OSDN Git Service

Move module path to vendor
[android-x86/hardware-intel-libsensors.git] / description.c
index e630c47..b5a72f0 100644 (file)
@@ -1,16 +1,24 @@
 /*
- * Copyright (C) 2014 Intel Corporation.
+ * Copyright (C) 2014-2015 Intel Corporation.
  */
 
 #include <stdlib.h>
+#include <ctype.h>
 #include <utils/Log.h>
 #include <cutils/properties.h>
 #include <hardware/sensors.h>
+#include "common.h"
 #include "enumeration.h"
 #include "description.h"
+#include "utils.h"
+#include "transform.h"
 
 #define IIO_SENSOR_HAL_VERSION 1
 
+#define MIN_ON_CHANGE_SAMPLING_PERIOD_US   200000 /* For on change sensors (temperature, proximity, ALS, etc.) report we support 5 Hz max (0.2 s min period) */
+#define MAX_ON_CHANGE_SAMPLING_PERIOD_US 10000000 /* 0.1 Hz min (10 s max period)*/
+#define ANDROID_MAX_FREQ 1000 /* 1000 Hz - This is how much Android requests for the fastest frequency */
+
 /*
  * About properties
  *
@@ -50,7 +58,7 @@
  * ro.iio.illuminance.power = .001
  * ro.iio.illuminance.illumincalib = 7400
  *
- * Finally there's a 'opt_scale' specifier, documented as follows:
+ * There's a 'opt_scale' specifier, documented as follows:
  *
  *  This adds support for a scaling factor that can be expressed
  *  using properties, for all sensors, on a channel basis. That
  *  For sensors using a single channel - and only those - the channel
  *  name is implicitly void and a syntax such as ro.iio.illuminance.
  *  opt_scale = 3 has to be used.
+ *
+ * 'panel' and 'rotation' specifiers can be used to express ACPI PLD placement
+ * information ; if found they will be used in priority over the actual ACPI
+ * data. That is intended as a way to verify values during development.
+ *
+ * It's possible to use the contents of the iio device name as a way to
+ * discriminate between sensors. Several sensors of the same type can coexist:
+ * e.g. ro.iio.temp.bmg160.name = BMG160 Thermometer will be used in priority
+ * over ro.iio.temp.name = BMC150 Thermometer if the sensor for which we query
+ * properties values happen to have its iio device name set to bmg160.
  */
 
-static int sensor_get_st_prop (int s, const char* sel, char val[MAX_NAME_SIZE])
+int sensor_get_st_prop (int s, const char* sel, char val[MAX_NAME_SIZE])
 {
        char prop_name[PROP_NAME_MAX];
        char prop_val[PROP_VALUE_MAX];
-       int i                   = sensor_info[s].catalog_index;
+       char extended_sel[PROP_VALUE_MAX];
+
+       int i                   = sensor[s].catalog_index;
        const char *prefix      = sensor_catalog[i].tag;
+       const char *shorthand = sensor_catalog[i].shorthand;
 
-       sprintf(prop_name, PROP_BASE, prefix, sel);
+       /* First try most specialized form, like ro.iio.anglvel.bmg160.name */
+
+       snprintf(extended_sel, PROP_NAME_MAX, "%s.%s",
+                sensor[s].internal_name, sel);
+
+       snprintf(prop_name, PROP_NAME_MAX, PROP_BASE, prefix, extended_sel);
+
+       if (property_get(prop_name, prop_val, "")) {
+               strncpy(val, prop_val, MAX_NAME_SIZE-1);
+               val[MAX_NAME_SIZE-1] = '\0';
+               return 0;
+       }
+
+       if (shorthand[0] != '\0') {
+               /* Try with shorthand instead of prefix */
+               snprintf(prop_name, PROP_NAME_MAX, PROP_BASE, shorthand, extended_sel);
+
+               if (property_get(prop_name, prop_val, "")) {
+                       strncpy(val, prop_val, MAX_NAME_SIZE-1);
+                       val[MAX_NAME_SIZE-1] = '\0';
+                       return 0;
+               }
+       }
+       /* Fall back to simple form, like ro.iio.anglvel.name */
+
+       snprintf(prop_name, PROP_NAME_MAX, PROP_BASE, prefix, sel);
 
        if (property_get(prop_name, prop_val, "")) {
                strncpy(val, prop_val, MAX_NAME_SIZE-1);
@@ -86,6 +132,18 @@ static int sensor_get_st_prop (int s, const char* sel, char val[MAX_NAME_SIZE])
 }
 
