectures only for binary compatibility reasons.
- * Availability: SENSORS_DEVICE_API_VERSION_1_3
+/* 
+ * This value is defined only for continuous mode and on-change sensors. It is the delay between two sensor events corresponding to the lowest frequency that
+ * this sensor supports. When lower frequencies are requested through batch()/setDelay() the events will be generated at this frequency instead. It can be used
+ * by the framework or applications to estimate when the batch FIFO may be full. maxDelay should always fit within a 32 bit signed integer. It is declared as
+ * 64 bit on 64 bit architectures only for binary compatibility reasons. Availability: SENSORS_DEVICE_API_VERSION_1_3
  */
 max_delay_t sensor_get_max_delay (int s)
 {
-       char avail_sysfs_path[PATH_MAX];
-       int dev_num     = sensor[s].dev_num;
-       char freqs_buf[100];
-       char* cursor;
-       float min_supported_rate = 1000;
+       int dev_num = sensor[s].dev_num, i;
+       float min_supported_rate;
        float rate_cap;
-       float sr;
 
-       /* continuous, on-change: maximum sampling period allowed in microseconds.
+       /*
+        * continuous, on-change: maximum sampling period allowed in microseconds.
         * one-shot, special : 0
         */
-       if (REPORTING_MODE(sensor_desc[s].flags) == SENSOR_FLAG_ONE_SHOT_MODE ||
-           REPORTING_MODE(sensor_desc[s].flags) == SENSOR_FLAG_SPECIAL_REPORTING_MODE)
-               return 0;
+       switch (REPORTING_MODE(sensor_desc[s].flags)) {
+               case SENSOR_FLAG_ONE_SHOT_MODE:
+               case SENSOR_FLAG_SPECIAL_REPORTING_MODE:
+                       return 0;
+
+               case SENSOR_FLAG_ON_CHANGE_MODE:
+                       return MAX_ON_CHANGE_SAMPLING_PERIOD_US;
+
+               default:
+                       break;
+       }
 
        if (sensor[s].is_virtual) {
                switch (sensor[s].type) {
                        case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
                        case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
-                               return sensor_desc[sensor[s].base_idx[0]].maxDelay;
+                               return sensor_desc[sensor[s].base[0]].maxDelay;
                        default:
                                return 0;
                }
        }
-       sprintf(avail_sysfs_path, DEVICE_AVAIL_FREQ_PATH, dev_num);
-
-       if (sysfs_read_str(avail_sysfs_path, freqs_buf, sizeof(freqs_buf)) < 0) {
-               /* If poll mode sensor */
-               if (!sensor[s].num_channels) {
-                       /* The must rate */
-                       min_supported_rate = get_cdd_freq(s, 1);
-               }
-       } else {
-               cursor = freqs_buf;
-               while (*cursor && cursor[0]) {
 
-                       /* Decode a single value */
-                       sr = strtod(cursor, NULL);
+       switch (sensor[s].mode) {
+               case MODE_TRIGGER:
+                       /* For interrupt-based devices, obey the list of supported sampling rates */
+                       if (sensor[s].avail_freqs_count) {
+                               min_supported_rate = 1000;
+                               for (i = 0; i < sensor[s].avail_freqs_count; i++) {
+                                       if (sensor[s].avail_freqs[i] < min_supported_rate)
+                                               min_supported_rate = sensor[s].avail_freqs[i];
+                               }
+                               break;
+                       }
+                       /* Fall through ... */
 
-                       if (sr < min_supported_rate)
-                               min_supported_rate = sr;
-
-                       /* Skip digits */
-                       while (cursor[0] && !isspace(cursor[0]))
-                               cursor++;
-
-                       /* Skip spaces */
-                       while (cursor[0] && isspace(cursor[0]))
-                               cursor++;
-               }
+               default:
+                       /* Report 1 Hz */
+                       min_supported_rate = 1;
+                       break;
        }
 
        /* Check if a minimum rate was specified for this sensor */
@@ -568,71 +708,71 @@ max_delay_t sensor_get_max_delay (int s)
                return 0;
 
        /* Return microseconds */
-       return (max_delay_t)(1000000.0 / min_supported_rate);
+       return (max_delay_t) (1000000.0 / min_supported_rate);
 }
 
