OSDN Git Service

Enable Gauss-2-uT conversion for interrupt mode magneto
[android-x86/hardware-intel-libsensors.git] / transform.c
index c79ba1b..7aee50d 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (C) 2014 Intel Corporation.
+ * Copyright (C) 2014-2015 Intel Corporation.
  */
 
 #include <stdlib.h>
 #include <utils/Log.h>
 #include <cutils/properties.h>
 #include <hardware/sensors.h>
+#include "calibration.h"
 #include "common.h"
+#include "description.h"
 #include "transform.h"
 #include "utils.h"
-#include "calibration.h"
+#include "filtering.h"
+#include "enumeration.h"
+
+#define        GYRO_MIN_SAMPLES 5 /* Drop first few gyro samples after enable */
+
 
 /*----------------------------------------------------------------------------*/
 
+
 /* Macros related to Intel Sensor Hub */
 
-#define GRAVITY 9.80665f
+#define GRAVITY        9.80665
 
 /* 720 LSG = 1G */
-#define LSG                         (1024.0f)
-#define NUMOFACCDATA                (8.0f)
-
-/* conversion of acceleration data to SI units (m/s^2) */
-#define CONVERT_A                   (GRAVITY_EARTH / LSG / NUMOFACCDATA)
-#define CONVERT_A_X(x)              ((float(x)/1000) * (GRAVITY * -1.0))
-#define CONVERT_A_Y(x)              ((float(x)/1000) * (GRAVITY * 1.0))
-#define CONVERT_A_Z(x)              ((float(x)/1000) * (GRAVITY * 1.0))
-
-/* conversion of magnetic data to uT units */
-#define CONVERT_M                   (1.0f/6.6f)
-#define CONVERT_M_X                 (-CONVERT_M)
-#define CONVERT_M_Y                 (-CONVERT_M)
-#define CONVERT_M_Z                 (CONVERT_M)
-
-#define CONVERT_GAUSS_TO_MICROTESLA(x)        ( (x) * 100 )
-
-/* conversion of orientation data to degree units */
-#define CONVERT_O                   (1.0f/64.0f)
-#define CONVERT_O_A                 (CONVERT_O)
-#define CONVERT_O_P                 (CONVERT_O)
-#define CONVERT_O_R                 (-CONVERT_O)
-
-/*conversion of gyro data to SI units (radian/sec) */
-#define CONVERT_GYRO                ((2000.0f/32767.0f)*((float)M_PI / 180.0f))
-#define CONVERT_GYRO_X              (-CONVERT_GYRO)
-#define CONVERT_GYRO_Y              (-CONVERT_GYRO)
-#define CONVERT_GYRO_Z              (CONVERT_GYRO)
+#define LSG            1024.0
+#define NUMOFACCDATA   8.0
+
+/* Conversion of acceleration data to SI units (m/s^2) */
+#define CONVERT_A      (GRAVITY_EARTH / LSG / NUMOFACCDATA)
+#define CONVERT_A_X(x) ((float(x) / 1000) * (GRAVITY * -1.0))
+#define CONVERT_A_Y(x) ((float(x) / 1000) * (GRAVITY * 1.0))
+#define CONVERT_A_Z(x) ((float(x) / 1000) * (GRAVITY * 1.0))
+
+/* Conversion of magnetic data to uT units */
+#define CONVERT_M      (1.0 / 6.6)
+#define CONVERT_M_X    (-CONVERT_M)
+#define CONVERT_M_Y    (-CONVERT_M)
+#define CONVERT_M_Z    (CONVERT_M)
+
+#define CONVERT_GAUSS_TO_MICROTESLA(x) ((x) * 100)
+
+/* Conversion of orientation data to degree units */
+#define CONVERT_O      (1.0 / 64)
+#define CONVERT_O_A    (CONVERT_O)
+#define CONVERT_O_P    (CONVERT_O)
+#define CONVERT_O_R    (-CONVERT_O)
+
+/* Conversion of gyro data to SI units (radian/sec) */
+#define CONVERT_GYRO   (2000.0 / 32767 * M_PI / 180)
+#define CONVERT_GYRO_X (-CONVERT_GYRO)
+#define CONVERT_GYRO_Y (-CONVERT_GYRO)
+#define CONVERT_GYRO_Z (CONVERT_GYRO)
 
 #define BIT(x) (1 << (x))
 
-inline unsigned int set_bit_range(int start, int end)
+#define PROXIMITY_THRESHOLD 1
+
+inline unsigned int set_bit_range (int start, int end)
 {
-    int i;
-    unsigned int value = 0;
+       int i;
+       unsigned int value = 0;
+
+       for (i = start; i < end; ++i)
+               value |= BIT(i);
 
-    for (i = start; i < end; ++i)
-        value |= BIT(i);
-    return value;
+       return value;
 }
 
-inline float convert_from_vtf_format(int size, int exponent, unsigned int value)
+inline float convert_from_vtf_format (int size, int exponent, unsigned int value)
 {
-    int divider=1;
-    int i;
-    float sample;
-    int mul = 1.0;
-
-    value = value & set_bit_range(0, size*8);
-    if (value & BIT(size*8-1)) {
-        value =  ((1LL << (size*8)) - value);
-        mul = -1.0;
-    }
-    sample = value * 1.0;
-    if (exponent < 0) {
-        exponent = abs(exponent);
-        for (i = 0; i < exponent; ++i) {
-            divider = divider*10;
-        }
-        return mul * sample/divider;
-    } else {
-        return mul * sample * pow(10.0, exponent);
-    }
+       int divider = 1;
+       int i;
+       float sample;
+       float mul = 1.0;
+
+       value = value & set_bit_range(0, size * 8);
+
+       if (value & BIT(size*8-1)) {
+               value =  ((1LL << (size * 8)) - value);
+               mul = -1.0;
+       }
+
+       sample = value * 1.0;
+
+       if (exponent < 0) {
+               exponent = abs(exponent);
+               for (i = 0; i < exponent; ++i)
+                       divider = divider * 10;
+
+               return mul * sample/divider;
+       }
+
+       return mul * sample * pow(10.0, exponent);
 }
 
-// Platform sensor orientation
-#define DEF_ORIENT_ACCEL_X                   -1
-#define DEF_ORIENT_ACCEL_Y                   -1
-#define DEF_ORIENT_ACCEL_Z                   -1
-
-#define DEF_ORIENT_GYRO_X                   1
-#define DEF_ORIENT_GYRO_Y                   1
-#define DEF_ORIENT_GYRO_Z                   1
-
-// G to m/s2
-#define CONVERT_FROM_VTF16(s,d,x)      (convert_from_vtf_format(s,d,x))
-#define CONVERT_A_G_VTF16E14_X(s,d,x)  (DEF_ORIENT_ACCEL_X *\
-                                        convert_from_vtf_format(s,d,x)*GRAVITY)
-#define CONVERT_A_G_VTF16E14_Y(s,d,x)  (DEF_ORIENT_ACCEL_Y *\
-                                        convert_from_vtf_format(s,d,x)*GRAVITY)
-#define CONVERT_A_G_VTF16E14_Z(s,d,x)  (DEF_ORIENT_ACCEL_Z *\
-                                        convert_from_vtf_format(s,d,x)*GRAVITY)
-
-// Degree/sec to radian/sec
-#define CONVERT_G_D_VTF16E14_X(s,d,x)  (DEF_ORIENT_GYRO_X *\
-                                        convert_from_vtf_format(s,d,x) * \
-                                        ((float)M_PI/180.0f))
-#define CONVERT_G_D_VTF16E14_Y(s,d,x)  (DEF_ORIENT_GYRO_Y *\
-                                        convert_from_vtf_format(s,d,x) * \
-                                        ((float)M_PI/180.0f))
-#define CONVERT_G_D_VTF16E14_Z(s,d,x)  (DEF_ORIENT_GYRO_Z *\
-                                        convert_from_vtf_format(s,d,x) * \
-                                        ((float)M_PI/180.0f))
-
-// Milli gauss to micro tesla
-#define CONVERT_M_MG_VTF16E14_X(s,d,x) (convert_from_vtf_format(s,d,x)/10)
-#define CONVERT_M_MG_VTF16E14_Y(s,d,x) (convert_from_vtf_format(s,d,x)/10)
-#define CONVERT_M_MG_VTF16E14_Z(s,d,x) (convert_from_vtf_format(s,d,x)/10)
+/* Platform sensor orientation */
+#define DEF_ORIENT_ACCEL_X     -1
+#define DEF_ORIENT_ACCEL_Y     -1
+#define DEF_ORIENT_ACCEL_Z     -1
 