 
+int sensor_get_prop (int s, const char* sel, int* val)
+{
+       char buf[MAX_NAME_SIZE];
+
+       if (sensor_get_st_prop(s, sel, buf))
+               return -1;
+
+       *val = atoi(buf);
+       return 0;
+}
+
+
 int sensor_get_fl_prop (int s, const char* sel, float* val)
 {
        char buf[MAX_NAME_SIZE];
@@ -100,99 +158,226 @@ int sensor_get_fl_prop (int s, const char* sel, float* val)
 
 char* sensor_get_name (int s)
 {
-       if (sensor_info[s].friendly_name[0] != '\0' ||
-               !sensor_get_st_prop(s, "name", sensor_info[s].friendly_name))
-                       return sensor_info[s].friendly_name;
+       char buf[MAX_NAME_SIZE];
+
+       if (sensor[s].is_virtual) {
+               switch (sensor[s].type) {
+                       case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
+                       case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
+                               strcpy(buf, sensor[sensor[s].base[0]].friendly_name);
+                               snprintf(sensor[s].friendly_name,
+                                        MAX_NAME_SIZE,
+                                        "%s %s", "Uncalibrated", buf);
+                               return sensor[s].friendly_name;
+
+                       default:
+                               return "";
+               }
+       }
+
+       if (sensor[s].friendly_name[0] != '\0' ||
+               !sensor_get_st_prop(s, "name", sensor[s].friendly_name))
+                       return sensor[s].friendly_name;
 
        /* If we got a iio device name from sysfs, use it */
-       if (sensor_info[s].internal_name[0]) {
-               snprintf(sensor_info[s].friendly_name, MAX_NAME_SIZE, "S%d-%s",
-                        s, sensor_info[s].internal_name);
+       if (sensor[s].internal_name[0]) {
+               snprintf(sensor[s].friendly_name, MAX_NAME_SIZE, "S%d-%s",
+                        s, sensor[s].internal_name);
        } else {
-               sprintf(sensor_info[s].friendly_name, "S%d", s);
+               sprintf(sensor[s].friendly_name, "S%d", s);
        }
 
-       return sensor_info[s].friendly_name;
+       return sensor[s].friendly_name;
 }
 
 
 char* sensor_get_vendor (int s)
 {
-       if (sensor_info[s].vendor_name[0] ||
-               !sensor_get_st_prop(s, "vendor", sensor_info[s].vendor_name))
-                       return sensor_info[s].vendor_name;
+       if (sensor[s].is_virtual) {
+               switch (sensor[s].type) {
+                       case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
+                       case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
+                               return sensor[sensor[s].base[0]].vendor_name;
+                       break;
+
+                       default:
+                               return "";
+
+               }
+       }
+
+       if (sensor[s].vendor_name[0] ||
+               !sensor_get_st_prop(s, "vendor", sensor[s].vendor_name))
+                       return sensor[s].vendor_name;
 
        return "";
 }
 
 
-int sensor_get_version (int s)
+int sensor_get_version (__attribute__((unused)) int s)
 {
        return IIO_SENSOR_HAL_VERSION;
 }
 
-
-float sensor_get_max_range (int s)
+void sensor_update_max_range(int s)
 {
-       int catalog_index;
-       int sensor_type;
-
-       if (sensor_info[s].max_range != 0.0 ||
-               !sensor_get_fl_prop(s, "max_range", &sensor_info[s].max_range))
-                       return sensor_info[s].max_range;
-
-       /* Try returning a sensible value given the sensor type */
+       if (sensor[s].max_range)
+               return;
 
-       /* We should cap returned samples accordingly... */
-
-       catalog_index = sensor_info[s].catalog_index;
-       sensor_type = sensor_catalog[catalog_index].type;
+       if (sensor[s].num_channels && sensor[s].channel[0].type_info.realbits) {
+               switch (sensor[s].type) {
+               case SENSOR_TYPE_MAGNETIC_FIELD:
+                       sensor[s].max_range = (1ULL << sensor[s].channel[0].type_info.realbits) *
+                                       CONVERT_MICROTESLA_TO_GAUSS(sensor[s].resolution) +
+                                       (sensor[s].offset || sensor[s].channel[0].offset);
+                       sensor[s].max_range = CONVERT_GAUSS_TO_MICROTESLA(sensor[s].max_range);
+                       break;
+               case SENSOR_TYPE_PROXIMITY:
+                       break;
+               default:
+                       sensor[s].max_range =  (1ULL << sensor[s].channel[0].type_info.realbits) *
+                               sensor[s].resolution + (sensor[s].offset || sensor[s].channel[0].offset);
+                       break;
+               }
+       }
 