-/* this value depends on the reporting mode:
- *
- *   continuous: minimum sample period allowed in microseconds
- *   on-change : 0
- *   one-shot  :-1
- *   special   : 0, unless otherwise noted
- */
-int32_t sensor_get_min_delay(int s)
+float sensor_get_max_static_freq(int s)
 {
-       char avail_sysfs_path[PATH_MAX];
-       int dev_num     = sensor[s].dev_num;
-       char freqs_buf[100];
-       char* cursor;
+       float max_from_prop = sensor_get_max_freq(s);
+
+       /* If we have max specified via a property use it */
+       if (max_from_prop != ANDROID_MAX_FREQ) {
+               return max_from_prop;
+       } else {
+               /* The should rate */
+               return get_cdd_freq(s, 0);
+       }
+}
+
+int32_t sensor_get_min_delay (int s)
+{
+       int dev_num = sensor[s].dev_num, i;
        float max_supported_rate = 0;
-       float sr;
+       float max_from_prop = sensor_get_max_freq(s);
 
-       /* continuous: minimum sampling period allowed in microseconds.
-        * on-change, special : 0
-        * one-shot  :-1
+       /* continuous, on change: minimum sampling period allowed in microseconds.
+        * special : 0, unless otherwise noted
+        * one-shot:-1
         */
-       if (REPORTING_MODE(sensor_desc[s].flags) == SENSOR_FLAG_ON_CHANGE_MODE ||
-           REPORTING_MODE(sensor_desc[s].flags) == SENSOR_FLAG_SPECIAL_REPORTING_MODE)
-               return 0;
+       switch (REPORTING_MODE(sensor_desc[s].flags)) {
+               case SENSOR_FLAG_ON_CHANGE_MODE:
+                       return MIN_ON_CHANGE_SAMPLING_PERIOD_US;
 
-       if (REPORTING_MODE(sensor_desc[s].flags) == SENSOR_FLAG_ONE_SHOT_MODE)
-               return -1;
+               case SENSOR_FLAG_SPECIAL_REPORTING_MODE:
+                       return 0;
+
+               case SENSOR_FLAG_ONE_SHOT_MODE:
+                       return -1;
+
+               default:
+                       break;
+       }
 
        if (sensor[s].is_virtual) {
                switch (sensor[s].type) {
                        case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
                        case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
-                               return sensor_desc[sensor[s].base_idx[0]].minDelay;
+                               return sensor_desc[sensor[s].base[0]].minDelay;
                        default:
                                return 0;
                }
        }
 
-       sprintf(avail_sysfs_path, DEVICE_AVAIL_FREQ_PATH, dev_num);
-
-       if (sysfs_read_str(avail_sysfs_path, freqs_buf, sizeof(freqs_buf)) < 0) {
-               /* If poll mode sensor */
-               if (!sensor[s].num_channels) {
-                       /* The should rate */
-                       max_supported_rate = get_cdd_freq(s, 0);
+       if (!sensor[s].avail_freqs_count) {
+               if (sensor[s].mode == MODE_POLL) {
+                       /* If we have max specified via a property use it */
+                       if (max_from_prop != ANDROID_MAX_FREQ)
+                               max_supported_rate = max_from_prop;
+                       else
+                               /* The should rate */
+                               max_supported_rate = get_cdd_freq(s, 0);
                }
        } else {
-               cursor = freqs_buf;
-               while (*cursor && cursor[0]) {
-
-                       /* Decode a single value */
-                       sr = strtod(cursor, NULL);
-
-                       if (sr > max_supported_rate && sr <= sensor_get_max_freq(s))
-                               max_supported_rate = sr;
-
-                       /* Skip digits */
-                       while (cursor[0] && !isspace(cursor[0]))
-                               cursor++;
-
-                       /* Skip spaces */
-                       while (cursor[0] && isspace(cursor[0]))
-                               cursor++;
+               for (i = 0; i < sensor[s].avail_freqs_count; i++) {
+                       if (sensor[s].avail_freqs[i] > max_supported_rate &&
+                               sensor[s].avail_freqs[i] <= max_from_prop) {
+                               max_supported_rate = sensor[s].avail_freqs[i];
+                       }
                }
        }
 
@@ -641,5 +781,5 @@ int32_t sensor_get_min_delay(int s)
                return 0;
 
        /* Return microseconds */
-       return (int32_t)(1000000.0 / max_supported_rate);
+       return (int32_t) (1000000.0 / max_supported_rate);
 }