OSDN Git Service

Min/Max delay for Light and Temperature
[android-x86/hardware-intel-libsensors.git] / transform.c
index b390635..8b525d1 100644 (file)
 #include <utils/Log.h>
 #include <cutils/properties.h>
 #include <hardware/sensors.h>
+#include "calibration.h"
 #include "common.h"
+#include "description.h"
 #include "transform.h"
+#include "utils.h"
+#include "filtering.h"
 
+/*----------------------------------------------------------------------------*/
+
+/* Macros related to Intel Sensor Hub */
+
+#define GRAVITY 9.80665f
+
+/* 720 LSG = 1G */
+#define LSG                         (1024.0f)
+#define NUMOFACCDATA                (8.0f)
+
+/* conversion of acceleration data to SI units (m/s^2) */
+#define CONVERT_A                   (GRAVITY_EARTH / LSG / NUMOFACCDATA)
+#define CONVERT_A_X(x)              ((float(x)/1000) * (GRAVITY * -1.0))
+#define CONVERT_A_Y(x)              ((float(x)/1000) * (GRAVITY * 1.0))
+#define CONVERT_A_Z(x)              ((float(x)/1000) * (GRAVITY * 1.0))
+
+/* conversion of magnetic data to uT units */
+#define CONVERT_M                   (1.0f/6.6f)
+#define CONVERT_M_X                 (-CONVERT_M)
+#define CONVERT_M_Y                 (-CONVERT_M)
+#define CONVERT_M_Z                 (CONVERT_M)
+
+#define CONVERT_GAUSS_TO_MICROTESLA(x)        ( (x) * 100 )
+
+/* conversion of orientation data to degree units */
+#define CONVERT_O                   (1.0f/64.0f)
+#define CONVERT_O_A                 (CONVERT_O)
+#define CONVERT_O_P                 (CONVERT_O)
+#define CONVERT_O_R                 (-CONVERT_O)
+
+/*conversion of gyro data to SI units (radian/sec) */
+#define CONVERT_GYRO                ((2000.0f/32767.0f)*((float)M_PI / 180.0f))
+#define CONVERT_GYRO_X              (-CONVERT_GYRO)
+#define CONVERT_GYRO_Y              (-CONVERT_GYRO)
+#define CONVERT_GYRO_Z              (CONVERT_GYRO)
+
+#define BIT(x) (1 << (x))
+
+inline unsigned int set_bit_range(int start, int end)
+{
+    int i;
+    unsigned int value = 0;
+
+    for (i = start; i < end; ++i)
+        value |= BIT(i);
+    return value;
+}
+
+inline float convert_from_vtf_format(int size, int exponent, unsigned int value)
+{
+    int divider=1;
+    int i;
+    float sample;
+    int mul = 1.0;
+
+    value = value & set_bit_range(0, size*8);
+    if (value & BIT(size*8-1)) {
+        value =  ((1LL << (size*8)) - value);
+        mul = -1.0;
+    }
+    sample = value * 1.0;
+    if (exponent < 0) {
+        exponent = abs(exponent);
+        for (i = 0; i < exponent; ++i) {
+            divider = divider*10;
+        }
+        return mul * sample/divider;
+    } else {
+        return mul * sample * pow(10.0, exponent);
+    }
+}
+
+// Platform sensor orientation
+#define DEF_ORIENT_ACCEL_X                   -1
+#define DEF_ORIENT_ACCEL_Y                   -1
+#define DEF_ORIENT_ACCEL_Z                   -1
+
+#define DEF_ORIENT_GYRO_X                   1
+#define DEF_ORIENT_GYRO_Y                   1
+#define DEF_ORIENT_GYRO_Z                   1
+
+// G to m/s2
+#define CONVERT_FROM_VTF16(s,d,x)      (convert_from_vtf_format(s,d,x))
+#define CONVERT_A_G_VTF16E14_X(s,d,x)  (DEF_ORIENT_ACCEL_X *\
+                                        convert_from_vtf_format(s,d,x)*GRAVITY)
+#define CONVERT_A_G_VTF16E14_Y(s,d,x)  (DEF_ORIENT_ACCEL_Y *\
+                                        convert_from_vtf_format(s,d,x)*GRAVITY)
+#define CONVERT_A_G_VTF16E14_Z(s,d,x)  (DEF_ORIENT_ACCEL_Z *\
+                                        convert_from_vtf_format(s,d,x)*GRAVITY)
+
+// Degree/sec to radian/sec
+#define CONVERT_G_D_VTF16E14_X(s,d,x)  (DEF_ORIENT_GYRO_X *\
+                                        convert_from_vtf_format(s,d,x) * \
+                                        ((float)M_PI/180.0f))
+#define CONVERT_G_D_VTF16E14_Y(s,d,x)  (DEF_ORIENT_GYRO_Y *\
+                                        convert_from_vtf_format(s,d,x) * \
+                                        ((float)M_PI/180.0f))
+#define CONVERT_G_D_VTF16E14_Z(s,d,x)  (DEF_ORIENT_GYRO_Z *\
+                                        convert_from_vtf_format(s,d,x) * \
+                                        ((float)M_PI/180.0f))
+
+// Milli gauss to micro tesla
+#define CONVERT_M_MG_VTF16E14_X(s,d,x) (convert_from_vtf_format(s,d,x)/10)
+#define CONVERT_M_MG_VTF16E14_Y(s,d,x) (convert_from_vtf_format(s,d,x)/10)
+#define CONVERT_M_MG_VTF16E14_Z(s,d,x) (convert_from_vtf_format(s,d,x)/10)
+
+
+/*----------------------------------------------------------------------------*/
 