-       switch (sensor_type) {
+       if (!sensor[s].max_range) {
+               /* Try returning a sensible value given the sensor type */
+               /* We should cap returned samples accordingly... */
+               switch (sensor[s].type) {
                case SENSOR_TYPE_ACCELEROMETER:         /* m/s^2        */
-                       return 50;
-
+                       sensor[s].max_range = 50;
+                       break;
                case SENSOR_TYPE_MAGNETIC_FIELD:        /* micro-tesla  */
-                       return 500;
-
+                       sensor[s].max_range = 500;
+                       break;
                case SENSOR_TYPE_ORIENTATION:           /* degrees      */
-                       return 360;
-
+                       sensor[s].max_range = 360;
+                       break;
                case SENSOR_TYPE_GYROSCOPE:             /* radians/s    */
-                       return 10;
-
+                       sensor[s].max_range = 10;
+                       break;
                case SENSOR_TYPE_LIGHT:                 /* SI lux units */
-                       return 50000;
-
+                       sensor[s].max_range = 50000;
+                       break;
                case SENSOR_TYPE_AMBIENT_TEMPERATURE:   /* °C          */
                case SENSOR_TYPE_TEMPERATURE:           /* °C          */
                case SENSOR_TYPE_PROXIMITY:             /* centimeters  */
                case SENSOR_TYPE_PRESSURE:              /* hecto-pascal */
                case SENSOR_TYPE_RELATIVE_HUMIDITY:     /* percent */
-                       return 100;
+                       sensor[s].max_range = 100;
+                       break;
+               }
+       }
 
-               default:
-                       return 0.0;
+       if (sensor[s].max_range)
+               sensor_desc[s].maxRange = sensor[s].max_range;
+}
+
+float sensor_get_max_range (int s)
+{
+       if (sensor[s].is_virtual) {
+               switch (sensor[s].type) {
+                       case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
+                       case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
+                               return sensor[sensor[s].base[0]].max_range;
+
+                       default:
+                               return 0.0;
                }
+       }
+
+       if (sensor[s].max_range != 0.0 ||
+               !sensor_get_fl_prop(s, "max_range", &sensor[s].max_range))
+                       return sensor[s].max_range;
+
+       return 0;
 }
 
+static float sensor_get_min_freq (int s)
+{
+       /*
+        * Check if a low cap has been specified for this sensor sampling rate.
+        * In some case, even when the driver supports lower rate, we still
+        * wish to receive a certain number of samples per seconds for various
+        * reasons (calibration, filtering, no change in power consumption...).
+        */
 
-float sensor_get_resolution (int s)
+       float min_freq;
+
+       if (!sensor_get_fl_prop(s, "min_freq", &min_freq))
+               return min_freq;
+
+       return 0;
+}
+
+
+float sensor_get_max_freq (int s)
 {
-       if (sensor_info[s].resolution != 0.0 ||
-               !sensor_get_fl_prop(s, "resolution", &sensor_info[s].resolution))
-                       return sensor_info[s].resolution;
+       float max_freq;
+
+       if (!sensor_get_fl_prop(s, "max_freq", &max_freq))
+               return max_freq;
+
+       return ANDROID_MAX_FREQ;
+}
+
+int sensor_get_cal_steps (int s)
+{
+       int cal_steps;
+       if (!sensor_get_prop(s, "cal_steps", &cal_steps))
+               return cal_steps;
 
