OSDN Git Service

Ignore avail freqs when the hrtimer trigger is selected
[android-x86/hardware-intel-libsensors.git] / description.c
index 7e899b3..28a3533 100644 (file)
@@ -11,6 +11,7 @@
 #include "enumeration.h"
 #include "description.h"
 #include "utils.h"
+#include "transform.h"
 
 #define IIO_SENSOR_HAL_VERSION 1
 
@@ -218,6 +219,60 @@ int sensor_get_version (__attribute__((unused)) int s)
        return IIO_SENSOR_HAL_VERSION;
 }
 
+void sensor_update_max_range(int s)
+{
+       if (sensor[s].max_range)
+               return;
+
+       if (sensor[s].num_channels && sensor[s].channel[0].type_info.realbits) {
+               switch (sensor[s].type) {
+               case SENSOR_TYPE_MAGNETIC_FIELD:
+                       sensor[s].max_range = (1ULL << sensor[s].channel[0].type_info.realbits) *
+                                       CONVERT_MICROTESLA_TO_GAUSS(sensor[s].resolution) +
+                                       (sensor[s].offset || sensor[s].channel[0].offset);
+                       sensor[s].max_range = CONVERT_GAUSS_TO_MICROTESLA(sensor[s].max_range);
+                       break;
+               case SENSOR_TYPE_PROXIMITY:
+                       break;
+               default:
+                       sensor[s].max_range =  (1ULL << sensor[s].channel[0].type_info.realbits) *
+                               sensor[s].resolution + (sensor[s].offset || sensor[s].channel[0].offset);
+                       break;
+               }
+       }
+
+       if (!sensor[s].max_range) {
+               /* Try returning a sensible value given the sensor type */
+               /* We should cap returned samples accordingly... */
+               switch (sensor[s].type) {
+               case SENSOR_TYPE_ACCELEROMETER:         /* m/s^2        */
+                       sensor[s].max_range = 50;
+                       break;
+               case SENSOR_TYPE_MAGNETIC_FIELD:        /* micro-tesla  */
+                       sensor[s].max_range = 500;
+                       break;
+               case SENSOR_TYPE_ORIENTATION:           /* degrees      */
+                       sensor[s].max_range = 360;
+                       break;
+               case SENSOR_TYPE_GYROSCOPE:             /* radians/s    */
+                       sensor[s].max_range = 10;
+                       break;
+               case SENSOR_TYPE_LIGHT:                 /* SI lux units */
+                       sensor[s].max_range = 50000;
+                       break;
+               case SENSOR_TYPE_AMBIENT_TEMPERATURE:   /* °C          */
+               case SENSOR_TYPE_TEMPERATURE:           /* °C          */
+               case SENSOR_TYPE_PROXIMITY:             /* centimeters  */
+               case SENSOR_TYPE_PRESSURE:              /* hecto-pascal */
+               case SENSOR_TYPE_RELATIVE_HUMIDITY:     /* percent */
+                       sensor[s].max_range = 100;
+                       break;
+               }
+       }
+
+       if (sensor[s].max_range)
+               sensor_desc[s].maxRange = sensor[s].max_range;
+}
 
 float sensor_get_max_range (int s)
 {
@@ -236,39 +291,10 @@ float sensor_get_max_range (int s)
                !sensor_get_fl_prop(s, "max_range", &sensor[s].max_range))
                        return sensor[s].max_range;
 
