// crypto/x509 add sm2 support package sm2 import ( "bytes" "crypto" "crypto/dsa" "crypto/ecdsa" "crypto/elliptic" "crypto/md5" "crypto/rand" "crypto/rsa" "crypto/sha1" "crypto/sha256" "crypto/sha512" "crypto/x509/pkix" "encoding/asn1" "encoding/pem" "errors" "fmt" "hash" "io" "io/ioutil" "math/big" "net" "os" "strconv" "time" "golang.org/x/crypto/ripemd160" "golang.org/x/crypto/sha3" "github.com/vapor/crypto/sm3" ) // pkixPublicKey reflects a PKIX public key structure. See SubjectPublicKeyInfo // in RFC 3280. type pkixPublicKey struct { Algo pkix.AlgorithmIdentifier BitString asn1.BitString } // ParsePKIXPublicKey parses a DER encoded public key. These values are // typically found in PEM blocks with "BEGIN PUBLIC KEY". // // Supported key types include RSA, DSA, and ECDSA. Unknown key // types result in an error. // // On success, pub will be of type *rsa.PublicKey, *dsa.PublicKey, // or *ecdsa.PublicKey. func ParsePKIXPublicKey(derBytes []byte) (pub interface{}, err error) { var pki publicKeyInfo if rest, err := asn1.Unmarshal(derBytes, &pki); err != nil { return nil, err } else if len(rest) != 0 { return nil, errors.New("x509: trailing data after ASN.1 of public-key") } algo := getPublicKeyAlgorithmFromOID(pki.Algorithm.Algorithm) if algo == UnknownPublicKeyAlgorithm { return nil, errors.New("x509: unknown public key algorithm") } return parsePublicKey(algo, &pki) } func marshalPublicKey(pub interface{}) (publicKeyBytes []byte, publicKeyAlgorithm pkix.AlgorithmIdentifier, err error) { switch pub := pub.(type) { case *rsa.PublicKey: publicKeyBytes, err = asn1.Marshal(rsaPublicKey{ N: pub.N, E: pub.E, }) if err != nil { return nil, pkix.AlgorithmIdentifier{}, err } publicKeyAlgorithm.Algorithm = oidPublicKeyRSA // This is a NULL parameters value which is required by // https://tools.ietf.org/html/rfc3279#section-2.3.1. publicKeyAlgorithm.Parameters = asn1.RawValue{ Tag: 5, } case *ecdsa.PublicKey: publicKeyBytes = elliptic.Marshal(pub.Curve, pub.X, pub.Y) oid, ok := oidFromNamedCurve(pub.Curve) if !ok { return nil, pkix.AlgorithmIdentifier{}, errors.New("x509: unsupported elliptic curve") } publicKeyAlgorithm.Algorithm = oidPublicKeyECDSA var paramBytes []byte paramBytes, err = asn1.Marshal(oid) if err != nil { return } publicKeyAlgorithm.Parameters.FullBytes = paramBytes case *PublicKey: publicKeyBytes = elliptic.Marshal(pub.Curve, pub.X, pub.Y) oid, ok := oidFromNamedCurve(pub.Curve) if !ok { return nil, pkix.AlgorithmIdentifier{}, errors.New("x509: unsupported SM2 curve") } publicKeyAlgorithm.Algorithm = oidPublicKeyECDSA var paramBytes []byte paramBytes, err = asn1.Marshal(oid) if err != nil { return } publicKeyAlgorithm.Parameters.FullBytes = paramBytes default: return nil, pkix.AlgorithmIdentifier{}, errors.New("x509: only RSA and ECDSA(SM2) public keys supported") } return publicKeyBytes, publicKeyAlgorithm, nil } // MarshalPKIXPublicKey serialises a public key to DER-encoded PKIX format. func MarshalPKIXPublicKey(pub interface{}) ([]byte, error) { var publicKeyBytes []byte var publicKeyAlgorithm pkix.AlgorithmIdentifier var err error if publicKeyBytes, publicKeyAlgorithm, err = marshalPublicKey(pub); err != nil { return nil, err } pkix := pkixPublicKey{ Algo: publicKeyAlgorithm, BitString: asn1.BitString{ Bytes: publicKeyBytes, BitLength: 8 * len(publicKeyBytes), }, } ret, _ := asn1.Marshal(pkix) return ret, nil } // These structures reflect the ASN.1 structure of X.509 certificates.: type certificate struct { Raw asn1.RawContent TBSCertificate tbsCertificate SignatureAlgorithm pkix.AlgorithmIdentifier SignatureValue asn1.BitString } type tbsCertificate struct { Raw asn1.RawContent Version int `asn1:"optional,explicit,default:0,tag:0"` SerialNumber *big.Int SignatureAlgorithm pkix.AlgorithmIdentifier Issuer asn1.RawValue Validity validity Subject asn1.RawValue PublicKey publicKeyInfo UniqueId asn1.BitString `asn1:"optional,tag:1"` SubjectUniqueId asn1.BitString `asn1:"optional,tag:2"` Extensions []pkix.Extension `asn1:"optional,explicit,tag:3"` } type dsaAlgorithmParameters struct { P, Q, G *big.Int } type dsaSignature struct { R, S *big.Int } type ecdsaSignature dsaSignature type validity struct { NotBefore, NotAfter time.Time } type publicKeyInfo struct { Raw asn1.RawContent Algorithm pkix.AlgorithmIdentifier PublicKey asn1.BitString } // RFC 5280, 4.2.1.1 type authKeyId struct { Id []byte `asn1:"optional,tag:0"` } type SignatureAlgorithm int type Hash uint func init() { RegisterHash(MD4, nil) RegisterHash(MD5, md5.New) RegisterHash(SHA1, sha1.New) RegisterHash(SHA224, sha256.New224) RegisterHash(SHA256, sha256.New) RegisterHash(SHA384, sha512.New384) RegisterHash(SHA512, sha512.New) RegisterHash(MD5SHA1, nil) RegisterHash(RIPEMD160, ripemd160.New) RegisterHash(SHA3_224, sha3.New224) RegisterHash(SHA3_256, sha3.New256) RegisterHash(SHA3_384, sha3.New384) RegisterHash(SHA3_512, sha3.New512) RegisterHash(SHA512_224, sha512.New512_224) RegisterHash(SHA512_256, sha512.New512_256) RegisterHash(SM3, sm3.New) } // HashFunc simply returns the value of h so that Hash implements SignerOpts. func (h Hash) HashFunc() crypto.Hash { return crypto.Hash(h) } const ( MD4 Hash = 1 + iota // import golang.org/x/crypto/md4 MD5 // import crypto/md5 SHA1 // import crypto/sha1 SHA224 // import crypto/sha256 SHA256 // import crypto/sha256 SHA384 // import crypto/sha512 SHA512 // import crypto/sha512 MD5SHA1 // no implementation; MD5+SHA1 used for TLS RSA RIPEMD160 // import golang.org/x/crypto/ripemd160 SHA3_224 // import golang.org/x/crypto/sha3 SHA3_256 // import golang.org/x/crypto/sha3 SHA3_384 // import golang.org/x/crypto/sha3 SHA3_512 // import golang.org/x/crypto/sha3 SHA512_224 // import crypto/sha512 SHA512_256 // import crypto/sha512 SM3 maxHash ) var digestSizes = []uint8{ MD4: 16, MD5: 16, SHA1: 20, SHA224: 28, SHA256: 32, SHA384: 48, SHA512: 64, SHA512_224: 28, SHA512_256: 32, SHA3_224: 28, SHA3_256: 32, SHA3_384: 48, SHA3_512: 64, MD5SHA1: 36, RIPEMD160: 20, SM3: 32, } // Size returns the length, in bytes, of a digest resulting from the given hash // function. It doesn't require that the hash function in question be linked // into the program. func (h Hash) Size() int { if h > 0 && h < maxHash { return int(digestSizes[h]) } panic("crypto: Size of unknown hash function") } var hashes = make([]func() hash.Hash, maxHash) // New returns a new hash.Hash calculating the given hash function. New panics // if the hash function is not linked into the binary. func (h Hash) New() hash.Hash { if h > 0 && h < maxHash { f := hashes[h] if f != nil { return f() } } panic("crypto: requested hash function #" + strconv.Itoa(int(h)) + " is unavailable") } // Available reports whether the given hash function is linked into the binary. func (h Hash) Available() bool { return h < maxHash && hashes[h] != nil } // RegisterHash registers a function that returns a new instance of the given // hash function. This is intended to be called from the init function in // packages that implement hash functions. func RegisterHash(h Hash, f func() hash.Hash) { if h >= maxHash { panic("crypto: RegisterHash of unknown hash function") } hashes[h] = f } const ( UnknownSignatureAlgorithm SignatureAlgorithm = iota MD2WithRSA MD5WithRSA // SM3WithRSA reserve SHA1WithRSA SHA256WithRSA SHA384WithRSA SHA512WithRSA DSAWithSHA1 DSAWithSHA256 ECDSAWithSHA1 ECDSAWithSHA256 ECDSAWithSHA384 ECDSAWithSHA512 SHA256WithRSAPSS SHA384WithRSAPSS SHA512WithRSAPSS SM2WithSM3 SM2WithSHA1 SM2WithSHA256 ) func (algo SignatureAlgorithm) isRSAPSS() bool { switch algo { case SHA256WithRSAPSS, SHA384WithRSAPSS, SHA512WithRSAPSS: return true default: return false } } var algoName = [...]string{ MD2WithRSA: "MD2-RSA", MD5WithRSA: "MD5-RSA", SHA1WithRSA: "SHA1-RSA", // SM3WithRSA: "SM3-RSA", reserve SHA256WithRSA: "SHA256-RSA", SHA384WithRSA: "SHA384-RSA", SHA512WithRSA: "SHA512-RSA", SHA256WithRSAPSS: "SHA256-RSAPSS", SHA384WithRSAPSS: "SHA384-RSAPSS", SHA512WithRSAPSS: "SHA512-RSAPSS", DSAWithSHA1: "DSA-SHA1", DSAWithSHA256: "DSA-SHA256", ECDSAWithSHA1: "ECDSA-SHA1", ECDSAWithSHA256: "ECDSA-SHA256", ECDSAWithSHA384: "ECDSA-SHA384", ECDSAWithSHA512: "ECDSA-SHA512", SM2WithSM3: "SM2-SM3", SM2WithSHA1: "SM2-SHA1", SM2WithSHA256: "SM2-SHA256", } func (algo SignatureAlgorithm) String() string { if 0 < algo && int(algo) < len(algoName) { return algoName[algo] } return strconv.Itoa(int(algo)) } type PublicKeyAlgorithm int const ( UnknownPublicKeyAlgorithm PublicKeyAlgorithm = iota RSA DSA ECDSA ) // OIDs for signature algorithms // // pkcs-1 OBJECT IDENTIFIER ::= { // iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 } // // // RFC 3279 2.2.1 RSA Signature Algorithms // // md2WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 2 } // // md5WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 4 } // // sha-1WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 5 } // // dsaWithSha1 OBJECT IDENTIFIER ::= { // iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 3 } // // RFC 3279 2.2.3 ECDSA Signature Algorithm // // ecdsa-with-SHA1 OBJECT IDENTIFIER ::= { // iso(1) member-body(2) us(840) ansi-x962(10045) // signatures(4) ecdsa-with-SHA1(1)} // // // RFC 4055 5 PKCS #1 Version 1.5 // // sha256WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 11 } // // sha384WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 12 } // // sha512WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 13 } // // // RFC 5758 3.1 DSA Signature Algorithms // // dsaWithSha256 OBJECT IDENTIFIER ::= { // joint-iso-ccitt(2) country(16) us(840) organization(1) gov(101) // csor(3) algorithms(4) id-dsa-with-sha2(3) 2} // // RFC 5758 3.2 ECDSA Signature Algorithm // // ecdsa-with-SHA256 OBJECT IDENTIFIER ::= { iso(1) member-body(2) // us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 2 } // // ecdsa-with-SHA384 OBJECT IDENTIFIER ::= { iso(1) member-body(2) // us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 3 } // // ecdsa-with-SHA512 OBJECT IDENTIFIER ::= { iso(1) member-body(2) // us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 4 } var ( oidSignatureMD2WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 2} oidSignatureMD5WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 4} oidSignatureSHA1WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 5} oidSignatureSHA256WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 11} oidSignatureSHA384WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 12} oidSignatureSHA512WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 13} oidSignatureRSAPSS = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 10} oidSignatureDSAWithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 3} oidSignatureDSAWithSHA256 = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 3, 2} oidSignatureECDSAWithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 1} oidSignatureECDSAWithSHA256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 2} oidSignatureECDSAWithSHA384 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 3} oidSignatureECDSAWithSHA512 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 4} oidSignatureSM2WithSM3 = asn1.ObjectIdentifier{1, 2, 156, 10197, 1, 501} oidSignatureSM2WithSHA1 = asn1.ObjectIdentifier{1, 2, 156, 10197, 1, 502} oidSignatureSM2WithSHA256 = asn1.ObjectIdentifier{1, 2, 156, 10197, 1, 503} // oidSignatureSM3WithRSA = asn1.ObjectIdentifier{1, 2, 156, 10197, 1, 504} oidSM3 = asn1.ObjectIdentifier{1, 2, 156, 10197, 1, 401, 1} oidSHA256 = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 2, 1} oidSHA384 = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 2, 2} oidSHA512 = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 2, 3} oidMGF1 = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 8} // oidISOSignatureSHA1WithRSA means the same as oidSignatureSHA1WithRSA // but it's specified by ISO. Microsoft's makecert.exe has been known // to produce certificates with this OID. oidISOSignatureSHA1WithRSA = asn1.ObjectIdentifier{1, 3, 14, 3, 2, 29} ) var signatureAlgorithmDetails = []struct { algo SignatureAlgorithm oid asn1.ObjectIdentifier pubKeyAlgo PublicKeyAlgorithm hash Hash }{ {MD2WithRSA, oidSignatureMD2WithRSA, RSA, Hash(0) /* no value for MD2 */}, {MD5WithRSA, oidSignatureMD5WithRSA, RSA, MD5}, {SHA1WithRSA, oidSignatureSHA1WithRSA, RSA, SHA1}, {SHA1WithRSA, oidISOSignatureSHA1WithRSA, RSA, SHA1}, {SHA256WithRSA, oidSignatureSHA256WithRSA, RSA, SHA256}, {SHA384WithRSA, oidSignatureSHA384WithRSA, RSA, SHA384}, {SHA512WithRSA, oidSignatureSHA512WithRSA, RSA, SHA512}, {SHA256WithRSAPSS, oidSignatureRSAPSS, RSA, SHA256}, {SHA384WithRSAPSS, oidSignatureRSAPSS, RSA, SHA384}, {SHA512WithRSAPSS, oidSignatureRSAPSS, RSA, SHA512}, {DSAWithSHA1, oidSignatureDSAWithSHA1, DSA, SHA1}, {DSAWithSHA256, oidSignatureDSAWithSHA256, DSA, SHA256}, {ECDSAWithSHA1, oidSignatureECDSAWithSHA1, ECDSA, SHA1}, {ECDSAWithSHA256, oidSignatureECDSAWithSHA256, ECDSA, SHA256}, {ECDSAWithSHA384, oidSignatureECDSAWithSHA384, ECDSA, SHA384}, {ECDSAWithSHA512, oidSignatureECDSAWithSHA512, ECDSA, SHA512}, {SM2WithSM3, oidSignatureSM2WithSM3, ECDSA, SM3}, {SM2WithSHA1, oidSignatureSM2WithSHA1, ECDSA, SHA1}, {SM2WithSHA256, oidSignatureSM2WithSHA256, ECDSA, SHA256}, // {SM3WithRSA, oidSignatureSM3WithRSA, RSA, SM3}, } // pssParameters reflects the parameters in an AlgorithmIdentifier that // specifies RSA PSS. See https://tools.ietf.org/html/rfc3447#appendix-A.2.3 type pssParameters struct { // The following three fields are not marked as // optional because the default values specify SHA-1, // which is no longer suitable for use in signatures. Hash pkix.AlgorithmIdentifier `asn1:"explicit,tag:0"` MGF pkix.AlgorithmIdentifier `asn1:"explicit,tag:1"` SaltLength int `asn1:"explicit,tag:2"` TrailerField int `asn1:"optional,explicit,tag:3,default:1"` } // rsaPSSParameters returns an asn1.RawValue suitable for use as the