OSDN Git Service

GMINL-2659: Keep recent events history for fusion-like processing
[android-x86/hardware-intel-libsensors.git] / transform.c
index be4a8f1..a49300d 100644 (file)
@@ -12,6 +12,7 @@
 #include "description.h"
 #include "transform.h"
 #include "utils.h"
+#include "filtering.h"
 
 /*----------------------------------------------------------------------------*/
 
@@ -198,10 +199,10 @@ static void denoise (struct sensor_info_t* si, struct sensors_event_t* data,
         */
 
        int i;
-       float total;
        int f;
        int sampling_rate = (int) si->sampling_rate;
        int history_size;
+       int history_full = 0;
 
        /* Don't denoise anything if we have less than two samples per second */
        if (sampling_rate < 2)
@@ -220,46 +221,57 @@ static void denoise (struct sensor_info_t* si, struct sensors_event_t* data,
                si->history_index = 0;
                si->history = (float*) realloc(si->history,
                                si->history_size * num_fields * sizeof(float));
+               if (si->history) {
+                       si->history_sum = (float*) realloc(si->history_sum,
+                               num_fields * sizeof(float));
+                       if (si->history_sum)
+                               memset(si->history_sum, 0, num_fields * sizeof(float));
+               }
        }
 
-       if (!si->history)
+       if (!si->history || !si->history_sum)
                return; /* Unlikely, but still... */
 
        /* Update initialized samples count */
        if (si->history_entries < si->history_size)
                si->history_entries++;
+       else
+               history_full = 1;
 
-       /* Record new sample */
-       for (f=0; f < num_fields; f++)
-               si->history[si->history_index * num_fields + f] = data->data[f];
-
-       /* Update our rolling index (next evicted cell) */
-       si->history_index = (si->history_index + 1) % si->history_size;
-
-       /* For now simply compute a mobile mean for each field */
+       /* Record new sample and calculate the moving sum */
        for (f=0; f < num_fields; f++) {
-               total = 0;
+               /**
+                * A field is going to be overwritten if
+                * history is full, so decrease the history sum
+                */
+               if (history_full)
+                       si->history_sum[f] -=
+                               si->history[si->history_index * num_fields + f];
 
-               for (i=0; i < si->history_entries; i++)
-                               total += si->history[i * num_fields + f];
+               si->history[si->history_index * num_fields + f] = data->data[f];
+               si->history_sum[f] += data->data[f];
 
-               /* Output filtered data */
-               data->data[f] = total / si->history_entries;
+               /* For now simply compute a mobile mean for each field */
+               /* and output filtered data */
+               data->data[f] = si->history_sum[f] / si->history_entries;
        }
+
+       /* Update our rolling index (next evicted cell) */
+       si->history_index = (si->history_index + 1) % si->history_size;
 }
 
 
-static int finalize_sample_default(int s, struct sensors_event_t* data)
+static int finalize_sample_default (int s, struct sensors_event_t* data)
 {
-       int i           = sensor_info[s].catalog_index;
-       int sensor_type = sensor_catalog[i].type;
-
        /* Swap fields if we have a custom channel ordering on this sensor */
        if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
                reorder_fields(data->data, sensor_info[s].order);
 
-       switch (sensor_type) {
+       sensor_info[s].event_count++;
+       switch (sensor_info[s].type) {
                case SENSOR_TYPE_ACCELEROMETER:
+                       /* Always consider the accelerometer accurate */
+                       data->acceleration.status = SENSOR_STATUS_ACCURACY_HIGH;
                        if (sensor_info[s].quirks & QUIRK_NOISY)
                                denoise(&sensor_info[s], data, 3, 20);
                        break;
@@ -272,9 +284,35 @@ static int finalize_sample_default(int s, struct sensors_event_t* data)
 
                case SENSOR_TYPE_GYROSCOPE:
                case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
-                       calibrate_gyro(data, &sensor_info[s]);
-                       if (sensor_info[s].quirks & QUIRK_NOISY)
-                               denoise(&sensor_info[s], data, 3, 20);
+                       /*
+                        * Report medium accuracy by default ; higher accuracy
+                        * levels will be reported once, and if, we achieve
+                        * calibration.
+                        */
+                       data->gyro.status = SENSOR_STATUS_ACCURACY_MEDIUM;
+
+                       /*
+                        * We're only trying to calibrate data from continuously
+                        * firing gyroscope drivers, as motion based ones use
+                        * movement thresholds that may lead us to incorrectly
+                        * estimate bias.
+                        */
+                       if (sensor_info[s].selected_trigger !=
+                               sensor_info[s].motion_trigger_name)
+                                       calibrate_gyro(data, &sensor_info[s]);
+
+                       /* For noisy sensors we'll drop a very few number
+                        * of samples to make sure we have at least MIN_SAMPLES events
+                        * in the filtering queue. This is to make sure we are not sending
+                        * events that can disturb our mean or stddev.
+                        */
+                       if (sensor_info[s].quirks & QUIRK_NOISY) {
+                               denoise_median(&sensor_info[s], data, 3);
+                               if((sensor_info[s].selected_trigger !=
+                                       sensor_info[s].motion_trigger_name) &&
+                                       sensor_info[s].event_count < MIN_SAMPLES)
+                                               return 0;
+                       }
                        break;
 
                case SENSOR_TYPE_LIGHT:
@@ -297,6 +335,9 @@ static int finalize_sample_default(int s, struct sensors_event_t* data)
                        break;
        }
 
+       /* Add this event to our global records, for filtering purposes */
+       record_sample(s, data);
+
        return 1; /* Return sample to Android */
 }
 
@@ -316,17 +357,15 @@ static float transform_sample_default(int s, int c, unsigned char* sample_data)
 }
 
 
-static int finalize_sample_ISH(int s, struct sensors_event_t* data)
+static int finalize_sample_ISH (int s, struct sensors_event_t* data)
 {
-       int i           = sensor_info[s].catalog_index;
-       int sensor_type = sensor_catalog[i].type;
        float pitch, roll, yaw;
 
        /* Swap fields if we have a custom channel ordering on this sensor */
        if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
                reorder_fields(data->data, sensor_info[s].order);
 
-       if (sensor_type == SENSOR_TYPE_ORIENTATION) {
+       if (sensor_info[s].type == SENSOR_TYPE_ORIENTATION) {
 
                pitch = data->data[0];
                roll = data->data[1];
@@ -337,16 +376,17 @@ static int finalize_sample_ISH(int s, struct sensors_event_t* data)
                data->data[2] = -roll;
        }
 
+       /* Add this event to our global records, for filtering purposes */
+       record_sample(s, data);
+
        return 1; /* Return sample to Android */
 }
 
 
-static float transform_sample_ISH(int s, int c, unsigned char* sample_data)
+static float transform_sample_ISH (int s, int c, unsigned char* sample_data)
 {
        struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
        int val         = (int) sample_as_int64(sample_data, sample_type);
-       int i           = sensor_info[s].catalog_index;
-       int sensor_type = sensor_catalog[i].type;
        float correction;
        int data_bytes  = (sample_type->realbits)/8;
        int exponent    = sensor_info[s].offset;
@@ -354,7 +394,7 @@ static float transform_sample_ISH(int s, int c, unsigned char* sample_data)
        /* In case correction has been requested using properties, apply it */
        correction = sensor_info[s].channel[c].opt_scale;
 
-       switch (sensor_type) {
+       switch (sensor_info[s].type) {
                case SENSOR_TYPE_ACCELEROMETER:
                        switch (c) {
                                case 0: