X-Git-Url: http://git.osdn.net/view?p=android-x86%2Fhardware-intel-libsensors.git;a=blobdiff_plain;f=description.c;h=685b7eb6cbc5fd76f3b0c65f8010789f5d0fe83c;hp=f372df4eab16ce6704e70e9187e3fbbccb14f058;hb=refs%2Fheads%2Fnougat-x86;hpb=9b2968706a6dd2d58e443255e786b26b7bc14a00 diff --git a/description.c b/description.c index f372df4..685b7eb 100644 --- a/description.c +++ b/description.c @@ -1,6 +1,18 @@ /* - * Copyright (C) 2014 Intel Corporation. - */ +// Copyright (c) 2015 Intel Corporation +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +*/ #include #include @@ -11,9 +23,14 @@ #include "enumeration.h" #include "description.h" #include "utils.h" +#include "transform.h" #define IIO_SENSOR_HAL_VERSION 1 +#define MIN_ON_CHANGE_SAMPLING_PERIOD_US 200000 /* For on change sensors (temperature, proximity, ALS, etc.) report we support 5 Hz max (0.2 s min period) */ +#define MAX_ON_CHANGE_SAMPLING_PERIOD_US 10000000 /* 0.1 Hz min (10 s max period)*/ +#define ANDROID_MAX_FREQ 1000 /* 1000 Hz - This is how much Android requests for the fastest frequency */ + /* * About properties * @@ -80,19 +97,20 @@ * properties values happen to have its iio device name set to bmg160. */ -static int sensor_get_st_prop (int s, const char* sel, char val[MAX_NAME_SIZE]) +int sensor_get_st_prop (int s, const char* sel, char val[MAX_NAME_SIZE]) { char prop_name[PROP_NAME_MAX]; char prop_val[PROP_VALUE_MAX]; char extended_sel[PROP_VALUE_MAX]; - int i = sensor_info[s].catalog_index; + int i = sensor[s].catalog_index; const char *prefix = sensor_catalog[i].tag; + const char *shorthand = sensor_catalog[i].shorthand; /* First try most specialized form, like ro.iio.anglvel.bmg160.name */ snprintf(extended_sel, PROP_NAME_MAX, "%s.%s", - sensor_info[s].internal_name, sel); + sensor[s].internal_name, sel); snprintf(prop_name, PROP_NAME_MAX, PROP_BASE, prefix, extended_sel); @@ -102,9 +120,19 @@ static int sensor_get_st_prop (int s, const char* sel, char val[MAX_NAME_SIZE]) return 0; } + if (shorthand[0] != '\0') { + /* Try with shorthand instead of prefix */ + snprintf(prop_name, PROP_NAME_MAX, PROP_BASE, shorthand, extended_sel); + + if (property_get(prop_name, prop_val, "")) { + strncpy(val, prop_val, MAX_NAME_SIZE-1); + val[MAX_NAME_SIZE-1] = '\0'; + return 0; + } + } /* Fall back to simple form, like ro.iio.anglvel.name */ - sprintf(prop_name, PROP_BASE, prefix, sel); + snprintf(prop_name, PROP_NAME_MAX, PROP_BASE, prefix, sel); if (property_get(prop_name, prop_val, "")) { strncpy(val, prop_val, MAX_NAME_SIZE-1); @@ -142,76 +170,160 @@ int sensor_get_fl_prop (int s, const char* sel, float* val) char* sensor_get_name (int s) { - if (sensor_info[s].friendly_name[0] != '\0' || - !sensor_get_st_prop(s, "name", sensor_info[s].friendly_name)) - return sensor_info[s].friendly_name; + char buf[MAX_NAME_SIZE]; + + if (sensor[s].is_virtual) { + switch (sensor[s].type) { + case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED: + case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED: + strcpy(buf, sensor[sensor[s].base[0]].friendly_name); + snprintf(sensor[s].friendly_name, + MAX_NAME_SIZE, + "%s %s", "Uncalibrated", buf); + return sensor[s].friendly_name; + + default: + return ""; + } + } + + if (sensor[s].friendly_name[0] != '\0' || + !sensor_get_st_prop(s, "name", sensor[s].friendly_name)) + return sensor[s].friendly_name; /* If