package p2p import ( "bufio" "fmt" "io" "math" "net" "runtime/debug" "sync/atomic" "time" log "github.com/sirupsen/logrus" wire "github.com/tendermint/go-wire" cmn "github.com/tendermint/tmlibs/common" flow "github.com/tendermint/tmlibs/flowrate" ) const ( numBatchMsgPackets = 10 minReadBufferSize = 1024 minWriteBufferSize = 65536 updateState = 2 * time.Second pingTimeout = 40 * time.Second flushThrottle = 100 * time.Millisecond defaultSendQueueCapacity = 1 defaultSendRate = int64(512000) // 500KB/s defaultRecvBufferCapacity = 4096 defaultRecvMessageCapacity = 22020096 // 21MB defaultRecvRate = int64(512000) // 500KB/s defaultSendTimeout = 10 * time.Second ) type receiveCbFunc func(chID byte, msgBytes []byte) type errorCbFunc func(interface{}) /* Each peer has one `MConnection` (multiplex connection) instance. __multiplex__ *noun* a system or signal involving simultaneous transmission of several messages along a single channel of communication. Each `MConnection` handles message transmission on multiple abstract communication `Channel`s. Each channel has a globally unique byte id. The byte id and the relative priorities of each `Channel` are configured upon initialization of the connection. There are two methods for sending messages: func (m MConnection) Send(chID byte, msg interface{}) bool {} func (m MConnection) TrySend(chID byte, msg interface{}) bool {} `Send(chID, msg)` is a blocking call that waits until `msg` is successfully queued for the channel with the given id byte `chID`, or until the request times out. The message `msg` is serialized using the `tendermint/wire` submodule's `WriteBinary()` reflection routine. `TrySend(chID, msg)` is a nonblocking call that returns false if the channel's queue is full. Inbound message bytes are handled with an onReceive callback function. */ type MConnection struct { cmn.BaseService conn net.Conn bufReader *bufio.Reader bufWriter *bufio.Writer sendMonitor *flow.Monitor recvMonitor *flow.Monitor send chan struct{} pong chan struct{} channels []*Channel channelsIdx map[byte]*Channel onReceive receiveCbFunc onError errorCbFunc errored uint32 config *MConnConfig quit chan struct{} flushTimer *cmn.ThrottleTimer // flush writes as necessary but throttled. pingTimer *time.Ticker // send pings periodically chStatsTimer *time.Ticker // update channel stats periodically LocalAddress *NetAddress RemoteAddress *NetAddress } // MConnConfig is a MConnection configuration. type MConnConfig struct { SendRate int64 `mapstructure:"send_rate"` RecvRate int64 `mapstructure:"recv_rate"` } // DefaultMConnConfig returns the default config. func DefaultMConnConfig() *MConnConfig { return &MConnConfig{ SendRate: defaultSendRate, RecvRate: defaultRecvRate, } } // NewMConnection wraps net.Conn and creates multiplex connection func NewMConnection(conn net.Conn, chDescs []*ChannelDescriptor, onReceive receiveCbFunc, onError errorCbFunc) *MConnection { return NewMConnectionWithConfig( conn, chDescs, onReceive, onError, DefaultMConnConfig()) } // NewMConnectionWithConfig wraps net.Conn and creates multiplex connection with a config func NewMConnectionWithConfig(conn net.Conn, chDescs []*ChannelDescriptor, onReceive receiveCbFunc, onError errorCbFunc, config *MConnConfig) *MConnection { mconn := &MConnection{ conn: conn, bufReader: bufio.NewReaderSize(conn, minReadBufferSize), bufWriter: bufio.NewWriterSize(conn, minWriteBufferSize), sendMonitor: flow.New(0, 0), recvMonitor: flow.New(0, 0), send: make(chan struct{}, 1), pong: make(chan struct{}), onReceive: onReceive, onError: onError, config: config, pingTimer: time.NewTicker(pingTimeout), chStatsTimer: time.NewTicker(updateState), LocalAddress: NewNetAddress(conn.LocalAddr()), RemoteAddress: NewNetAddress(conn.RemoteAddr()), } // Create channels var channelsIdx = map[byte]*Channel{} var channels = []*Channel{} for _, desc := range chDescs { descCopy := *desc // copy the desc else unsafe access across connections channel := newChannel(mconn, &descCopy) channelsIdx[channel.id] = channel channels = append(channels, channel) } mconn.channels = channels mconn.channelsIdx = channelsIdx mconn.BaseService = *cmn.NewBaseService(nil, "MConnection", mconn) return mconn } func (c *MConnection) OnStart() error { c.BaseService.OnStart() c.quit = make(chan struct{}) c.flushTimer = cmn.NewThrottleTimer("flush", flushThrottle) go c.sendRoutine() go c.recvRoutine() return nil } func (c *MConnection) OnStop() { c.BaseService.OnStop() c.flushTimer.Stop() if c.quit != nil { close(c.quit) } c.conn.Close() // We can't close pong safely here because // recvRoutine may write to it after we've stopped. // Though it doesn't need to get closed at all, // we close it @ recvRoutine. // close(c.pong) } func (c *MConnection) String() string { return fmt.Sprintf("MConn{%v}", c.conn.RemoteAddr()) } func (c *MConnection) flush() { log.WithField("conn", c).Debug("Flush") err := c.bufWriter.Flush() if err != nil { log.WithField("error", err).Error("MConnection flush failed") } } // Catch panics, usually caused by remote disconnects. func (c *MConnection) _recover() { if r := recover(); r != nil { stack := debug.Stack() err := cmn.StackError{r, stack} c.stopForError(err) } } func (c *MConnection) stopForError(r interface{}) { c.Stop() if atomic.CompareAndSwapUint32(&c.errored, 0, 1) { if c.onError != nil { c.onError(r) } } } // Queues a message to be sent to channel. func (c *MConnection) Send(chID byte, msg interface{}) bool { if !c.IsRunning() { return false } log.WithFields(log.Fields{ "chID": chID, "conn": c, "msg": msg, }).Debug("Send") // Send message to channel. channel, ok := c.channelsIdx[chID] if !ok { log.WithField("chID", chID).Error(cmn.Fmt("Cannot send bytes, unknown channel")) return false } success := channel.sendBytes(wire.BinaryBytes(msg)) if success { // Wake up sendRoutine if necessary select { case c.send <- struct{}{}: default: } } else { log.WithFields(log.Fields{ "chID": chID, "conn": c, "msg": msg, }).Error("Send failed") } return success } // Queues a message to be sent to channel. // Nonblocking, returns true if successful. func (c *MConnection) TrySend(chID byte, msg interface{}) bool { if !c.IsRunning() { return false } log.WithFields(log.Fields{ "chID": chID, "conn": c, "msg": msg, }).Debug("TrySend") // Send message to channel. channel, ok := c.channelsIdx[chID] if !ok { log.WithField("chID", chID).Error(cmn.Fmt("cannot send bytes, unknown channel")) return false } ok = channel.trySendBytes(wire.BinaryBytes(msg)) if ok { // Wake up sendRoutine if necessary select { case c.send <- struct{}{}: default: } } return ok } // CanSend returns true if you can send more data onto the chID, false // otherwise. Use only as a heuristic. func (c *MConnection) CanSend(chID byte) bool { if !c.IsRunning() { return false } channel, ok := c.channelsIdx[chID] if !ok { log.WithField("chID", chID).Error(cmn.Fmt("Unknown channel")) return false } return channel.canSend() } // sendRoutine