        return 0;
 }
 
+float sensor_get_resolution (int s)
+{
+       if (sensor[s].is_virtual) {
+               switch (sensor[s].type) {
+                       case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
+                       case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
+                               return sensor[sensor[s].base[0]].resolution;
+
+                       default:
+                               return 0;
+               }
+       }
+
+       if (sensor[s].resolution != 0.0 ||
+           !sensor_get_fl_prop(s, "resolution", &sensor[s].resolution)) {
+               return sensor[s].resolution;
+       }
+
+       sensor[s].resolution = sensor[s].scale;
+       if (!sensor[s].resolution && sensor[s].num_channels)
+               sensor[s].resolution = sensor[s].channel[0].scale;
+
+       if (sensor[s].type == SENSOR_TYPE_MAGNETIC_FIELD)
+               sensor[s].resolution = CONVERT_GAUSS_TO_MICROTESLA(sensor[s].resolution);
+
+       return sensor[s].resolution ? : 1;
+}
+
 
 float sensor_get_power (int s)
 {
+
+       if (sensor[s].is_virtual) {
+               switch (sensor[s].type) {
+                       case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
+                       case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
+                               return sensor[sensor[s].base[0]].power;
+
+                       default:
+                               return 0;
+               }
+       }
+
        /* mA used while sensor is in use ; not sure about volts :) */
-       if (sensor_info[s].power != 0.0 ||
-               !sensor_get_fl_prop(s, "power", &sensor_info[s].power))
-                       return sensor_info[s].power;
+       if (sensor[s].power != 0.0 ||
+               !sensor_get_fl_prop(s, "power", &sensor[s].power))
+                       return sensor[s].power;
 
        return 0;
 }
@@ -201,9 +386,9 @@ float sensor_get_power (int s)
 float sensor_get_illumincalib (int s)
 {
        /* calibrating the ALS Sensor*/
-       if (sensor_info[s].illumincalib != 0.0 ||
-               !sensor_get_fl_prop(s, "illumincalib", &sensor_info[s].illumincalib)) {
-                       return sensor_info[s].illumincalib;
+       if (sensor[s].illumincalib != 0.0 ||
+               !sensor_get_fl_prop(s, "illumincalib", &sensor[s].illumincalib)) {
+                       return sensor[s].illumincalib;
        }
 
        return 0;
@@ -215,23 +400,47 @@ uint32_t sensor_get_quirks (int s)
        char quirks_buf[MAX_NAME_SIZE];
 
        /* Read and decode quirks property on first reference */
-       if (!(sensor_info[s].quirks & QUIRK_ALREADY_DECODED)) {
+       if (!(sensor[s].quirks & QUIRK_ALREADY_DECODED)) {
                quirks_buf[0] = '\0';
                sensor_get_st_prop(s, "quirks", quirks_buf);
 
                if (strstr(quirks_buf, "init-rate"))
-                       sensor_info[s].quirks |= QUIRK_INITIAL_RATE;
+                       sensor[s].quirks |= QUIRK_INITIAL_RATE;
+
+               if (strstr(quirks_buf, "continuous"))
+                       sensor[s].quirks |= QUIRK_FORCE_CONTINUOUS;
 
                if (strstr(quirks_buf, "terse"))
-                       sensor_info[s].quirks |= QUIRK_TERSE_DRIVER;
+                       sensor[s].quirks |= QUIRK_TERSE_DRIVER;
 
                if (strstr(quirks_buf, "noisy"))
-                       sensor_info[s].quirks |= QUIRK_NOISY;
+                       sensor[s].quirks |= QUIRK_NOISY;
+
+               if (strstr(quirks_buf, "biased"))
+                       sensor[s].quirks |= QUIRK_BIASED;
+
+               if (strstr(quirks_buf, "spotty"))
+                       sensor[s].quirks |= QUIRK_SPOTTY;
+
+               if (strstr(quirks_buf, "no-event"))
+                       sensor[s].quirks |= QUIRK_NO_EVENT_MODE;
 
-               sensor_info[s].quirks |= QUIRK_ALREADY_DECODED;
+               if (strstr(quirks_buf, "no-trig"))
+                       sensor[s].quirks |= QUIRK_NO_TRIG_MODE;
+
+               if (strstr(quirks_buf, "no-poll"))
+                       sensor[s].quirks |= QUIRK_NO_POLL_MODE;
+
+               if (strstr(quirks_buf, "hrtimer"))
+                       sensor[s].quirks |= QUIRK_HRTIMER;
+
+               if (strstr(quirks_buf, "secondary"))
+                       sensor[s].quirks |= QUIRK_SECONDARY;
+
+               sensor[s].quirks |= QUIRK_ALREADY_DECODED;
        }
 