+#define DEF_ORIENT_GYRO_X      1
+#define DEF_ORIENT_GYRO_Y      1
+#define DEF_ORIENT_GYRO_Z      1
 
-/*----------------------------------------------------------------------------*/
+/* G to m/s^2 */
+#define CONVERT_FROM_VTF16(s,d,x)      convert_from_vtf_format(s,d,x)
+#define CONVERT_A_G_VTF16E14_X(s,d,x)  (DEF_ORIENT_ACCEL_X * convert_from_vtf_format(s,d,x) * GRAVITY)
+#define CONVERT_A_G_VTF16E14_Y(s,d,x)  (DEF_ORIENT_ACCEL_Y * convert_from_vtf_format(s,d,x) * GRAVITY)
+#define CONVERT_A_G_VTF16E14_Z(s,d,x)  (DEF_ORIENT_ACCEL_Z * convert_from_vtf_format(s,d,x) * GRAVITY)
+
+/* Degree/sec to radian/sec */
+#define CONVERT_G_D_VTF16E14_X(s,d,x)  (DEF_ORIENT_GYRO_X * convert_from_vtf_format(s,d,x) * M_PI / 180)
+#define CONVERT_G_D_VTF16E14_Y(s,d,x)  (DEF_ORIENT_GYRO_Y * convert_from_vtf_format(s,d,x) * M_PI / 180)
+#define CONVERT_G_D_VTF16E14_Z(s,d,x)  (DEF_ORIENT_GYRO_Z * convert_from_vtf_format(s,d,x) * M_PI / 180)
+
+/* Milli gauss to micro tesla */
+#define CONVERT_M_MG_VTF16E14_X(s,d,x) (convert_from_vtf_format(s,d,x) / 10)
+#define CONVERT_M_MG_VTF16E14_Y(s,d,x) (convert_from_vtf_format(s,d,x) / 10)
+#define CONVERT_M_MG_VTF16E14_Z(s,d,x) (convert_from_vtf_format(s,d,x) / 10)
 
-static int64_t sample_as_int64(unsigned char* sample, struct datum_info_t* type)
+
+static int64_t sample_as_int64 (unsigned char* sample, datum_info_t* type)
 {
-       uint16_t u16;
-       uint32_t u32;
        uint64_t u64;
        int i;
        int zeroed_bits = type->storagebits - type->realbits;
+       uint64_t sign_mask;
+       uint64_t value_mask;
 
        u64 = 0;
 
@@ -143,14 +145,15 @@ static int64_t sample_as_int64(unsigned char* sample, struct datum_info_t* type)
        if (type->sign == 'u')
                return (int64_t) u64; /* We don't handle unsigned 64 bits int */
 
+       /* Signed integer */
+
        switch (type->realbits) {
+               case 0 ... 1:
+                       return 0;
+
                case 8:
                        return (int64_t) (int8_t) u64;
 
-               case 12:
-                       return (int64_t)  (u64 >>  11) ?
-                                       (((int64_t)-1) ^ 0xfff) | u64 : u64;
-
                case 16:
                        return (int64_t) (int16_t) u64;
 
@@ -159,14 +162,20 @@ static int64_t sample_as_int64(unsigned char* sample, struct datum_info_t* type)
 
                case 64:
                        return (int64_t) u64;
-       }
 
-       ALOGE("Unhandled sample storage size\n");
-       return 0;
+               default:
+                       sign_mask = 1 << (type->realbits-1);
+                       value_mask = sign_mask - 1;
+
+                       if (u64 & sign_mask)
+                               return - ((~u64 & value_mask) + 1);     /* Negative value: return 2-complement */
+                       else
+                               return (int64_t) u64;                   /* Positive value */
+       }
 }
 