we got a iio device name from sysfs, use it */ - if (sensor_info[s].internal_name[0]) { - snprintf(sensor_info[s].friendly_name, MAX_NAME_SIZE, "S%d-%s", - s, sensor_info[s].internal_name); + if (sensor[s].internal_name[0]) { + snprintf(sensor[s].friendly_name, MAX_NAME_SIZE, "S%d-%s", + s, sensor[s].internal_name); } else { - sprintf(sensor_info[s].friendly_name, "S%d", s); + sprintf(sensor[s].friendly_name, "S%d", s); } - return sensor_info[s].friendly_name; + return sensor[s].friendly_name; } char* sensor_get_vendor (int s) { - if (sensor_info[s].vendor_name[0] || - !sensor_get_st_prop(s, "vendor", sensor_info[s].vendor_name)) - return sensor_info[s].vendor_name; + if (sensor[s].is_virtual) { + switch (sensor[s].type) { + case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED: + case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED: + return sensor[sensor[s].base[0]].vendor_name; + break; + + default: + return ""; + + } + } + + if (sensor[s].vendor_name[0] || + !sensor_get_st_prop(s, "vendor", sensor[s].vendor_name)) + return sensor[s].vendor_name; return ""; } -int sensor_get_version (int s) +int sensor_get_version (__attribute__((unused)) int s) { return IIO_SENSOR_HAL_VERSION; } - -float sensor_get_max_range (int s) +void sensor_update_max_range(int s) { - if (sensor_info[s].max_range != 0.0 || - !sensor_get_fl_prop(s, "max_range", &sensor_info[s].max_range)) - return sensor_info[s].max_range; - - /* Try returning a sensible value given the sensor type */ + if (sensor[s].max_range) + return; - /* We should cap returned samples accordingly... */ + if (sensor[s].num_channels && sensor[s].channel[0].type_info.realbits) { + switch (sensor[s].type) { + case SENSOR_TYPE_MAGNETIC_FIELD: + sensor[s].max_range = (1ULL << sensor[s].channel[0].type_info.realbits) * + CONVERT_MICROTESLA_TO_GAUSS(sensor[s].resolution) + + (sensor[s].offset || sensor[s].channel[0].offset); + sensor[s].max_range = CONVERT_GAUSS_TO_MICROTESLA(sensor[s].max_range); + break; + case SENSOR_TYPE_PROXIMITY: + break; + default: + sensor[s].max_range = (1ULL << sensor[s].channel[0].type_info.realbits) * + sensor[s].resolution + (sensor[s].offset || sensor[s].channel[0].offset); + break; + } + } - switch (sensor_info[s].type) { + if (!sensor[s].max_range) { + /* Try returning a sensible value given the sensor type */ + /* We should cap returned samples accordingly... */ + switch (sensor[s].type) { case SENSOR_TYPE_ACCELEROMETER: /* m/s^2 */ - return 50; - + sensor[s].max_range = 50; + break; case SENSOR_TYPE_MAGNETIC_FIELD: /* micro-tesla */ - return 500; - + sensor[s].max_range = 500; + break; case SENSOR_TYPE_ORIENTATION: /* degrees */ - return 360; - + sensor[s].max_range = 360; + break; case SENSOR_TYPE_GYROSCOPE: /* radians/s */ - return 10; - + sensor[s].max_range = 10; + break; case SENSOR_TYPE_LIGHT: /* SI lux units */ - return 50000; - + sensor[s].max_range = 50000; + break; case SENSOR_TYPE_AMBIENT_TEMPERATURE: /* °C */ case SENSOR_TYPE_TEMPERATURE: /* °C */ case SENSOR_TYPE_PROXIMITY: /* centimeters */ case SENSOR_TYPE_PRESSURE: /* hecto-pascal */ case SENSOR_TYPE_RELATIVE_HUMIDITY: /* percent */ - return 100; + sensor[s].max_range = 100; + break; + } + } - default: - return 0.0; + if (sensor[s].max_range) + sensor_desc[s].maxRange = sensor[s].max_range; +} + +float sensor_get_max_range (int s) +{ + if (sensor[s].is_virtual) { + switch (sensor[s].type) { + case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED: + case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED: + return sensor[sensor[s].base[0]].max_range; + + default: + return 0.0; } + } + + if (sensor[s].max_range != 0.0 || + !sensor_get_fl_prop(s, "max_range", &sensor[s].max_range)) + return sensor[s].max_range; + + return 0; +} + +float sensor_get_min_freq (int s) +{ + /* + * Check if a low cap has been specified for this sensor sampling rate. + * In some case, even when the driver supports lower rate, we still + * wish to receive a certain number of samples per seconds for various + * reasons (calibration, filtering, no change in power consumption...). + */ + + float min_freq; + + if (!sensor_get_fl_prop(s, "min_freq", &min_freq)) + return min_freq; + + return 0; } + float sensor_get_max_freq (int s) { float max_freq; @@ -219,25 +331,65 @@ float sensor_get_max_freq (int s) if (!sensor_get_fl_prop(s, "max_freq", &max_freq)) return max_freq; - return 1000; + return ANDROID_MAX_FREQ; } -float sensor_get_resolution (int s) +int sensor_get_cal_steps (int s) { - if (sensor_info[s].resolution != 0.0 || - !sensor_get_fl_prop(s, "resolution", &sensor_info[s].resolution)) - return sensor_info[s].resolution; + int cal_steps; + if (!sensor_get_prop(s, "cal_steps", &cal_steps)) + return cal_steps; return 0; } +float sensor_get_resolution (int s) +{ + if (sensor[s].is_virtual) { + switch (sensor[s].type) { + case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED: + case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED: + return sensor[sensor[s].base[0]].resolution; + + default: + return 0; + } + } + + if (sensor[s].resolution != 0.0 || + !sensor_get_fl_prop(s, "resolution", &sensor[s].resolution)) { + return sensor[s].resolution; + } + + sensor[s].resolution = sensor[s].scale; + if (!sensor[s].resolution && sensor[s].num_channels) + sensor[s].resolution = sensor[s].channel[0].scale; + + if (sensor[s].type == SENSOR_TYPE_MAGNETIC_FIELD) + sensor[s].resolution = CONVERT_GAUSS_TO_MICROTESLA(sensor[s].resolution); + + return sensor[s].resolution ? : 1; +} + float sensor_get_power (int s) { + + if (sensor[s].is_virtual) { + switch (sensor[s].type) { + case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED: + case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED: + return sensor[sensor[s].base[0]].power; + + default: + return 0; + } + } + /* mA used while sensor is in use ; not sure about volts :) */ - if (sensor_info[s].power != 0.0 || - !sensor_get_fl_prop(s, "power", &sensor_info[s].power)) - return sensor_info[s].power; + if (sensor[s].power != 0.0 || + !sensor_get_fl_prop(s, "power", &sensor[s].power)) + return sensor[s].power; return 0; } @@ -246,9 +398,9 @@ float sensor_get_power (int s) float sensor_get_illumincalib (int s) { /* calibrating the ALS Sensor*/ - if (sensor_info[s].illumincalib != 0.0 || - !sensor_get_fl_prop(s, "illumincalib", &sensor_info[s].illumincalib)) { - return sensor_info[s].illumincalib; + if (sensor[s].illumincalib != 0.0 || + !sensor_get_fl_prop(s, "illumincalib", &sensor[s].illumincalib)) { + return sensor[s].illumincalib; } return 0; @@ -260,26 +412,47 @@ uint32_t sensor_get_quirks (int s) char quirks_buf[MAX_NAME_SIZE]; /* Read and decode quirks property on first reference */ - if (!