OSDN Git Service

GMINL-7944: Introduce internal sensor types for ALS
[android-x86/hardware-intel-libsensors.git] / description.c
index 22dff3c..9349ad8 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (C) 2014 Intel Corporation.
+ * Copyright (C) 2014-2015 Intel Corporation.
  */
 
 #include <stdlib.h>
 
 #define IIO_SENSOR_HAL_VERSION 1
 
+#define MIN_ON_CHANGE_SAMPLING_PERIOD_US   200000 /* For on change sensors (temperature, proximity, ALS, etc.) report we support 5 Hz max (0.2 s min period) */
+#define MAX_ON_CHANGE_SAMPLING_PERIOD_US 10000000 /* 0.1 Hz min (10 s max period)*/
+#define ANDROID_MAX_FREQ 1000 /* 1000 Hz - This is how much Android requests for the fastest frequency */
+
 /*
  * About properties
  *
  * properties values happen to have its iio device name set to bmg160.
  */
 
-static int sensor_get_st_prop (int s, const char* sel, char val[MAX_NAME_SIZE])
+int sensor_get_st_prop (int s, const char* sel, char val[MAX_NAME_SIZE])
 {
        char prop_name[PROP_NAME_MAX];
        char prop_val[PROP_VALUE_MAX];
        char extended_sel[PROP_VALUE_MAX];
 
-       int i                   = sensor_info[s].catalog_index;
+       int i                   = sensor[s].catalog_index;
        const char *prefix      = sensor_catalog[i].tag;
 
        /* First try most specialized form, like ro.iio.anglvel.bmg160.name */
 
        snprintf(extended_sel, PROP_NAME_MAX, "%s.%s",
-                sensor_info[s].internal_name, sel);
+                sensor[s].internal_name, sel);
 
        snprintf(prop_name, PROP_NAME_MAX, PROP_BASE, prefix, extended_sel);
 
@@ -104,7 +108,7 @@ static int sensor_get_st_prop (int s, const char* sel, char val[MAX_NAME_SIZE])
 
        /* Fall back to simple form, like ro.iio.anglvel.name */
 
-       sprintf(prop_name, PROP_BASE, prefix, sel);
+       snprintf(prop_name, PROP_NAME_MAX, PROP_BASE, prefix, sel);
 
        if (property_get(prop_name, prop_val, "")) {
                strncpy(val, prop_val, MAX_NAME_SIZE-1);
@@ -142,33 +146,63 @@ int sensor_get_fl_prop (int s, const char* sel, float* val)
 
 char* sensor_get_name (int s)
 {
-       if (sensor_info[s].friendly_name[0] != '\0' ||
-               !sensor_get_st_prop(s, "name", sensor_info[s].friendly_name))
-                       return sensor_info[s].friendly_name;
+       char buf[MAX_NAME_SIZE];
+
+       if (sensor[s].is_virtual) {
+               switch (sensor[s].type) {
+                       case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
+                       case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
+                               strcpy(buf, sensor[sensor[s].base[0]].friendly_name);
+                               snprintf(sensor[s].friendly_name,
+                                        MAX_NAME_SIZE,
+                                        "%s %s", "Uncalibrated", buf);
+                               return sensor[s].friendly_name;
+
+                       default:
+                               return "";
+               }
+       }
+
+       if (sensor[s].friendly_name[0] != '\0' ||
+               !sensor_get_st_prop(s, "name", sensor[s].friendly_name))
+                       return sensor[s].friendly_name;
 
        /* If we got a iio device name from sysfs, use it */
-       if (sensor_info[s].internal_name[0]) {
-               snprintf(sensor_info[s].friendly_name, MAX_NAME_SIZE, "S%d-%s",
-                        s, sensor_info[s].internal_name);
+       if (sensor[s].internal_name[0]) {
+               snprintf(sensor[s].friendly_name, MAX_NAME_SIZE, "S%d-%s",
+                        s, sensor[s].internal_name);
        } else {
-               sprintf(sensor_info[s].friendly_name, "S%d", s);
+               sprintf(sensor[s].friendly_name, "S%d", s);
        }
 