-       return sensor_info[s].quirks;
+       return sensor[s].quirks;
 }
 
 
@@ -239,43 +448,115 @@ int sensor_get_order (int s, unsigned char map[MAX_CHANNELS])
 {
        char buf[MAX_NAME_SIZE];
        int i;
-       int count = sensor_catalog[sensor_info[s].catalog_index].num_channels;
+       int count = sensor_catalog[sensor[s].catalog_index].num_channels;
 
-       memset(map, 0, MAX_CHANNELS);
-
-       if  (sensor_get_st_prop(s, "order", buf))
+       if (sensor_get_st_prop(s, "order", buf))
                return 0; /* No order property */
 
        /* Assume ASCII characters, in the '0'..'9' range */
 
        for (i=0; i<count; i++)
-               map[i] = buf[i] - '0';
-
-       /* Check that our indices are in range */
-       for (i=0; i<count; i++)
-               if (map[i] >= count) {
+               if (buf[i] - '0' >= count) {
                        ALOGE("Order index out of range for sensor %d\n", s);
                        return 0;
                }
 
+       for (i=0; i<count; i++)
+               map[i] = buf[i] - '0';
+
        return 1;       /* OK to use modified ordering map */
 }
 
-char* sensor_get_string_type(int s)
+int sensor_get_available_frequencies (int s)
 {
-       int catalog_index;
-       int sensor_type;
+       int dev_num = sensor[s].dev_num, err, i;
+       char avail_sysfs_path[PATH_MAX], freqs_buf[100];
+       char *p, *end;
+       float f;
+
+       sensor[s].avail_freqs_count = 0;
+       sensor[s].avail_freqs = 0;
+
+       sprintf(avail_sysfs_path, DEVICE_AVAIL_FREQ_PATH, dev_num);
+
+       err = sysfs_read_str(avail_sysfs_path, freqs_buf, sizeof(freqs_buf));
+       if (err < 0)
+               return 0;
 
-       catalog_index = sensor_info[s].catalog_index;
-       sensor_type = sensor_catalog[catalog_index].type;
+       for (p = freqs_buf, f = strtof(p, &end); p != end; p = end, f = strtof(p, &end))
+               sensor[s].avail_freqs_count++;
 
-       switch (sensor_type) {
+       if (sensor[s].avail_freqs_count) {
+               sensor[s].avail_freqs = (float*) calloc(sensor[s].avail_freqs_count, sizeof(float));
+
+               for (p = freqs_buf, f = strtof(p, &end), i = 0; p != end; p = end, f = strtof(p, &end), i++)
+                       sensor[s].avail_freqs[i] = f;
+       }
+
+       return 0;
+}
+
+int sensor_get_mounting_matrix (int s, float mm[9])
+{
+       int dev_num = sensor[s].dev_num, err, i;
+       char mm_path[PATH_MAX], mm_buf[100];
+       char *tmp1 = mm_buf, *tmp2;
+
+       switch (sensor[s].type) {
+               case SENSOR_TYPE_ACCELEROMETER:
+               case SENSOR_TYPE_MAGNETIC_FIELD:
+               case SENSOR_TYPE_GYROSCOPE:
+               case SENSOR_TYPE_PROXIMITY:
+                       break;
+               default:
+                       return 0;
+       }
+
+       sprintf(mm_path, MOUNTING_MATRIX_PATH, dev_num);
+
+       err = sysfs_read_str(mm_path, mm_buf, sizeof(mm_buf));
+       if (err < 0)
+               return 0;
+
+       for(i = 0; i < 9; i++) {
+               float f;
+
+               f = strtof(tmp1, &tmp2);
+               if (!f && tmp1 == tmp2)
+                       return 0;
+               mm[i] = f;
+               tmp1 = tmp2 + 1;
+       }
+
+       /*
+        * For proximity sensors, interpret a negative final z value as a hint that the sensor is back mounted. In that case, mark the sensor as secondary to
+        * ensure that it gets listed after other sensors of same type that would be front-mounted. Most applications will only ask for the default proximity
+        * sensor and it makes more sense to point to, say, the IR based proximity sensor rather than SAR based one if we have both, as on SoFIA LTE MRD boards.
+        */
+        if (sensor[s].type == SENSOR_TYPE_PROXIMITY) {
+               if (mm[8] < 0) {
+                       sensor[s].quirks |= QUIRK_SECONDARY;
+               }
+               return 0;
+       }
+
+       ALOGI("%s: %f %f %f %f %f %f %f %f %f\n", __func__, mm[0], mm[1], mm[2], mm[3], mm[4], mm[5], mm[6], mm[7], mm[8]);
+       return 1;
+}
+
+
+char* sensor_get_string_type (int s)
+{
+       switch (sensor_desc[s].type) {
                case SENSOR_TYPE_ACCELEROMETER:
                        return SENSOR_STRING_TYPE_ACCELEROMETER;
 
                case SENSOR_TYPE_MAGNETIC_FIELD:
                        return SENSOR_STRING_TYPE_MAGNETIC_FIELD;
 