 
-static void reorder_fields(float* data,        unsigned char map[MAX_CHANNELS])
+static void reorder_fields (float* data, unsigned char map[MAX_CHANNELS])
 {
        int i;
        float temp[MAX_CHANNELS];
@@ -178,76 +187,243 @@ static void reorder_fields(float* data,  unsigned char map[MAX_CHANNELS])
                data[i] = temp[i];
 }
 
+static void mount_correction (float* data, float mm[9])
+{
+       int i;
+       float temp[3];
+
+       for (i=0; i<3; i++)
+               temp[i] = data[0] * mm[i * 3] + data[1] * mm[i * 3 + 1] + data[2] * mm[i * 3 + 2];
+
+       for (i=0; i<3; i++)
+               data[i] = temp[i];
+}
+
+static void clamp_gyro_readings_to_zero (int s, sensors_event_t* data)
+{
+       float x, y, z;
+       float near_zero;
+
+       x = data->data[0];
+       y = data->data[1];
+       z = data->data[2];
+
+       /* If we're calibrated, don't filter out as much */
+       if (sensor[s].cal_level > 0)
+               near_zero = 0.02; /* rad/s */
+       else
+               near_zero = 0.1;
+
+       /* If motion on all axes is small enough */
+       if (fabs(x) < near_zero && fabs(y) < near_zero && fabs(z) < near_zero) {
+
+               /*
+                * Report that we're not moving at all... but not exactly zero as composite sensors (orientation, rotation vector) don't
+                * seem to react very well to it.
+                */
+
+               data->data[0] *= 0.000001;
+               data->data[1] *= 0.000001;
+               data->data[2] *= 0.000001;
+       }
+}
+
+
+static void process_event_gyro_uncal (int s, int i, sensors_event_t* data)
+{
+       gyro_cal_t* gyro_data;
+
+       if (sensor[s].type == SENSOR_TYPE_GYROSCOPE) {
+               gyro_data = (gyro_cal_t*) sensor[s].cal_data;
+
+               memcpy(&sensor[i].sample, data, sizeof(sensors_event_t));
+
+               sensor[i].sample.type = SENSOR_TYPE_GYROSCOPE_UNCALIBRATED;
+               sensor[i].sample.sensor = s;
+
+               sensor[i].sample.data[0] = data->data[0] + gyro_data->bias_x;
+               sensor[i].sample.data[1] = data->data[1] + gyro_data->bias_y;
+               sensor[i].sample.data[2] = data->data[2] + gyro_data->bias_z;
+
+               sensor[i].sample.uncalibrated_gyro.bias[0] = gyro_data->bias_x;
+               sensor[i].sample.uncalibrated_gyro.bias[1] = gyro_data->bias_y;
+               sensor[i].sample.uncalibrated_gyro.bias[2] = gyro_data->bias_z;
+
+               sensor[i].report_pending = 1;
+       }
+}
+
+static void process_event_magn_uncal (int s, int i, sensors_event_t* data)
+{
+       compass_cal_t* magn_data;
+
+       if (sensor[s].type == SENSOR_TYPE_MAGNETIC_FIELD) {
+               magn_data = (compass_cal_t*) sensor[s].cal_data;
+
+               memcpy(&sensor[i].sample, data, sizeof(sensors_event_t));
+
+               sensor[i].sample.type = SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED;
+               sensor[i].sample.sensor = s;
+
+               sensor[i].sample.data[0] = data->data[0] + magn_data->offset[0][0];
+               sensor[i].sample.data[1] = data->data[1] + magn_data->offset[1][0];
+               sensor[i].sample.data[2] = data->data[2] + magn_data->offset[2][0];
+
+               sensor[i].sample.uncalibrated_magnetic.bias[0] = magn_data->offset[0][0];
+               sensor[i].sample.uncalibrated_magnetic.bias[1] = magn_data->offset[1][0];
+               sensor[i].sample.uncalibrated_magnetic.bias[2] = magn_data->offset[2][0];
+
+               sensor[i].report_pending = 1;
+       }
+}
 