-       return sensor_info[s].friendly_name;
+       return sensor[s].friendly_name;
 }
 
 
 char* sensor_get_vendor (int s)
 {
-       if (sensor_info[s].vendor_name[0] ||
-               !sensor_get_st_prop(s, "vendor", sensor_info[s].vendor_name))
-                       return sensor_info[s].vendor_name;
+       if (sensor[s].is_virtual) {
+               switch (sensor[s].type) {
+                       case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
+                       case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
+                               return sensor[sensor[s].base[0]].vendor_name;
+                       break;
+
+                       default:
+                               return "";
+
+               }
+       }
+
+       if (sensor[s].vendor_name[0] ||
+               !sensor_get_st_prop(s, "vendor", sensor[s].vendor_name))
+                       return sensor[s].vendor_name;
 
        return "";
 }
 
 
-int sensor_get_version (int s)
+int sensor_get_version (__attribute__((unused)) int s)
 {
        return IIO_SENSOR_HAL_VERSION;
 }
@@ -176,15 +210,26 @@ int sensor_get_version (int s)
 
 float sensor_get_max_range (int s)
 {
-       if (sensor_info[s].max_range != 0.0 ||
-               !sensor_get_fl_prop(s, "max_range", &sensor_info[s].max_range))
-                       return sensor_info[s].max_range;
+       if (sensor[s].is_virtual) {
+               switch (sensor[s].type) {
+                       case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
+                       case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
+                               return sensor[sensor[s].base[0]].max_range;
+
+                       default:
+                               return 0.0;
+               }
+       }
+
+       if (sensor[s].max_range != 0.0 ||
+               !sensor_get_fl_prop(s, "max_range", &sensor[s].max_range))
+                       return sensor[s].max_range;
 
        /* Try returning a sensible value given the sensor type */
 
        /* We should cap returned samples accordingly... */
 
-       switch (sensor_info[s].type) {
+       switch (sensor_desc[s].type) {
                case SENSOR_TYPE_ACCELEROMETER:         /* m/s^2        */
                        return 50;
 
@@ -208,16 +253,63 @@ float sensor_get_max_range (int s)
                        return 100;
 
                default:
-                       return 0.0;
+                       return 0;
                }
 }
 
+static float sensor_get_min_freq (int s)
+{
+       /*
+        * Check if a low cap has been specified for this sensor sampling rate.
+        * In some case, even when the driver supports lower rate, we still
+        * wish to receive a certain number of samples per seconds for various
+        * reasons (calibration, filtering, no change in power consumption...).
+        */
+
+       float min_freq;
+
+       if (!sensor_get_fl_prop(s, "min_freq", &min_freq))
+               return min_freq;
+
+       return 0;
+}
+
+
+static float sensor_get_max_freq (int s)
+{
+       float max_freq;
+
+       if (!sensor_get_fl_prop(s, "max_freq", &max_freq))
+               return max_freq;
+
+       return ANDROID_MAX_FREQ;
+}
+
+int sensor_get_cal_steps (int s)
+{
+       int cal_steps;
+       if (!sensor_get_prop(s, "cal_steps", &cal_steps))
+               return cal_steps;
+
+       return 0;
+}
 
 float sensor_get_resolution (int s)
 {
-       if (sensor_info[s].resolution != 0.0 ||
-               !sensor_get_fl_prop(s, "resolution", &sensor_info[s].resolution))
-                       return sensor_info[s].resolution;
+       if (sensor[s].is_virtual) {
+               switch (sensor[s].type) {
+                       case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
+                       case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
+                               return sensor[sensor[s].base[0]].resolution;
+
+                       default:
+                               return 0;
+               }
+       }
+
+       if (sensor[s].resolution != 0.0 ||
+               !sensor_get_fl_prop(s, "resolution", &sensor[s].resolution))
+                       return sensor[s].resolution;
 