+               case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
+                       return SENSOR_STRING_TYPE_MAGNETIC_FIELD_UNCALIBRATED;
+
                case SENSOR_TYPE_ORIENTATION:
                        return SENSOR_STRING_TYPE_ORIENTATION;
 
@@ -308,29 +589,17 @@ char* sensor_get_string_type(int s)
                }
 }
 
+
 flag_t sensor_get_flags (int s)
 {
-       int catalog_index;
-       int sensor_type;
-
-       flag_t flags = 0x0;
-       catalog_index = sensor_info[s].catalog_index;
-       sensor_type = sensor_catalog[catalog_index].type;
-
-       switch (sensor_type) {
-               case SENSOR_TYPE_ACCELEROMETER:
-               case SENSOR_TYPE_MAGNETIC_FIELD:
-               case SENSOR_TYPE_ORIENTATION:
-               case SENSOR_TYPE_GYROSCOPE:
-               case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
-               case SENSOR_TYPE_PRESSURE:
-                       flags |= SENSOR_FLAG_CONTINUOUS_MODE;
-                       break;
+       flag_t flags = 0;
 
+       switch (sensor_desc[s].type) {
                case SENSOR_TYPE_LIGHT:
                case SENSOR_TYPE_AMBIENT_TEMPERATURE:
                case SENSOR_TYPE_TEMPERATURE:
                case SENSOR_TYPE_RELATIVE_HUMIDITY:
+               case SENSOR_TYPE_STEP_COUNTER:
                        flags |= SENSOR_FLAG_ON_CHANGE_MODE;
                        break;
 