 static int64_t sample_as_int64(unsigned char* sample, struct datum_info_t* type)
 {
-       uint16_t u16;
-       uint32_t u32;
        uint64_t u64;
        int i;
+       int zeroed_bits = type->storagebits - type->realbits;
+       uint64_t sign_mask;
+       uint64_t value_mask;
 
-       switch (type->storagebits) {
-               case 64:
-                       u64 = 0;
+       u64 = 0;
 
-                       if (type->endianness == 'b')
-                               for (i=0; i<8; i++)
-                                       u64 = (u64 << 8) | sample[i];
-                       else
-                               for (i=7; i>=0; i--)
-                                       u64 = (u64 << 8) | sample[i];
+       if (type->endianness == 'b')
+               for (i=0; i<type->storagebits/8; i++)
+                       u64 = (u64 << 8) | sample[i];
+       else
+               for (i=type->storagebits/8 - 1; i>=0; i--)
+                       u64 = (u64 << 8) | sample[i];
 
-                       if (type->sign == 'u')
-                               return (int64_t) (u64 >> type->shift);
+       u64 = (u64 >> type->shift) & (~0ULL >> zeroed_bits);
 
-                       return ((int64_t) u64) >> type->shift;
+       if (type->sign == 'u')
+               return (int64_t) u64; /* We don't handle unsigned 64 bits int */
 
-               case 32:
-                       if (type->endianness == 'b')
-                               u32 = (sample[0] << 24) | (sample[1] << 16) |
-                                       (sample[2] << 8) | sample[3];
-                       else
-                               u32 = (sample[3] << 24) | (sample[2] << 16) |
-                                       (sample[1] << 8) | sample[0];
+       /* Signed integer */
 
-                       if (type->sign == 'u')
-                               return u32 >> type->shift;
+       switch (type->realbits) {
+               case 0 ... 1:
+                       return 0;
 
-                       return ((int32_t) u32) >> type->shift;
+               case 8:
+                       return (int64_t) (int8_t) u64;
 
                case 16:
-                       if (type->endianness == 'b')
-                               u16 = (sample[0] << 8) | sample[1];
+                       return (int64_t) (int16_t) u64;
+
+               case 32:
+                       return (int64_t) (int32_t) u64;
+
+               case 64:
+                       return (int64_t) u64;
+
+               default:
+                       sign_mask = 1 << (type->realbits-1);
+                       value_mask = sign_mask - 1;
+
+                       if (u64 & sign_mask)
+                               /* Negative value: return 2-complement */
+                               return - ((~u64 & value_mask) + 1);
                        else
-                               u16 = (sample[1] << 8) | sample[0];
+                               return (int64_t) u64; /* Positive value */
+       }
+}
 