        return 0;
 }
@@ -225,10 +317,22 @@ float sensor_get_resolution (int s)
 
 float sensor_get_power (int s)
 {
+
+       if (sensor[s].is_virtual) {
+               switch (sensor[s].type) {
+                       case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
+                       case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
+                               return sensor[sensor[s].base[0]].power;
+
+                       default:
+                               return 0;
+               }
+       }
+
        /* mA used while sensor is in use ; not sure about volts :) */
-       if (sensor_info[s].power != 0.0 ||
-               !sensor_get_fl_prop(s, "power", &sensor_info[s].power))
-                       return sensor_info[s].power;
+       if (sensor[s].power != 0.0 ||
+               !sensor_get_fl_prop(s, "power", &sensor[s].power))
+                       return sensor[s].power;
 
        return 0;
 }
@@ -237,9 +341,9 @@ float sensor_get_power (int s)
 float sensor_get_illumincalib (int s)
 {
        /* calibrating the ALS Sensor*/
-       if (sensor_info[s].illumincalib != 0.0 ||
-               !sensor_get_fl_prop(s, "illumincalib", &sensor_info[s].illumincalib)) {
-                       return sensor_info[s].illumincalib;
+       if (sensor[s].illumincalib != 0.0 ||
+               !sensor_get_fl_prop(s, "illumincalib", &sensor[s].illumincalib)) {
+                       return sensor[s].illumincalib;
        }
 
        return 0;
@@ -251,26 +355,41 @@ uint32_t sensor_get_quirks (int s)
        char quirks_buf[MAX_NAME_SIZE];
 
        /* Read and decode quirks property on first reference */
-       if (!(sensor_info[s].quirks & QUIRK_ALREADY_DECODED)) {
+       if (!(sensor[s].quirks & QUIRK_ALREADY_DECODED)) {
                quirks_buf[0] = '\0';
                sensor_get_st_prop(s, "quirks", quirks_buf);
 
                if (strstr(quirks_buf, "init-rate"))
-                       sensor_info[s].quirks |= QUIRK_INITIAL_RATE;
+                       sensor[s].quirks |= QUIRK_INITIAL_RATE;
 
                if (strstr(quirks_buf, "continuous"))
-                       sensor_info[s].quirks |= QUIRK_FORCE_CONTINUOUS;
+                       sensor[s].quirks |= QUIRK_FORCE_CONTINUOUS;
 
                if (strstr(quirks_buf, "terse"))
-                       sensor_info[s].quirks |= QUIRK_TERSE_DRIVER;
+                       sensor[s].quirks |= QUIRK_TERSE_DRIVER;
 
                if (strstr(quirks_buf, "noisy"))
-                       sensor_info[s].quirks |= QUIRK_NOISY;
+                       sensor[s].quirks |= QUIRK_NOISY;
+
+               if (strstr(quirks_buf, "biased"))
+                       sensor[s].quirks |= QUIRK_BIASED;
+
+               if (strstr(quirks_buf, "spotty"))
+                       sensor[s].quirks |= QUIRK_SPOTTY;
+
+               if (strstr(quirks_buf, "no-event"))
+                       sensor[s].quirks |= QUIRK_NO_EVENT_MODE;
+
+               if (strstr(quirks_buf, "no-trig"))
+                       sensor[s].quirks |= QUIRK_NO_TRIG_MODE;
+
+               if (strstr(quirks_buf, "no-poll"))
+                       sensor[s].quirks |= QUIRK_NO_POLL_MODE;
 
-               sensor_info[s].quirks |= QUIRK_ALREADY_DECODED;
+               sensor[s].quirks |= QUIRK_ALREADY_DECODED;
        }
 
-       return sensor_info[s].quirks;
+       return sensor[s].quirks;
 }
 
 
@@ -278,9 +397,9 @@ int sensor_get_order (int s, unsigned char map[MAX_CHANNELS])
 {
        char buf[MAX_NAME_SIZE];
        int i;
-       int count = sensor_catalog[sensor_info[s].catalog_index].num_channels;
+       int count = sensor_catalog[sensor[s].catalog_index].num_channels;
 
-       if  (sensor_get_st_prop(s, "order", buf))
+       if (sensor_get_st_prop(s, "order", buf))
                return 0; /* No order property */
 
        /* Assume ASCII characters, in the '0'..'9' range */
@@ -297,15 +416,19 @@ int sensor_get_order (int s, unsigned char map[MAX_CHANNELS])
        return 1;       /* OK to use modified ordering map */
 }
 
+
 char* sensor_get_string_type (int s)
 {
-       switch (sensor_info[s].type) {
+       switch (sensor_desc[s].type) {
                case SENSOR_TYPE_ACCELEROMETER:
                        return SENSOR_STRING_TYPE_ACCELEROMETER;
 
                case SENSOR_TYPE_MAGNETIC_FIELD:
                        return SENSOR_STRING_TYPE_MAGNETIC_FIELD;
 
+               case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
+                       return SENSOR_STRING_TYPE_MAGNETIC_FIELD_UNCALIBRATED;
+
                case SENSOR_TYPE_ORIENTATION:
                        return SENSOR_STRING_TYPE_ORIENTATION;
 
@@ -338,24 +461,17 @@ char* sensor_get_string_type (int s)
                }
 }
 
+
 flag_t sensor_get_flags (int s)
 {
-       flag_t flags = 0x0;
-
-       switch (sensor_info[s].type) {
-               case SENSOR_TYPE_ACCELEROMETER:
-               case SENSOR_TYPE_MAGNETIC_FIELD:
-               case SENSOR_TYPE_ORIENTATION:
-               case SENSOR_TYPE_GYROSCOPE:
-               case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
-               case SENSOR_TYPE_PRESSURE:
-                       flags |= SENSOR_FLAG_CONTINUOUS_MODE;
-                       break;
+       flag_t flags = 0;
 
+       switch (sensor_desc[s].type) {
                case SENSOR_TYPE_LIGHT:
                case SENSOR_TYPE_AMBIENT_TEMPERATURE:
                case SENSOR_TYPE_TEMPERATURE:
                case SENSOR_TYPE_RELATIVE_HUMIDITY:
+               case SENSOR_TYPE_STEP_COUNTER:
                        flags |= SENSOR_FLAG_ON_CHANGE_MODE;
                        break;
 
@@ -364,66 +480,83 @@ flag_t sensor_get_flags (int s)
                        flags |= SENSOR_FLAG_WAKE_UP;
                        flags |= SENSOR_FLAG_ON_CHANGE_MODE;
                        break;
-
+               case SENSOR_TYPE_STEP_DETECTOR:
+                       flags |= SENSOR_FLAG_SPECIAL_REPORTING_MODE;
+                       break;
                default:
-                       ALOGI("Unknown sensor");
+                       break;
                }
        return flags;
 }
 
-int get_cdd_freq (int s, int must)
+
+static int get_cdd_freq (int s, int must)
 {
-       switch (sensor_info[s].type) {
+       switch (sensor_desc[s].type) {
                case SENSOR_TYPE_ACCELEROMETER:
                        return (must ? 100 : 200); /* must 100 Hz, should 200 Hz, CDD compliant */
+
                case SENSOR_TYPE_GYROSCOPE:
-               case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
                        return (must ? 200 : 200); /* must 200 Hz, should 200 Hz, CDD compliant */
+
                case SENSOR_TYPE_MAGNETIC_FIELD:
                        return (must ? 10 : 50);   /* must 10 Hz, should 50 Hz, CDD compliant */
+
                case SENSOR_TYPE_LIGHT:
                case SENSOR_TYPE_AMBIENT_TEMPERATURE:
                case SENSOR_TYPE_TEMPERATURE:
                        return (must ? 1 : 2);     /* must 1 Hz, should 2Hz, not mentioned in CDD */
+
                default:
-                       return 0;
+                       return 1; /* Use 1 Hz by default, e.g. for proximity */
        }
 }
 