@@ -339,9 +608,168 @@ flag_t sensor_get_flags (int s)
                        flags |= SENSOR_FLAG_WAKE_UP;
                        flags |= SENSOR_FLAG_ON_CHANGE_MODE;
                        break;
-
+               case SENSOR_TYPE_STEP_DETECTOR:
+                       flags |= SENSOR_FLAG_SPECIAL_REPORTING_MODE;
+                       break;
                default:
-                       ALOGI("Unknown sensor");
+                       break;
                }
        return flags;
 }
+
+
+static int get_cdd_freq (int s, int must)
+{
+       switch (sensor_desc[s].type) {
+               case SENSOR_TYPE_ACCELEROMETER:
+                       return (must ? 100 : 200); /* must 100 Hz, should 200 Hz, CDD compliant */
+
+               case SENSOR_TYPE_GYROSCOPE:
+                       return (must ? 200 : 200); /* must 200 Hz, should 200 Hz, CDD compliant */
+
+               case SENSOR_TYPE_MAGNETIC_FIELD:
+                       return (must ? 10 : 50);   /* must 10 Hz, should 50 Hz, CDD compliant */
+
+               case SENSOR_TYPE_LIGHT:
+               case SENSOR_TYPE_AMBIENT_TEMPERATURE:
+               case SENSOR_TYPE_TEMPERATURE:
+                       return (must ? 1 : 2);     /* must 1 Hz, should 2Hz, not mentioned in CDD */
+
+               default:
+                       return 1; /* Use 1 Hz by default, e.g. for proximity */
+       }
+}
+
+/* 
+ * This value is defined only for continuous mode and on-change sensors. It is the delay between two sensor events corresponding to the lowest frequency that
+ * this sensor supports. When lower frequencies are requested through batch()/setDelay() the events will be generated at this frequency instead. It can be used
+ * by the framework or applications to estimate when the batch FIFO may be full. maxDelay should always fit within a 32 bit signed integer. It is declared as
+ * 64 bit on 64 bit architectures only for binary compatibility reasons. Availability: SENSORS_DEVICE_API_VERSION_1_3
+ */
+max_delay_t sensor_get_max_delay (int s)
+{
+       int dev_num = sensor[s].dev_num, i;
+       float min_supported_rate;
+       float rate_cap;
+
+       /*
+        * continuous, on-change: maximum sampling period allowed in microseconds.
+        * one-shot, special : 0
+        */
+       switch (REPORTING_MODE(sensor_desc[s].flags)) {
+               case SENSOR_FLAG_ONE_SHOT_MODE:
+               case SENSOR_FLAG_SPECIAL_REPORTING_MODE:
+                       return 0;
+
+               case SENSOR_FLAG_ON_CHANGE_MODE:
+                       return MAX_ON_CHANGE_SAMPLING_PERIOD_US;
+
+               default:
+                       break;
+       }
+
+       if (sensor[s].is_virtual) {
+               switch (sensor[s].type) {
+                       case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
+                       case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
+                               return sensor_desc[sensor[s].base[0]].maxDelay;
+                       default:
+                               return 0;
+               }
+       }
+
+       switch (sensor[s].mode) {
+               case MODE_TRIGGER:
+                       /* For interrupt-based devices, obey the list of supported sampling rates */
+                       if (!(sensor_get_quirks(s) & QUIRK_HRTIMER) &&
+                                       sensor[s].avail_freqs_count) {
+                               min_supported_rate = 1000;
+                               for (i = 0; i < sensor[s].avail_freqs_count; i++) {
+                                       if (sensor[s].avail_freqs[i] < min_supported_rate)
+                                               min_supported_rate = sensor[s].avail_freqs[i];
+                               }
+                               break;
+                       }
+                       /* Fall through ... */
+
+               default:
+                       /* Report 1 Hz */
+                       min_supported_rate = 1;
+                       break;
+       }
+
+       /* Check if a minimum rate was specified for this sensor */
+       rate_cap = sensor_get_min_freq(s);
+
+       if (min_supported_rate < rate_cap)
+               min_supported_rate = rate_cap;
+
+       /* return 0 for wrong values */
+       if (min_supported_rate < 0.1)
+               return 0;
+
+       /* Return microseconds */
+       return (max_delay_t) (1000000.0 / min_supported_rate);
+}
+
+
+int32_t sensor_get_min_delay (int s)
+{
+       int dev_num = sensor[s].dev_num, i;
+       float max_supported_rate = 0;
+       float max_from_prop = sensor_get_max_freq(s);
+       int hrtimer_quirk_enabled = sensor_get_quirks(s) & QUIRK_HRTIMER;
+
+       /* continuous, on change: minimum sampling period allowed in microseconds.
+        * special : 0, unless otherwise noted
+        * one-shot:-1
+        */
+       switch (REPORTING_MODE(sensor_desc[s].flags)) {
+               case SENSOR_FLAG_ON_CHANGE_MODE:
+                       return MIN_ON_CHANGE_SAMPLING_PERIOD_US;
+
+               case SENSOR_FLAG_SPECIAL_REPORTING_MODE:
+                       return 0;
+
+               case SENSOR_FLAG_ONE_SHOT_MODE:
+                       return -1;
+
+               default:
+                       break;
+       }
+
+       if (sensor[s].is_virtual) {
+               switch (sensor[s].type) {
+                       case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
+                       case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
+                               return sensor_desc[sensor[s].base[0]].minDelay;
+                       default:
+                               return 0;
+               }
+       }
+
+       if (hrtimer_quirk_enabled || !sensor[s].avail_freqs_count) {
+               if (hrtimer_quirk_enabled || (sensor[s].mode == MODE_POLL)) {
+                       /* If we have max specified via a property use it */
+                       if (max_from_prop != ANDROID_MAX_FREQ)
+                               max_supported_rate = max_from_prop;
+                       else
+                               /* The should rate */
+                               max_supported_rate = get_cdd_freq(s, 0);
+               }
+       } else {
+               for (i = 0; i < sensor[s].avail_freqs_count; i++) {
+                       if (sensor[s].avail_freqs[i] > max_supported_rate &&
+                               sensor[s].avail_freqs[i] <= max_from_prop) {
+                               max_supported_rate = sensor[s].avail_freqs[i];
+                       }
+               }
+       }
+
+       /* return 0 for wrong values */
+       if (max_supported_rate < 0.1)
+               return 0;
+
+       /* Return microseconds */
+       return (int32_t) (1000000.0 / max_supported_rate);
+}