-                       if (type->sign == 'u')
-                               return u16 >> type->shift;
 
-                       return  ((int16_t) u16) >> type->shift;
+static void reorder_fields(float* data,        unsigned char map[MAX_CHANNELS])
+{
+       int i;
+       float temp[MAX_CHANNELS];
+
+       for (i=0; i<MAX_CHANNELS; i++)
+               temp[i] = data[map[i]];
+
+       for (i=0; i<MAX_CHANNELS; i++)
+               data[i] = temp[i];
+}
+
+
+static void denoise (struct sensor_info_t* si, struct sensors_event_t* data,
+                    int num_fields, int max_samples)
+{
+       /*
+        * Smooth out incoming data using a moving average over a number of
+        * samples. We accumulate one second worth of samples, or max_samples,
+        * depending on which is lower.
+        */
+
+       int i;
+       int f;
+       int sampling_rate = (int) si->sampling_rate;
+       int history_size;
+       int history_full = 0;
+
+       /* Don't denoise anything if we have less than two samples per second */
+       if (sampling_rate < 2)
+               return;
+
+       /* Restrict window size to the min of sampling_rate and max_samples */
+       if (sampling_rate > max_samples)
+               history_size = max_samples;
+       else
+               history_size = sampling_rate;
+
+       /* Reset history if we're operating on an incorrect window size */
+       if (si->history_size != history_size) {
+               si->history_size = history_size;
+               si->history_entries = 0;
+               si->history_index = 0;
+               si->history = (float*) realloc(si->history,
+                               si->history_size * num_fields * sizeof(float));
+               if (si->history) {
+                       si->history_sum = (float*) realloc(si->history_sum,
+                               num_fields * sizeof(float));
+                       if (si->history_sum)
+                               memset(si->history_sum, 0, num_fields * sizeof(float));
+               }
        }
 
-       ALOGE("Unhandled sample storage size\n");
-       return 0;
+       if (!si->history || !si->history_sum)
+               return; /* Unlikely, but still... */
+
+       /* Update initialized samples count */
+       if (si->history_entries < si->history_size)
+               si->history_entries++;
+       else
+               history_full = 1;
+
+       /* Record new sample and calculate the moving sum */
+       for (f=0; f < num_fields; f++) {
+               /**
+                * A field is going to be overwritten if
+                * history is full, so decrease the history sum
+                */
+               if (history_full)
+                       si->history_sum[f] -=
+                               si->history[si->history_index * num_fields + f];
+
+               si->history[si->history_index * num_fields + f] = data->data[f];
+               si->history_sum[f] += data->data[f];
+
+               /* For now simply compute a mobile mean for each field */
+               /* and output filtered data */
+               data->data[f] = si->history_sum[f] / si->history_entries;
+       }
+
+       /* Update our rolling index (next evicted cell) */
+       si->history_index = (si->history_index + 1) % si->history_size;
 }
 
 
-static void finalize_sample_default(int s, struct sensors_event_t* data)
+static int finalize_sample_default(int s, struct sensors_event_t* data)
 {
        int i           = sensor_info[s].catalog_index;
        int sensor_type = sensor_catalog[i].type;
 