polls for packets to send from channels. func (c *MConnection) sendRoutine() { defer c._recover() FOR_LOOP: for { var n int var err error select { case <-c.flushTimer.Ch: // NOTE: flushTimer.Set() must be called every time // something is written to .bufWriter. c.flush() case <-c.chStatsTimer.C: for _, channel := range c.channels { channel.updateStats() } case <-c.pingTimer.C: log.Debug("Send Ping") wire.WriteByte(packetTypePing, c.bufWriter, &n, &err) c.sendMonitor.Update(int(n)) c.flush() case <-c.pong: log.Debug("Send Pong") wire.WriteByte(packetTypePong, c.bufWriter, &n, &err) c.sendMonitor.Update(int(n)) c.flush() case <-c.quit: break FOR_LOOP case <-c.send: // Send some msgPackets eof := c.sendSomeMsgPackets() if !eof { // Keep sendRoutine awake. select { case c.send <- struct{}{}: default: } } } if !c.IsRunning() { break FOR_LOOP } if err != nil { log.WithFields(log.Fields{ "conn": c, "error": err, }).Error("Connection failed @ sendRoutine") c.stopForError(err) break FOR_LOOP } } // Cleanup } // Returns true if messages from channels were exhausted. // Blocks in accordance to .sendMonitor throttling. func (c *MConnection) sendSomeMsgPackets() bool { // Block until .sendMonitor says we can write. // Once we're ready we send more than we asked for, // but amortized it should even out. c.sendMonitor.Limit(maxMsgPacketTotalSize, atomic.LoadInt64(&c.config.SendRate), true) // Now send some msgPackets. for i := 0; i < numBatchMsgPackets; i++ { if c.sendMsgPacket() { return true } } return false } // Returns true if messages from channels were exhausted. func (c *MConnection) sendMsgPacket() bool { // Choose a channel to create a msgPacket from. // The chosen channel will be the one whose recentlySent/priority is the least. var leastRatio float32 = math.MaxFloat32 var leastChannel *Channel for _, channel := range c.channels { // If nothing to send, skip this channel if !channel.isSendPending() { continue } // Get ratio, and keep track of lowest ratio. ratio := float32(channel.recentlySent) / float32(channel.priority) if ratio < leastRatio { leastRatio = ratio leastChannel = channel } } // Nothing to send? if leastChannel == nil { return true } else { // c.Logger.Info("Found a msgPacket to send") } // Make & send a msgPacket from this channel n, err := leastChannel.writeMsgPacketTo(c.bufWriter) if err != nil { log.WithField("error", err).Error("Failed to write msgPacket") c.stopForError(err) return true } c.sendMonitor.Update(int(n)) c.flushTimer.Set() return false } // recvRoutine reads msgPackets and reconstructs the message using the channels' "recving" buffer. // After a whole message has been assembled, it's pushed to onReceive(). // Blocks depending on how the connection is throttled. func (c *MConnection) recvRoutine() { defer c._recover() FOR_LOOP: for { // Block until .recvMonitor says we can read. c.recvMonitor.Limit(maxMsgPacketTotalSize, atomic.LoadInt64(&c.config.RecvRate), true) /* // Peek into bufReader for debugging if numBytes := c.bufReader.Buffered(); numBytes > 0 { log.Infof("Peek connection buffer numBytes:", numBytes) bytes, err := c.bufReader.Peek(cmn.MinInt(numBytes, 100)) if err == nil { log.Infof("bytes:", bytes) } else { log.Warning("Error peeking connection buffer err:", err) } } else { log.Warning("Received bytes number is:", numBytes) } */ // Read packet type var n int var err error pktType := wire.ReadByte(c.bufReader, &n, &err) c.recvMonitor.Update(int(n)) if err != nil { if c.IsRunning() { log.WithFields(log.Fields{ "conn": c, "error": err, }).Error("Connection failed @ recvRoutine (reading byte)") c.conn.Close() c.stopForError(err) } break FOR_LOOP } // Read more depending on packet type. switch pktType { case packetTypePing: // TODO: prevent abuse, as they cause flush()'s. log.Debug("Receive Ping") c.pong <- struct{}{} case packetTypePong: // do nothing log.Debug("Receive Pong") case packetTypeMsg: pkt, n, err := msgPacket{}, int(0), error(nil) wire.ReadBinaryPtr(&pkt, c.bufReader, maxMsgPacketTotalSize, &n, &err) c.recvMonitor.Update(int(n)) if err != nil { if c.IsRunning() { log.WithFields(log.Fields{ "conn": c, "error": err, }).Error("Connection failed @ recvRoutine") c.stopForError(err) } break FOR_LOOP } channel, ok := c.channelsIdx[pkt.ChannelID] if !ok || channel == nil { if pkt.ChannelID == PexChannel { continue } else { cmn.PanicQ(cmn.Fmt("Unknown channel %X", pkt.ChannelID)) } } msgBytes, err := channel.recvMsgPacket(pkt) if err != nil { if c.IsRunning() { log.WithFields(log.Fields{ "conn": c, "error": err, }).Error("Connection failed @ recvRoutine") c.stopForError(err) } break FOR_LOOP } if msgBytes != nil { log.WithFields(log.Fields{ "channelID": pkt.ChannelID, "msgBytes": msgBytes, }).Debug("Received bytes") c.onReceive(pkt.ChannelID, msgBytes) } default: cmn.PanicSanity(cmn.Fmt("Unknown message type %X", pktType)) } } // Cleanup close(c.pong) for _ = range c.pong { // Drain } } type ConnectionStatus struct { SendMonitor flow.Status RecvMonitor flow.Status Channels []ChannelStatus } type ChannelStatus struct { ID byte SendQueueCapacity int SendQueueSize int Priority int RecentlySent int64 } func (c *MConnection) Status() ConnectionStatus { var status ConnectionStatus status.SendMonitor = c.sendMonitor.Status() status.RecvMonitor = c.recvMonitor.Status() status.Channels = make([]ChannelStatus, len(c.channels)) for i, channel := range c.channels { status.Channels[i] = ChannelStatus{ ID: channel.id, SendQueueCapacity: cap(channel.sendQueue), SendQueueSize: int(channel.sendQueueSize), // TODO use atomic Priority: channel.priority, RecentlySent: channel.recentlySent, } } return status } //----------------------------------------------------------------------------- type ChannelDescriptor struct { ID byte Priority int SendQueueCapacity int RecvBufferCapacity int RecvMessageCapacity int } func (chDesc *ChannelDescriptor) FillDefaults() { if chDesc.SendQueueCapacity == 0 { chDesc.SendQueueCapacity = defaultSendQueueCapacity } if chDesc.RecvBufferCapacity == 0 { chDesc.RecvBufferCapacity = defaultRecvBufferCapacity } if chDesc.RecvMessageCapacity == 0 { chDesc.RecvMessageCapacity = defaultRecvMessageCapacity } } // TODO: lowercase. // NOTE: not goroutine-safe. type Channel struct { conn *MConnection desc *ChannelDescriptor id byte sendQueue chan []byte sendQueueSize int32 // atomic. recving []byte sending []byte priority int recentlySent int64 // exponential moving average } func newChannel(conn *MConnection, desc *ChannelDescriptor) *Channel { desc.FillDefaults() if desc.Priority <= 0 { cmn.PanicSanity("Channel default priority must be a postive integer") } return &Channel{ conn: conn, desc: desc, id: desc.ID, sendQueue: make(chan []byte, desc.SendQueueCapacity), recving: make([]byte, 0, desc.RecvBufferCapacity), priority: desc.Priority, } } // Queues message to send to this channel. // Goroutine-safe // Times out (and returns false) after defaultSendTimeout func (ch *Channel) sendBytes(bytes []byte) bool { select { case ch.sendQueue <- bytes: atomic.AddInt32(&ch.sendQueueSize, 1) return true case <-time.After(defaultSendTimeout): return false } } // Queues message to send to this channel. // Nonblocking, returns true if successful. // Goroutine-safe func (ch *Channel) trySendBytes(bytes []byte) bool { select { case ch.sendQueue <- bytes: atomic.AddInt32(&ch.sendQueueSize, 1) return true default: return false } } // Goroutine-safe func (ch *Channel) loadSendQueueSize() (size int) { return int(atomic.LoadInt32(&ch.sendQueueSize)) } // Goroutine-safe // Use only as a heuristic. func (ch *Channel) canSend() bool { return ch.loadSendQueueSize() < defaultSendQueueCapacity } // Returns true if any msgPackets are pending to be sent. // Call before calling nextMsgPacket() // Goroutine-safe func (ch *Channel) isSendPending() bool { if len(ch.sending) == 0 { if len(ch.sendQueue) == 0 { return false } ch.sending = <-ch.sendQueue } return true } // Creates a new msgPacket to send. // Not goroutine-safe func (ch *Channel) nextMsgPacket() msgPacket { packet := msgPacket{} packet.ChannelID = byte(ch.id) packet.Bytes = ch.sending[:cmn.MinInt(maxMsgPacketPayloadSize, len(ch.sending))] if len(ch.sending) <= maxMsgPacketPayloadSize { packet.EOF = byte(0x01) ch.sending = nil atomic.AddInt32(&ch.sendQueueSize, -1) // decrement sendQueueSize } else { packet.EOF = byte(0x00) ch.sending = ch.sending[cmn.MinInt(maxMsgPacketPayloadSize, len(ch.sending)):] } return packet } // Writes next msgPacket to w. // Not goroutine-safe func (ch *Channel) writeMsgPacketTo(w io.Writer) (n int, err error) { packet := ch.nextMsgPacket() wire.WriteByte(packetTypeMsg, w, &n, &err) wire.WriteBinary(packet, w, &n, &err) if err == nil { ch.recentlySent += int64(n) } return } // Handles incoming msgPackets. Returns a msg bytes if msg is complete. // Not goroutine-safe func (ch *Channel) recvMsgPacket(packet msgPacket) ([]byte, error) { if ch.desc.RecvMessageCapacity < len(ch.recving)+len(packet.Bytes) { return nil, wire.ErrBinaryReadOverflow } ch.recving = append(ch.recving, packet.Bytes...) if packet.EOF == byte(0x01) { msgBytes := ch.recving // clear the slice without re-allocating. // http://stackoverflow.com/questions/16971741/how-do-you-clear-a-slice-in-go // suggests this could be a memory leak, but we might as well keep the memory for the channel until it closes, // at which point the recving slice stops being used and should be garbage collected ch.recving = ch.recving[:0] // make([]byte, 0, ch.desc.RecvBufferCapacity) return msgBytes, nil } return nil, nil } // Call this periodically to update stats for throttling purposes. // Not goroutine-safe func (ch *Channel) updateStats() { // Exponential decay of stats. // TODO: optimize. ch.recentlySent = int64(float64(ch.recentlySent) * 0.8) } //----------------------------------------------------------------------------- const ( maxMsgPacketPayloadSize = 1024 maxMsgPacketOverheadSize = 10 // It's actually lower but good enough maxMsgPacketTotalSize = maxMsgPacketPayloadSize + maxMsgPacketOverheadSize packetTypePing = byte(0x01) packetTypePong = byte(0x02) packetTypeMsg = byte(0x03) ) // Messages in channels are chopped into smaller msgPackets for multiplexing. type msgPacket struct { ChannelID byte EOF byte // 1 means message ends here. Bytes []byte } func (p msgPacket) String() string { return fmt.Sprintf("MsgPacket{%X:%X T:%X}", p.ChannelID, p.Bytes, p.EOF) }