(sensor_info[s].quirks & QUIRK_ALREADY_DECODED)) { + if (!(sensor[s].quirks & QUIRK_ALREADY_DECODED)) { quirks_buf[0] = '\0'; sensor_get_st_prop(s, "quirks", quirks_buf); if (strstr(quirks_buf, "init-rate")) - sensor_info[s].quirks |= QUIRK_INITIAL_RATE; + sensor[s].quirks |= QUIRK_INITIAL_RATE; if (strstr(quirks_buf, "continuous")) - sensor_info[s].quirks |= QUIRK_FORCE_CONTINUOUS; + sensor[s].quirks |= QUIRK_FORCE_CONTINUOUS; if (strstr(quirks_buf, "terse")) - sensor_info[s].quirks |= QUIRK_TERSE_DRIVER; + sensor[s].quirks |= QUIRK_TERSE_DRIVER; if (strstr(quirks_buf, "noisy")) - sensor_info[s].quirks |= QUIRK_NOISY; + sensor[s].quirks |= QUIRK_NOISY; + + if (strstr(quirks_buf, "biased")) + sensor[s].quirks |= QUIRK_BIASED; + + if (strstr(quirks_buf, "spotty")) + sensor[s].quirks |= QUIRK_SPOTTY; + + if (strstr(quirks_buf, "no-event")) + sensor[s].quirks |= QUIRK_NO_EVENT_MODE; + + if (strstr(quirks_buf, "no-trig")) + sensor[s].quirks |= QUIRK_NO_TRIG_MODE; + + if (strstr(quirks_buf, "no-poll")) + sensor[s].quirks |= QUIRK_NO_POLL_MODE; + + if (strstr(quirks_buf, "hrtimer")) + sensor[s].quirks |= QUIRK_HRTIMER; - sensor_info[s].quirks |= QUIRK_ALREADY_DECODED; + if (strstr(quirks_buf, "secondary")) + sensor[s].quirks |= QUIRK_SECONDARY; + + sensor[s].quirks |= QUIRK_ALREADY_DECODED; } - return sensor_info[s].quirks; + return sensor[s].quirks; } @@ -287,9 +460,9 @@ int sensor_get_order (int s, unsigned char map[MAX_CHANNELS]) { char buf[MAX_NAME_SIZE]; int i; - int count = sensor_catalog[sensor_info[s].catalog_index].num_channels; + int count = sensor_catalog[sensor[s].catalog_index].num_channels; - if (sensor_get_st_prop(s, "order", buf)) + if (sensor_get_st_prop(s, "order", buf)) return 0; /* No order property */ /* Assume ASCII characters, in the '0'..'9' range */ @@ -306,15 +479,96 @@ int sensor_get_order (int s, unsigned char map[MAX_CHANNELS]) return 1; /* OK to use modified ordering map */ } +int sensor_get_available_frequencies (int s) +{ + int dev_num = sensor[s].dev_num, err, i; + char avail_sysfs_path[PATH_MAX], freqs_buf[100]; + char *p, *end; + float f; + + sensor[s].avail_freqs_count = 0; + sensor[s].avail_freqs = 0; + + sprintf(avail_sysfs_path, DEVICE_AVAIL_FREQ_PATH, dev_num); + + err = sysfs_read_str(avail_sysfs_path, freqs_buf, sizeof(freqs_buf)); + if (err < 0) + return 0; + + for (p = freqs_buf, f = strtof(p, &end); p != end; p = end, f = strtof(p, &end)) + sensor[s].avail_freqs_count++; + + if (sensor[s].avail_freqs_count) { + sensor[s].avail_freqs = (float*) calloc(sensor[s].avail_freqs_count, sizeof(float)); + + for (p = freqs_buf, f = strtof(p, &end), i = 0; p != end; p = end, f = strtof(p, &end), i++) + sensor[s].avail_freqs[i] = f; + } + + return 0; +} + +int sensor_get_mounting_matrix (int s, float mm[9]) +{ + int dev_num = sensor[s].dev_num, err, i; + char mm_path[PATH_MAX], mm_buf[100]; + char *tmp1 = mm_buf, *tmp2; + + switch (sensor[s].type) { + case SENSOR_TYPE_ACCELEROMETER: + case SENSOR_TYPE_MAGNETIC_FIELD: + case SENSOR_TYPE_GYROSCOPE: + case SENSOR_TYPE_PROXIMITY: + break; + default: + return 0; + } + + sprintf(mm_path, MOUNTING_MATRIX_PATH, dev_num); + + err = sysfs_read_str(mm_path, mm_buf, sizeof(mm_buf)); + if (err < 0) + return 0; + + for(i = 0; i < 9; i++) { + float f; + + f = strtof(tmp1, &tmp2); + if (!f && tmp1 == tmp2) + return 0; + mm[i] = f; + tmp1 = tmp2 + 1; + } + + /* + * For