-static int finalize_sample_default(int s, struct sensors_event_t* data)
+static void process_event (int s, sensors_event_t* data)
 {
-       int i           = sensor_info[s].catalog_index;
-       int sensor_type = sensor_catalog[i].type;
+       /*
+        * This gets the real event (post process - calibration, filtering & co.) and makes it into a virtual one.
+        * The specific processing function for each sensor will populate the necessary fields and set up the report pending flag.
+        */
+
+        int i;
+
+        /* Go through out virtual sensors and check if we can use this event */
+        for (i = 0; i < sensor_count; i++)
+               switch (sensor[i].type) {
+                       case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
+                               process_event_gyro_uncal(s, i, data);
+                               break;
+                       case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
+                               process_event_magn_uncal(s, i, data);
+                               break;
+                       default:
+                               break;
+               }
+}
+
 
+static int finalize_sample_default (int s, sensors_event_t* data)
+{
        /* Swap fields if we have a custom channel ordering on this sensor */
-       if (sensor_info[s].flags & FLAG_FIELD_ORDERING)
-               reorder_fields(data->data, sensor_info[s].order);
+       if (sensor[s].quirks & QUIRK_FIELD_ORDERING)
+               reorder_fields(data->data, sensor[s].order);
+       if (sensor[s].quirks & QUIRK_MOUNTING_MATRIX)
+               mount_correction(data->data, sensor[s].mounting_matrix);
+
+       sensor[s].event_count++;
 
-       switch (sensor_type) {
+       switch (sensor[s].type) {
                case SENSOR_TYPE_ACCELEROMETER:
+                       /* Always consider the accelerometer accurate */
+                       data->acceleration.status = SENSOR_STATUS_ACCURACY_HIGH;
+                       if (sensor[s].quirks & QUIRK_BIASED)
+                               calibrate_accel(s, data);
+                       denoise(s, data);
                        break;
 
                case SENSOR_TYPE_MAGNETIC_FIELD:
-                       calibrate_compass (data, &sensor_info[s], get_timestamp());
+                       calibrate_compass (s, data);
+                       denoise(s, data);
                        break;
 
                case SENSOR_TYPE_GYROSCOPE:
-               case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
-                       calibrate_gyro(data, &sensor_info[s]);
+
+                       /* Report medium accuracy by default ; higher accuracy levels will be reported once, and if, we achieve  calibration. */
+                       data->gyro.status = SENSOR_STATUS_ACCURACY_MEDIUM;
+
+                       /*
+                        * We're only trying to calibrate data from continuously firing gyroscope drivers, as motion based ones use
+                        * movement thresholds that may lead us to incorrectly estimate bias.
+                        */
+                       if (sensor[s].selected_trigger !=
+                               sensor[s].motion_trigger_name)
+                                       calibrate_gyro(s, data);
+
+                       /*
+                        * For noisy sensors drop a few samples to make sure we have at least GYRO_MIN_SAMPLES events in the
+                        * filtering queue. This improves mean and std dev.
+                        */
+                       if (sensor[s].filter_type) {
+                               if (sensor[s].selected_trigger !=
+                                   sensor[s].motion_trigger_name &&
+                                   sensor[s].event_count < GYRO_MIN_SAMPLES)
+                                               return 0;
+
+                               denoise(s, data);
+                       }
+
+                       /* Clamp near zero moves to (0,0,0) if appropriate */
+                       clamp_gyro_readings_to_zero(s, data);
                        break;
 
+               case SENSOR_TYPE_PROXIMITY:
+                       /*
+                        * See iio spec for in_proximity* - depending on the device
+                        * this value is either in meters either unit-less and cannot
+                        * be translated to SI units. Where the translation is not possible
+                        * lower values indicate something is close and higher ones indicate distance.
+                        */
+                       if (data->data[0] > PROXIMITY_THRESHOLD)
+                               data->data[0] = PROXIMITY_THRESHOLD;
+
+                       /* ... fall through ... */
                case SENSOR_TYPE_LIGHT:
                case SENSOR_TYPE_AMBIENT_TEMPERATURE:
                case SENSOR_TYPE_TEMPERATURE:
+               case SENSOR_TYPE_INTERNAL_ILLUMINANCE:
+               case SENSOR_TYPE_INTERNAL_INTENSITY:
                        /* Only keep two decimals for these readings */
                        data->data[0] = 0.01 * ((int) (data->data[0] * 100));
 
-                       /*
-                        * These are on change sensors ; drop the sample if it
-                        * has the same value as the previously reported one.
-                        */
-                       if (data->data[0] == sensor_info[s].prev_val)
+                       /* These are on change sensors ; drop the sample if it has the same value as the previously reported one. */
+                       if (data->data[0] == sensor[s].prev_val.data)
                                return 0;
 
-                       sensor_info[s].prev_val = data->data[0];
+                       sensor[s].prev_val.data = data->data[0];
+                       break;
+               case SENSOR_TYPE_STEP_COUNTER:
+                       if (data->u64.step_counter == sensor[s].prev_val.data64)
+                               return 0;
+                       sensor[s].prev_val.data64 = data->u64.data[0];
                        break;
+
        }
 
+       /* If there are active virtual sensors depending on this one - process the event */
+       if (sensor[s].ref_count)
+               process_event(s, data);
+
+
        return 1; /* Return sample to Android */
 }
 
 
-static float transform_sample_default(int s, int c, unsigned char* sample_data)
+static float transform_sample_default (int s, int c, unsigned char* sample_data)
 {
-       struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
-       int64_t              s64 = sample_as_int64(sample_data, sample_type);
-       float scale = sensor_info[s].scale ?
-                       sensor_info[s].scale : sensor_info[s].channel[c].scale;
+       datum_info_t* sample_type = &sensor[s].channel[c].type_info;
+       int64_t s64 = sample_as_int64(sample_data, sample_type);
+       float scale = sensor[s].scale ? sensor[s].scale : sensor[s].channel[c].scale;
 
        /* In case correction has been requested using properties, apply it */
-       scale *= sensor_info[s].channel[c].opt_scale;
+       float correction = sensor[s].channel[c].opt_scale;
+
+       /* Correlated with "acquire_immediate_value" method */
+       if (sensor[s].type == SENSOR_TYPE_MAGNETIC_FIELD)
+                return CONVERT_GAUSS_TO_MICROTESLA((sensor[s].offset + s64) * scale) * correction;
 
        /* Apply default scaling rules */
-       return (sensor_info[s].offset + s64) * scale;
+       return (sensor[s].offset + s64) * scale * correction;
 }
 
 
-static int finalize_sample_ISH(int s, struct sensors_event_t* data)
+static int finalize_sample_ISH (int s, sensors_event_t* data)
 {
-       int i           = sensor_info[s].catalog_index;
-       int sensor_type = sensor_catalog[i].type;
        float pitch, roll, yaw;
 
        /* Swap fields if we have a custom channel ordering on this sensor */
-       if (sensor_info[s].flags & FLAG_FIELD_ORDERING)
-               reorder_fields(data->data, sensor_info[s].order);
+       if (sensor[s].quirks & QUIRK_FIELD_ORDERING)
+               reorder_fields(data->data, sensor[s].order);
 
-       if (sensor_type == SENSOR_TYPE_ORIENTATION) {
+       if (sensor[s].type == SENSOR_TYPE_ORIENTATION) {
 
                pitch = data->data[0];
                roll = data->data[1];
@@ -258,92 +434,72 @@ static int finalize_sample_ISH(int s, struct sensors_event_t* data)
                data->data[2] = -roll;
        }
 
+       /* Add this event to our global records, for filtering purposes */
+       record_sample(s, data);
+
        return 1; /* Return sample to Android */
 }
 
 
-static float transform_sample_ISH(int s, int c, unsigned char* sample_data)
+static float transform_sample_ISH (int s, int c, unsigned char* sample_data)
 {
-       struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
+       datum_info_t* sample_type = &sensor[s].channel[c].type_info;
        int val         = (int) sample_as_int64(sample_data, sample_type);
-       int i           = sensor_info[s].catalog_index;
-       int sensor_type = sensor_catalog[i].type;
        float correction;
        int data_bytes  = (sample_type->realbits)/8;
-       int exponent    = sensor_info[s].offset;
+       int exponent    = sensor[s].offset;
 
        /* In case correction has been requested using properties, apply it */
-       correction = sensor_info[s].channel[c].opt_scale;
+       correction = sensor[s].channel[c].opt_scale;
 