-       /* Try returning a sensible value given the sensor type */
-
-       /* We should cap returned samples accordingly... */
-
-       switch (sensor_desc[s].type) {
-               case SENSOR_TYPE_ACCELEROMETER:         /* m/s^2        */
-                       return 50;
-
-               case SENSOR_TYPE_MAGNETIC_FIELD:        /* micro-tesla  */
-                       return 500;
-
-               case SENSOR_TYPE_ORIENTATION:           /* degrees      */
-                       return 360;
-
-               case SENSOR_TYPE_GYROSCOPE:             /* radians/s    */
-                       return 10;
-
-               case SENSOR_TYPE_LIGHT:                 /* SI lux units */
-                       return 50000;
-
-               case SENSOR_TYPE_AMBIENT_TEMPERATURE:   /* °C          */
-               case SENSOR_TYPE_TEMPERATURE:           /* °C          */
-               case SENSOR_TYPE_PROXIMITY:             /* centimeters  */
-               case SENSOR_TYPE_PRESSURE:              /* hecto-pascal */
-               case SENSOR_TYPE_RELATIVE_HUMIDITY:     /* percent */
-                       return 100;
-
-               default:
-                       return 0;
-               }
+       return 0;
 }
 
-static float sensor_get_min_freq (int s)
+float sensor_get_min_freq (int s)
 {
        /*
         * Check if a low cap has been specified for this sensor sampling rate.
@@ -319,10 +345,18 @@ float sensor_get_resolution (int s)
        }
 
        if (sensor[s].resolution != 0.0 ||
-               !sensor_get_fl_prop(s, "resolution", &sensor[s].resolution))
-                       return sensor[s].resolution;
+           !sensor_get_fl_prop(s, "resolution", &sensor[s].resolution)) {
+               return sensor[s].resolution;
+       }
 
-       return 0;
+       sensor[s].resolution = sensor[s].scale;
+       if (!sensor[s].resolution && sensor[s].num_channels)
+               sensor[s].resolution = sensor[s].channel[0].scale;
+
+       if (sensor[s].type == SENSOR_TYPE_MAGNETIC_FIELD)
+               sensor[s].resolution = CONVERT_GAUSS_TO_MICROTESLA(sensor[s].resolution);
+
+       return sensor[s].resolution ? : 1;
 }
 
 
@@ -647,8 +681,7 @@ max_delay_t sensor_get_max_delay (int s)
        switch (sensor[s].mode) {
                case MODE_TRIGGER:
                        /* For interrupt-based devices, obey the list of supported sampling rates */
-                       if (!(sensor_get_quirks(s) & QUIRK_HRTIMER) &&
-                                       sensor[s].avail_freqs_count) {
+                       if (sensor[s].avail_freqs_count) {
                                min_supported_rate = 1000;
                                for (i = 0; i < sensor[s].avail_freqs_count; i++) {
                                        if (sensor[s].avail_freqs[i] < min_supported_rate)
@@ -678,13 +711,24 @@ max_delay_t sensor_get_max_delay (int s)
        return (max_delay_t) (1000000.0 / min_supported_rate);
 }
 
+float sensor_get_max_static_freq(int s)
+{
+       float max_from_prop = sensor_get_max_freq(s);
+
+       /* If we have max specified via a property use it */
+       if (max_from_prop != ANDROID_MAX_FREQ) {
+               return max_from_prop;
+       } else {
+               /* The should rate */
+               return get_cdd_freq(s, 0);
+       }
+}
 
 int32_t sensor_get_min_delay (int s)
 {
        int dev_num = sensor[s].dev_num, i;
        float max_supported_rate = 0;
        float max_from_prop = sensor_get_max_freq(s);
-       int hrtimer_quirk_enabled = sensor_get_quirks(s) & QUIRK_HRTIMER;
 
        /* continuous, on change: minimum sampling period allowed in microseconds.
         * special : 0, unless otherwise noted
@@ -714,8 +758,8 @@ int32_t sensor_get_min_delay (int s)
                }
        }
 
-       if (hrtimer_quirk_enabled || !sensor[s].avail_freqs_count) {
-               if (hrtimer_quirk_enabled || (sensor[s].mode == MODE_POLL)) {
+       if (!sensor[s].avail_freqs_count) {
+               if (sensor[s].mode == MODE_POLL) {
                        /* If we have max specified via a property use it */
                        if (max_from_prop != ANDROID_MAX_FREQ)
                                max_supported_rate = max_from_prop;