proximity sensors, interpret a negative final z value as a hint that the sensor is back mounted. In that case, mark the sensor as secondary to + * ensure that it gets listed after other sensors of same type that would be front-mounted. Most applications will only ask for the default proximity + * sensor and it makes more sense to point to, say, the IR based proximity sensor rather than SAR based one if we have both, as on SoFIA LTE MRD boards. + */ + if (sensor[s].type == SENSOR_TYPE_PROXIMITY) { + if (mm[8] < 0) { + sensor[s].quirks |= QUIRK_SECONDARY; + } + return 0; + } + + ALOGI("%s: %f %f %f %f %f %f %f %f %f\n", __func__, mm[0], mm[1], mm[2], mm[3], mm[4], mm[5], mm[6], mm[7], mm[8]); + return 1; +} + + char* sensor_get_string_type (int s) { - switch (sensor_info[s].type) { + switch (sensor_desc[s].type) { case SENSOR_TYPE_ACCELEROMETER: return SENSOR_STRING_TYPE_ACCELEROMETER; case SENSOR_TYPE_MAGNETIC_FIELD: return SENSOR_STRING_TYPE_MAGNETIC_FIELD; + case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED: + return SENSOR_STRING_TYPE_MAGNETIC_FIELD_UNCALIBRATED; + case SENSOR_TYPE_ORIENTATION: return SENSOR_STRING_TYPE_ORIENTATION; @@ -347,24 +601,17 @@ char* sensor_get_string_type (int s) } } + flag_t sensor_get_flags (int s) { - flag_t flags = 0x0; - - switch (sensor_info[s].type) { - case SENSOR_TYPE_ACCELEROMETER: - case SENSOR_TYPE_MAGNETIC_FIELD: - case SENSOR_TYPE_ORIENTATION: - case SENSOR_TYPE_GYROSCOPE: - case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED: - case SENSOR_TYPE_PRESSURE: - flags |= SENSOR_FLAG_CONTINUOUS_MODE; - break; + flag_t flags = 0; + switch (sensor_desc[s].type) { case SENSOR_TYPE_LIGHT: case SENSOR_TYPE_AMBIENT_TEMPERATURE: case SENSOR_TYPE_TEMPERATURE: case SENSOR_TYPE_RELATIVE_HUMIDITY: + case SENSOR_TYPE_STEP_COUNTER: flags |= SENSOR_FLAG_ON_CHANGE_MODE; break; @@ -373,149 +620,171 @@ flag_t sensor_get_flags (int s) flags |= SENSOR_FLAG_WAKE_UP; flags |= SENSOR_FLAG_ON_CHANGE_MODE; break; - + case SENSOR_TYPE_STEP_DETECTOR: + flags |= SENSOR_FLAG_SPECIAL_REPORTING_MODE; + break; default: - ALOGI("Unknown sensor"); + break; } return flags; } -int get_cdd_freq (int s, int must) + +static int get_cdd_freq (int s, int must) { - switch (sensor_info[s].type) { + switch (sensor_desc[s].type) { case SENSOR_TYPE_ACCELEROMETER: return (must ? 100 : 200); /* must 100 Hz, should 200 Hz, CDD compliant */ + case SENSOR_TYPE_GYROSCOPE: - case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED: return (must ? 200 : 200); /* must 200 Hz, should 200 Hz, CDD compliant */ + case SENSOR_TYPE_MAGNETIC_FIELD: return (must ? 10 : 50); /* must 10 Hz, should 50 Hz, CDD compliant */ + case SENSOR_TYPE_LIGHT: case SENSOR_TYPE_AMBIENT_TEMPERATURE: case SENSOR_TYPE_TEMPERATURE: return (must ? 1 : 2); /* must 1 Hz, should 2Hz, not mentioned in CDD */ + default: - return 0; + return 1; /* Use 1 Hz by default, e.g. for proximity */ } } -/* This value is defined only for continuous mode and on-change sensors. It is the delay between - * two sensor events corresponding to the lowest frequency that this sensor supports. When lower - * frequencies are requested through batch()/setDelay() the events will be generated at this - * frequency instead. It can be used by the framework or applications to estimate when the batch - * FIFO may be full. - * - * NOTE: 1) period_ns