-       switch (sensor_type) {
+       switch (sensor_desc[s].type) {
                case SENSOR_TYPE_ACCELEROMETER:
                        switch (c) {
                                case 0:
-                                       return  correction *
-                                               CONVERT_A_G_VTF16E14_X(
-                                               data_bytes, exponent, val);
+                                       return correction * CONVERT_A_G_VTF16E14_X(data_bytes, exponent, val);
 
                                case 1:
-                                       return  correction *
-                                               CONVERT_A_G_VTF16E14_Y(
-                                               data_bytes, exponent, val);
+                                       return correction * CONVERT_A_G_VTF16E14_Y(data_bytes, exponent, val);
 
                                case 2:
-                                       return  correction *
-                                               CONVERT_A_G_VTF16E14_Z(
-                                               data_bytes, exponent, val);
+                                       return  correction * CONVERT_A_G_VTF16E14_Z(data_bytes, exponent, val);
                        }
                        break;
 
-
                case SENSOR_TYPE_GYROSCOPE:
                        switch (c) {
                                case 0:
-                                       return  correction *
-                                               CONVERT_G_D_VTF16E14_X(
-                                               data_bytes, exponent, val);
+                                       return correction * CONVERT_G_D_VTF16E14_X(data_bytes, exponent, val);
 
                                case 1:
-                                       return  correction *
-                                               CONVERT_G_D_VTF16E14_Y(
-                                               data_bytes, exponent, val);
+                                       return correction * CONVERT_G_D_VTF16E14_Y(data_bytes, exponent, val);
 
                                case 2:
-                                       return  correction *
-                                               CONVERT_G_D_VTF16E14_Z(
-                                               data_bytes, exponent, val);
+                                       return  correction * CONVERT_G_D_VTF16E14_Z(data_bytes, exponent, val);
                        }
                        break;
 
                case SENSOR_TYPE_MAGNETIC_FIELD:
                        switch (c) {
                                case 0:
-                                       return  correction *
-                                               CONVERT_M_MG_VTF16E14_X(
-                                               data_bytes, exponent, val);
+                                       return correction * CONVERT_M_MG_VTF16E14_X(data_bytes, exponent, val);
 
                                case 1:
-                                       return  correction *
-                                               CONVERT_M_MG_VTF16E14_Y(
-                                               data_bytes, exponent, val);
+                                       return correction * CONVERT_M_MG_VTF16E14_Y(data_bytes, exponent, val);
 
                                case 2:
-                                       return  correction *
-                                               CONVERT_M_MG_VTF16E14_Z(
-                                               data_bytes, exponent, val);
+                                       return correction * CONVERT_M_MG_VTF16E14_Z(data_bytes, exponent, val);
                        }
                        break;
 
                case SENSOR_TYPE_LIGHT:
-                               return (float) val;
+                       return (float) val;
 
                case SENSOR_TYPE_ORIENTATION:
-                       return  correction * convert_from_vtf_format(
-                                               data_bytes, exponent, val);
+                       return correction * convert_from_vtf_format(data_bytes, exponent, val);
 
                case SENSOR_TYPE_ROTATION_VECTOR:
-                       return  correction * convert_from_vtf_format(
-                                               data_bytes, exponent, val);
+                       return correction * convert_from_vtf_format(data_bytes, exponent, val);
        }
 
        return 0;
@@ -354,57 +510,52 @@ void select_transform (int s)
 {
        char prop_name[PROP_NAME_MAX];
        char prop_val[PROP_VALUE_MAX];
-       int i                   = sensor_info[s].catalog_index;
+       int i                   = sensor[s].catalog_index;
        const char *prefix      = sensor_catalog[i].tag;
 
        sprintf(prop_name, PROP_BASE, prefix, "transform");
 
-       if (property_get(prop_name, prop_val, "")) {
+       if (property_get(prop_name, prop_val, ""))
                if (!strcmp(prop_val, "ISH")) {
-                       ALOGI(  "Using Intel Sensor Hub semantics on %s\n",
-                               sensor_info[s].friendly_name);
+                       ALOGI(  "Using Intel Sensor Hub semantics on %s\n", sensor[s].friendly_name);
 