+       /* Swap fields if we have a custom channel ordering on this sensor */
+       if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
+               reorder_fields(data->data, sensor_info[s].order);
+
        switch (sensor_type) {
                case SENSOR_TYPE_ACCELEROMETER:
-                       /*
-                        * Invert x axis orientation from SI units - see
-                        * /hardware/libhardware/include/hardware/sensors.h
-                        * for a discussion of what Android expects
-                        */
-                       data->data[0] = -data->data[0];
+                       /* Always consider the accelerometer accurate */
+                       data->acceleration.status = SENSOR_STATUS_ACCURACY_HIGH;
+                       if (sensor_info[s].quirks & QUIRK_NOISY)
+                               denoise(&sensor_info[s], data, 3, 20);
+                       break;
+
+               case SENSOR_TYPE_MAGNETIC_FIELD:
+                       calibrate_compass (data, &sensor_info[s], get_timestamp());
+                       if (sensor_info[s].quirks & QUIRK_NOISY)
+                               denoise(&sensor_info[s], data, 3, 100);
                        break;
 
                case SENSOR_TYPE_GYROSCOPE:
-                       /* Limit drift */
-                       if (abs(data->data[0]) < .05 && abs(data->data[1]) < .05
-                               && abs(data->data[2]) < .05) {
-                                       data->data[0] = 0;
-                                       data->data[1] = 0;
-                                       data->data[2] = 0;
-                               }
+               case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
+                       if (!(sensor_info[s].quirks & QUIRK_TERSE_DRIVER))
+                               calibrate_gyro(data, &sensor_info[s]);
+                       if (sensor_info[s].quirks & QUIRK_NOISY)
+                               denoise_median(data, &sensor_info[s]);
+                       break;
+
+               case SENSOR_TYPE_LIGHT:
+               case SENSOR_TYPE_AMBIENT_TEMPERATURE:
+               case SENSOR_TYPE_TEMPERATURE:
+                       /* Only keep two decimals for these readings */
+                       data->data[0] = 0.01 * ((int) (data->data[0] * 100));
+
+                       /* ... fall through ... */
+
+               case SENSOR_TYPE_PROXIMITY:
+                       /*
+                        * These are on change sensors ; drop the sample if it
+                        * has the same value as the previously reported one.
+                        */
+                       if (data->data[0] == sensor_info[s].prev_val)
+                               return 0;
+
+                       sensor_info[s].prev_val = data->data[0];
                        break;
        }
+
+       return 1; /* Return sample to Android */
 }
 
 
@@ -96,19 +320,126 @@ static float transform_sample_default(int s, int c, unsigned char* sample_data)
 {
        struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
        int64_t              s64 = sample_as_int64(sample_data, sample_type);
+       float scale = sensor_info[s].scale ?
+                       sensor_info[s].scale : sensor_info[s].channel[c].scale;
+
+       /* In case correction has been requested using properties, apply it */
+       scale *= sensor_info[s].channel[c].opt_scale;
 
        /* Apply default scaling rules */
-       return (sensor_info[s].offset + s64) * sensor_info[s].scale;
+       return (sensor_info[s].offset + s64) * scale;
 }
 
 
-static void finalize_sample_ISH(int s, struct sensors_event_t* data)
+static int finalize_sample_ISH(int s, struct sensors_event_t* data)
 {
+       int i           = sensor_info[s].catalog_index;
+       int sensor_type = sensor_catalog[i].type;
+       float pitch, roll, yaw;
+
+       /* Swap fields if we have a custom channel ordering on this sensor */
+       if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
+               reorder_fields(data->data, sensor_info[s].order);
+
+       if (sensor_type == SENSOR_TYPE_ORIENTATION) {
+
+               pitch = data->data[0];
+               roll = data->data[1];
+               yaw = data->data[2];
+
+               data->data[0] = 360.0 - yaw;
+               data->data[1] = -pitch;
+               data->data[2] = -roll;
+       }
+
+       return 1; /* Return sample to Android */
 }
 