is in nanoseconds where as maxDelay/minDelay are in microseconds. - * continuous, on-change: maximum sampling period allowed in microseconds. - * one-shot, special : 0 - * 2) maxDelay should always fit within a 32 bit signed integer. It is declared as 64 bit - * on 64 bit architectures only for binary compatibility reasons. - * Availability: SENSORS_DEVICE_API_VERSION_1_3 +/* + * This value is defined only for continuous mode and on-change sensors. It is the delay between two sensor events corresponding to the lowest frequency that + * this sensor supports. When lower frequencies are requested through batch()/setDelay() the events will be generated at this frequency instead. It can be used + * by the framework or applications to estimate when the batch FIFO may be full. maxDelay should always fit within a 32 bit signed integer. It is declared as + * 64 bit on 64 bit architectures only for binary compatibility reasons. Availability: SENSORS_DEVICE_API_VERSION_1_3 */ max_delay_t sensor_get_max_delay (int s) { - char avail_sysfs_path[PATH_MAX]; - int dev_num = sensor_info[s].dev_num; - char freqs_buf[100]; - char* cursor; - float min_supported_rate = 1000; - float sr; - - /* continuous, on-change: maximum sampling period allowed in microseconds. + int i; + float min_supported_rate; + float rate_cap; + + /* + * continuous, on-change: maximum sampling period allowed in microseconds. * one-shot, special : 0 */ - if (REPORTING_MODE(sensor_desc[s].flags) == SENSOR_FLAG_ONE_SHOT_MODE || - REPORTING_MODE(sensor_desc[s].flags) == SENSOR_FLAG_SPECIAL_REPORTING_MODE) - return 0; + switch (REPORTING_MODE(sensor_desc[s].flags)) { + case SENSOR_FLAG_ONE_SHOT_MODE: + case SENSOR_FLAG_SPECIAL_REPORTING_MODE: + return 0; - sprintf(avail_sysfs_path, DEVICE_AVAIL_FREQ_PATH, dev_num); + case SENSOR_FLAG_ON_CHANGE_MODE: + return MAX_ON_CHANGE_SAMPLING_PERIOD_US; - if (sysfs_read_str(avail_sysfs_path, freqs_buf, sizeof(freqs_buf)) < 0) { - /* If poll mode sensor */ - if (!sensor_info[s].num_channels) { - /* The must rate */ - min_supported_rate = get_cdd_freq(s, 1); + default: + break; + } + + if (sensor[s].is_virtual) { + switch (sensor[s].type) { + case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED: + case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED: + return sensor_desc[sensor[s].base[0]].maxDelay; + default: + return 0; } - } else { - cursor = freqs_buf; - while (*cursor && cursor[0]) { + } - /* Decode a single value */ - sr = strtod(cursor, NULL); + switch (sensor[s].mode) { + case MODE_TRIGGER: + /* For interrupt-based devices, obey the list of supported sampling rates */ + if (sensor[s].avail_freqs_count) { + min_supported_rate = 1000; + for (i = 0; i < sensor[s].avail_freqs_count; i++) { + if (sensor[s].avail_freqs[i] < min_supported_rate) + min_supported_rate = sensor[s].avail_freqs[i]; + } + break; + } + /* Fall through ... */ - if (sr < min_supported_rate) - min_supported_rate = sr; + default: + /* Report 1 Hz */ + min_supported_rate = 1; + break; + } - /* Skip digits */ - while (cursor[0] && !isspace(cursor[0])) - cursor++; + /* Check if a minimum rate was specified for this sensor */ + rate_cap = sensor_get_min_freq(s); - /* Skip spaces */ - while (cursor[0] && isspace(cursor[0])) - cursor++; - } - } + if (min_supported_rate < rate_cap) + min_supported_rate = rate_cap; /* return 0 for wrong