-                       sensor_info[s].ops.transform = transform_sample_ISH;
-                       sensor_info[s].ops.finalize = finalize_sample_ISH;
+                       sensor[s].ops.transform = transform_sample_ISH;
+                       sensor[s].ops.finalize = finalize_sample_ISH;
                        return;
                }
-       }
 
-       sensor_info[s].ops.transform = transform_sample_default;
-       sensor_info[s].ops.finalize = finalize_sample_default;
+       sensor[s].ops.transform = transform_sample_default;
+       sensor[s].ops.finalize = finalize_sample_default;
 }
 
 
-float acquire_immediate_value(int s, int c)
+float acquire_immediate_float_value (int s, int c)
 {
        char sysfs_path[PATH_MAX];
        float val;
        int ret;
-       int dev_num = sensor_info[s].dev_num;
-       int i = sensor_info[s].catalog_index;
+       int dev_num = sensor[s].dev_num;
+       int i = sensor[s].catalog_index;
        const char* raw_path = sensor_catalog[i].channel[c].raw_path;
        const char* input_path = sensor_catalog[i].channel[c].input_path;
-       float scale = sensor_info[s].scale ?
-                       sensor_info[s].scale : sensor_info[s].channel[c].scale;
-       float offset = sensor_info[s].offset;
-       int sensor_type = sensor_catalog[i].type;
+       float scale = sensor[s].scale ? sensor[s].scale : sensor[s].channel[c].scale;
+       float offset = sensor[s].offset;
        float correction;
 
        /* In case correction has been requested using properties, apply it */
-       correction = sensor_info[s].channel[c].opt_scale;
+       correction = sensor[s].channel[c].opt_scale;
 
        /* Acquire a sample value for sensor s / channel c through sysfs */
 
-       if (input_path[0]) {
+       if (sensor[s].channel[c].input_path_present) {
                sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
                ret = sysfs_read_float(sysfs_path, &val);
 
-               if (!ret) {
+               if (!ret)
                        return val * correction;
-               }
-       };
+       }
 
-       if (!raw_path[0])
+       if (!sensor[s].channel[c].raw_path_present)
                return 0;
 
        sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
@@ -414,12 +565,50 @@ float acquire_immediate_value(int s, int c)
                return 0;
 
        /*
-       There is no transform ops defined yet for Raw sysfs values
-        Use this function to perform transformation as well.
-       */
-       if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
-                return  CONVERT_GAUSS_TO_MICROTESLA ((val + offset) * scale) *
-                       correction;
+        * There is no transform ops defined yet for raw sysfs values.
+         * Use this function to perform transformation as well.
+        */
+       if (sensor[s].type == SENSOR_TYPE_MAGNETIC_FIELD)
+                return CONVERT_GAUSS_TO_MICROTESLA ((val + offset) * scale) * correction;
+
+       return (val + offset) * scale * correction;
+}
+
+uint64_t acquire_immediate_uint64_value (int s, int c)
+{
+       char sysfs_path[PATH_MAX];
+       uint64_t val;
+       int ret;
+       int dev_num = sensor[s].dev_num;
+       int i = sensor[s].catalog_index;
+       const char* raw_path = sensor_catalog[i].channel[c].raw_path;
+       const char* input_path = sensor_catalog[i].channel[c].input_path;
+       float scale = sensor[s].scale ? sensor[s].scale : sensor[s].channel[c].scale;
+       float offset = sensor[s].offset;
+       int sensor_type = sensor_catalog[i].type;
+       float correction;
+
+       /* In case correction has been requested using properties, apply it */
+       correction = sensor[s].channel[c].opt_scale;
+
+       /* Acquire a sample value for sensor s / channel c through sysfs */
+
+       if (sensor[s].channel[c].input_path_present) {
+               sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
+               ret = sysfs_read_uint64(sysfs_path, &val);
+
+               if (!ret)
+                       return val * correction;
+       };
+
+       if (!sensor[s].channel[c].raw_path_present)
+               return 0;
+
+       sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
+       ret = sysfs_read_uint64(sysfs_path, &val);
+
+       if (ret == -1)
+               return 0;
 
        return (val + offset) * scale * correction;
 }