-/* This value is defined only for continuous mode and on-change sensors. It is the delay between
- * two sensor events corresponding to the lowest frequency that this sensor supports. When lower
- * frequencies are requested through batch()/setDelay() the events will be generated at this
- * frequency instead. It can be used by the framework or applications to estimate when the batch
- * FIFO may be full.
- *
- * NOTE: 1) period_ns is in nanoseconds where as maxDelay/minDelay are in microseconds.
- *              continuous, on-change: maximum sampling period allowed in microseconds.
- *              one-shot, special : 0
- *   2) maxDelay should always fit within a 32 bit signed integer. It is declared as 64 bit
- *      on 64 bit architectures only for binary compatibility reasons.
- * Availability: SENSORS_DEVICE_API_VERSION_1_3
+/* 
+ * This value is defined only for continuous mode and on-change sensors. It is the delay between two sensor events corresponding to the lowest frequency that
+ * this sensor supports. When lower frequencies are requested through batch()/setDelay() the events will be generated at this frequency instead. It can be used
+ * by the framework or applications to estimate when the batch FIFO may be full. maxDelay should always fit within a 32 bit signed integer. It is declared as
+ * 64 bit on 64 bit architectures only for binary compatibility reasons. Availability: SENSORS_DEVICE_API_VERSION_1_3
  */
 max_delay_t sensor_get_max_delay (int s)
 {
        char avail_sysfs_path[PATH_MAX];
-       int dev_num     = sensor_info[s].dev_num;
+       int dev_num     = sensor[s].dev_num;
        char freqs_buf[100];
        char* cursor;
        float min_supported_rate = 1000;
+       float rate_cap;
        float sr;
 
-       /* continuous, on-change: maximum sampling period allowed in microseconds.
+       /*
+        * continuous, on-change: maximum sampling period allowed in microseconds.
         * one-shot, special : 0
         */
-       if (REPORTING_MODE(sensor_desc[s].flags) == SENSOR_FLAG_ONE_SHOT_MODE ||
-           REPORTING_MODE(sensor_desc[s].flags) == SENSOR_FLAG_SPECIAL_REPORTING_MODE)
-               return 0;
+       switch (REPORTING_MODE(sensor_desc[s].flags)) {
+               case SENSOR_FLAG_ONE_SHOT_MODE:
+               case SENSOR_FLAG_SPECIAL_REPORTING_MODE:
+                       return 0;
 
+               case SENSOR_FLAG_ON_CHANGE_MODE:
+                       return MAX_ON_CHANGE_SAMPLING_PERIOD_US;
+
+               default:
+                       break;
+       }
+
+       if (sensor[s].is_virtual) {
+               switch (sensor[s].type) {
+                       case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
+                       case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
+                               return sensor_desc[sensor[s].base[0]].maxDelay;
+                       default:
+                               return 0;
+               }
+       }
        sprintf(avail_sysfs_path, DEVICE_AVAIL_FREQ_PATH, dev_num);
 
        if (sysfs_read_str(avail_sysfs_path, freqs_buf, sizeof(freqs_buf)) < 0) {
-               /* If poll mode sensor */
-               if (!sensor_info[s].num_channels) {
+               if (sensor[s].mode == MODE_POLL) {
                        /* The must rate */
                        min_supported_rate = get_cdd_freq(s, 1);
                }
@@ -447,48 +580,69 @@ max_delay_t sensor_get_max_delay (int s)
                }
        }
 