 
 static float transform_sample_ISH(int s, int c, unsigned char* sample_data)
 {
+       struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
+       int val         = (int) sample_as_int64(sample_data, sample_type);
+       int i           = sensor_info[s].catalog_index;
+       int sensor_type = sensor_catalog[i].type;
+       float correction;
+       int data_bytes  = (sample_type->realbits)/8;
+       int exponent    = sensor_info[s].offset;
+
+       /* In case correction has been requested using properties, apply it */
+       correction = sensor_info[s].channel[c].opt_scale;
+
+       switch (sensor_type) {
+               case SENSOR_TYPE_ACCELEROMETER:
+                       switch (c) {
+                               case 0:
+                                       return  correction *
+                                               CONVERT_A_G_VTF16E14_X(
+                                               data_bytes, exponent, val);
+
+                               case 1:
+                                       return  correction *
+                                               CONVERT_A_G_VTF16E14_Y(
+                                               data_bytes, exponent, val);
+
+                               case 2:
+                                       return  correction *
+                                               CONVERT_A_G_VTF16E14_Z(
+                                               data_bytes, exponent, val);
+                       }
+                       break;
+
+
+               case SENSOR_TYPE_GYROSCOPE:
+                       switch (c) {
+                               case 0:
+                                       return  correction *
+                                               CONVERT_G_D_VTF16E14_X(
+                                               data_bytes, exponent, val);
+
+                               case 1:
+                                       return  correction *
+                                               CONVERT_G_D_VTF16E14_Y(
+                                               data_bytes, exponent, val);
+
+                               case 2:
+                                       return  correction *
+                                               CONVERT_G_D_VTF16E14_Z(
+                                               data_bytes, exponent, val);
+                       }
+                       break;
+
+               case SENSOR_TYPE_MAGNETIC_FIELD:
+                       switch (c) {
+                               case 0:
+                                       return  correction *
+                                               CONVERT_M_MG_VTF16E14_X(
+                                               data_bytes, exponent, val);
+
+                               case 1:
+                                       return  correction *
+                                               CONVERT_M_MG_VTF16E14_Y(
+                                               data_bytes, exponent, val);
+
+                               case 2:
+                                       return  correction *
+                                               CONVERT_M_MG_VTF16E14_Z(
+                                               data_bytes, exponent, val);
+                       }
+                       break;
+
+               case SENSOR_TYPE_LIGHT:
+                               return (float) val;
+
+               case SENSOR_TYPE_ORIENTATION:
+                       return  correction * convert_from_vtf_format(
+                                               data_bytes, exponent, val);
+
+               case SENSOR_TYPE_ROTATION_VECTOR:
+                       return  correction * convert_from_vtf_format(
+                                               data_bytes, exponent, val);
+       }
+
        return 0;
 }
 
@@ -136,3 +467,53 @@ void select_transform (int s)
        sensor_info[s].ops.transform = transform_sample_default;
        sensor_info[s].ops.finalize = finalize_sample_default;
 }
+
+
+float acquire_immediate_value(int s, int c)
+{
+       char sysfs_path[PATH_MAX];
+       float val;
+       int ret;
+       int dev_num = sensor_info[s].dev_num;
+       int i = sensor_info[s].catalog_index;
+       const char* raw_path = sensor_catalog[i].channel[c].raw_path;
+       const char* input_path = sensor_catalog[i].channel[c].input_path;
+       float scale = sensor_info[s].scale ?
+                       sensor_info[s].scale : sensor_info[s].channel[c].scale;
+       float offset = sensor_info[s].offset;
+       int sensor_type = sensor_catalog[i].type;
+       float correction;
+
+       /* In case correction has been requested using properties, apply it */
+       correction = sensor_info[s].channel[c].opt_scale;
+
+       /* Acquire a sample value for sensor s / channel c through sysfs */
+
+       if (input_path[0]) {
+               sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
+               ret = sysfs_read_float(sysfs_path, &val);
+
+               if (!ret) {
+                       return val * correction;
+               }
+       };
+
+       if (!raw_path[0])
+               return 0;
+
+       sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
+       ret = sysfs_read_float(sysfs_path, &val);
+
+       if (ret == -1)
+               return 0;
+
+       /*
+       There is no transform ops defined yet for Raw sysfs values
+        Use this function to perform transformation as well.
+       */
+       if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
+                return  CONVERT_GAUSS_TO_MICROTESLA ((val + offset) * scale) *
+                       correction;
+
+       return (val + offset) * scale * correction;
+}