values */ if (min_supported_rate < 0.1) return 0; /* Return microseconds */ - return (max_delay_t)(1000000.0 / min_supported_rate); + return (max_delay_t) (1000000.0 / min_supported_rate); } -/* this value depends on the reporting mode: - * - * continuous: minimum sample period allowed in microseconds - * on-change : 0 - * one-shot :-1 - * special : 0, unless otherwise noted - */ -int32_t sensor_get_min_delay(int s) +float sensor_get_max_static_freq(int s) { - char avail_sysfs_path[PATH_MAX]; - int dev_num = sensor_info[s].dev_num; - char freqs_buf[100]; - char* cursor; - float max_supported_rate = 0; - float sr; + float max_from_prop = sensor_get_max_freq(s); - /* continuous: minimum sampling period allowed in microseconds. - * on-change, special : 0 - * one-shot :-1 - */ - if (REPORTING_MODE(sensor_desc[s].flags) == SENSOR_FLAG_ON_CHANGE_MODE || - REPORTING_MODE(sensor_desc[s].flags) == SENSOR_FLAG_SPECIAL_REPORTING_MODE) - return 0; + /* If we have max specified via a property use it */ + if (max_from_prop != ANDROID_MAX_FREQ) { + return max_from_prop; + } else { + /* The should rate */ + return get_cdd_freq(s, 0); + } +} - if (REPORTING_MODE(sensor_desc[s].flags) == SENSOR_FLAG_ONE_SHOT_MODE) - return -1; +int32_t sensor_get_min_delay (int s) +{ + int i; + float max_supported_rate = 0; + float max_from_prop = sensor_get_max_freq(s); - sprintf(avail_sysfs_path, DEVICE_AVAIL_FREQ_PATH, dev_num); + /* continuous, on change: minimum sampling period allowed in microseconds. + * special : 0, unless otherwise noted + * one-shot:-1 + */ + switch (REPORTING_MODE(sensor_desc[s].flags)) { + case SENSOR_FLAG_ON_CHANGE_MODE: + return MIN_ON_CHANGE_SAMPLING_PERIOD_US; - if (sysfs_read_str(avail_sysfs_path, freqs_buf, sizeof(freqs_buf)) < 0) { - /* If poll mode sensor */ - if (!sensor_info[s].num_channels) { - /* The should rate */ - max_supported_rate = get_cdd_freq(s, 0); - } - } else { - cursor = freqs_buf; - while (*cursor && cursor[0]) { + case SENSOR_FLAG_SPECIAL_REPORTING_MODE: + return 0; - /* Decode a single value */ - sr = strtod(cursor, NULL); + case SENSOR_FLAG_ONE_SHOT_MODE: + return -1; - if (sr > max_supported_rate && sr <= sensor_get_max_freq(s)) - max_supported_rate = sr; + default: + break; + } - /* Skip digits */ - while (cursor[0] && !isspace(cursor[0])) - cursor++; + if (sensor[s].is_virtual) { + switch (sensor[s].type) { + case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED: + case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED: + return sensor_desc[sensor[s].base[0]].minDelay; + default: + return 0; + } + } - /* Skip spaces */ - while (cursor[0] && isspace(cursor[0])) - cursor++; + if (!sensor[s].avail_freqs_count) { + if (sensor[s].mode == MODE_POLL) { + /* If we have max specified via a property use it */ + if (max_from_prop != ANDROID_MAX_FREQ) + max_supported_rate = max_from_prop; + else + /* The should rate */ + max_supported_rate = get_cdd_freq(s, 0); + } + } else { + for (i = 0; i < sensor[s].avail_freqs_count; i++) { + if (sensor[s].avail_freqs[i] > max_supported_rate && + sensor[s].avail_freqs[i] <= max_from_prop) { + max_supported_rate = sensor[s].avail_freqs[i]; + } } } @@ -524,5 +793,5 @@ int32_t sensor_get_min_delay(int s) return 0; /* Return microseconds */ - return (int32_t)(1000000.0 / max_supported_rate); + return (int32_t) (1000000.0 / max_supported_rate); }