+       /* Check if a minimum rate was specified for this sensor */
+       rate_cap = sensor_get_min_freq(s);
+
+       if (min_supported_rate < rate_cap)
+               min_supported_rate = rate_cap;
+
        /* return 0 for wrong values */
        if (min_supported_rate < 0.1)
                return 0;
 
        /* Return microseconds */
-       return (max_delay_t)(1000000.0 / min_supported_rate);
+       return (max_delay_t) (1000000.0 / min_supported_rate);
 }
 
-/* this value depends on the reporting mode:
- *
- *   continuous: minimum sample period allowed in microseconds
- *   on-change : 0
- *   one-shot  :-1
- *   special   : 0, unless otherwise noted
- */
-int32_t sensor_get_min_delay(int s)
+
+int32_t sensor_get_min_delay (int s)
 {
        char avail_sysfs_path[PATH_MAX];
-       int dev_num     = sensor_info[s].dev_num;
+       int dev_num     = sensor[s].dev_num;
        char freqs_buf[100];
        char* cursor;
        float max_supported_rate = 0;
+       float max_from_prop = sensor_get_max_freq(s);
        float sr;
 
-       /* continuous: minimum sampling period allowed in microseconds.
-        * on-change, special : 0
-        * one-shot  :-1
+       /* continuous, on change: minimum sampling period allowed in microseconds.
+        * special : 0, unless otherwise noted
+        * one-shot:-1
         */
-       if (REPORTING_MODE(sensor_desc[s].flags) == SENSOR_FLAG_ON_CHANGE_MODE ||
-           REPORTING_MODE(sensor_desc[s].flags) == SENSOR_FLAG_SPECIAL_REPORTING_MODE)
-               return 0;
+       switch (REPORTING_MODE(sensor_desc[s].flags)) {
+               case SENSOR_FLAG_ON_CHANGE_MODE:
+                       return MIN_ON_CHANGE_SAMPLING_PERIOD_US;
 
-       if (REPORTING_MODE(sensor_desc[s].flags) == SENSOR_FLAG_ONE_SHOT_MODE)
-               return -1;
+               case SENSOR_FLAG_SPECIAL_REPORTING_MODE:
+                       return 0;
+
+               case SENSOR_FLAG_ONE_SHOT_MODE:
+                       return -1;
+
+               default:
+                       break;
+       }
+
+       if (sensor[s].is_virtual) {
+               switch (sensor[s].type) {
+                       case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
+                       case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
+                               return sensor_desc[sensor[s].base[0]].minDelay;
+                       default:
+                               return 0;
+               }
+       }
 
        sprintf(avail_sysfs_path, DEVICE_AVAIL_FREQ_PATH, dev_num);
 
        if (sysfs_read_str(avail_sysfs_path, freqs_buf, sizeof(freqs_buf)) < 0) {
-               /* If poll mode sensor */
-               if (!sensor_info[s].num_channels) {
-                       /* The should rate */
-                       max_supported_rate = get_cdd_freq(s, 0);
+               if (sensor[s].mode == MODE_POLL) {
+                       /* If we have max specified via a property use it */
+                       if (max_from_prop != ANDROID_MAX_FREQ)
+                               max_supported_rate = max_from_prop;
+                       else
+                               /* The should rate */
+                               max_supported_rate = get_cdd_freq(s, 0);
                }
        } else {
                cursor = freqs_buf;
@@ -497,7 +651,7 @@ int32_t sensor_get_min_delay(int s)
                        /* Decode a single value */
                        sr = strtod(cursor, NULL);
 
-                       if (sr > max_supported_rate && sr <= MAX_EVENTS)
+                       if (sr > max_supported_rate && sr <= max_from_prop)
                                max_supported_rate = sr;
 
                        /* Skip digits */
@@ -515,5 +669,5 @@ int32_t sensor_get_min_delay(int s)
                return 0;
 
        /* Return microseconds */
-       return (int32_t)(1000000.0 / max_supported_rate);
+       return (int32_t) (1000000.0 / max_supported_rate);
 }