Parameters // in an AlgorithmIdentifier that specifies RSA PSS. func rsaPSSParameters(hashFunc Hash) asn1.RawValue { var hashOID asn1.ObjectIdentifier switch hashFunc { case SHA256: hashOID = oidSHA256 case SHA384: hashOID = oidSHA384 case SHA512: hashOID = oidSHA512 } params := pssParameters{ Hash: pkix.AlgorithmIdentifier{ Algorithm: hashOID, Parameters: asn1.RawValue{ Tag: 5, /* ASN.1 NULL */ }, }, MGF: pkix.AlgorithmIdentifier{ Algorithm: oidMGF1, }, SaltLength: hashFunc.Size(), TrailerField: 1, } mgf1Params := pkix.AlgorithmIdentifier{ Algorithm: hashOID, Parameters: asn1.RawValue{ Tag: 5, /* ASN.1 NULL */ }, } var err error params.MGF.Parameters.FullBytes, err = asn1.Marshal(mgf1Params) if err != nil { panic(err) } serialized, err := asn1.Marshal(params) if err != nil { panic(err) } return asn1.RawValue{FullBytes: serialized} } func getSignatureAlgorithmFromAI(ai pkix.AlgorithmIdentifier) SignatureAlgorithm { if !ai.Algorithm.Equal(oidSignatureRSAPSS) { for _, details := range signatureAlgorithmDetails { if ai.Algorithm.Equal(details.oid) { return details.algo } } return UnknownSignatureAlgorithm } // RSA PSS is special because it encodes important parameters // in the Parameters. var params pssParameters if _, err := asn1.Unmarshal(ai.Parameters.FullBytes, ¶ms); err != nil { return UnknownSignatureAlgorithm } var mgf1HashFunc pkix.AlgorithmIdentifier if _, err := asn1.Unmarshal(params.MGF.Parameters.FullBytes, &mgf1HashFunc); err != nil { return UnknownSignatureAlgorithm } // PSS is greatly overburdened with options. This code forces // them into three buckets by requiring that the MGF1 hash // function always match the message hash function (as // recommended in // https://tools.ietf.org/html/rfc3447#section-8.1), that the // salt length matches the hash length, and that the trailer // field has the default value. asn1NULL := []byte{0x05, 0x00} if !bytes.Equal(params.Hash.Parameters.FullBytes, asn1NULL) || !params.MGF.Algorithm.Equal(oidMGF1) || !mgf1HashFunc.Algorithm.Equal(params.Hash.Algorithm) || !bytes.Equal(mgf1HashFunc.Parameters.FullBytes, asn1NULL) || params.TrailerField != 1 { return UnknownSignatureAlgorithm } switch { case params.Hash.Algorithm.Equal(oidSHA256) && params.SaltLength == 32: return SHA256WithRSAPSS case params.Hash.Algorithm.Equal(oidSHA384) && params.SaltLength == 48: return SHA384WithRSAPSS case params.Hash.Algorithm.Equal(oidSHA512) && params.SaltLength == 64: return SHA512WithRSAPSS } return UnknownSignatureAlgorithm } // RFC 3279, 2.3 Public Key Algorithms // // pkcs-1 OBJECT IDENTIFIER ::== { iso(1) member-body(2) us(840) // rsadsi(113549) pkcs(1) 1 } // // rsaEncryption OBJECT IDENTIFIER ::== { pkcs1-1 1 } // // id-dsa OBJECT IDENTIFIER ::== { iso(1) member-body(2) us(840) // x9-57(10040) x9cm(4) 1 } // // RFC 5480, 2.1.1 Unrestricted Algorithm Identifier and Parameters // // id-ecPublicKey OBJECT IDENTIFIER ::= { // iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 } var ( oidPublicKeyRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 1} oidPublicKeyDSA = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 1} oidPublicKeyECDSA = asn1.ObjectIdentifier{1, 2, 840, 10045, 2, 1} ) func getPublicKeyAlgorithmFromOID(oid asn1.ObjectIdentifier) PublicKeyAlgorithm { switch { case oid.Equal(oidPublicKeyRSA): return RSA case oid.Equal(oidPublicKeyDSA): return DSA case oid.Equal(oidPublicKeyECDSA): return ECDSA } return UnknownPublicKeyAlgorithm } // RFC 5480, 2.1.1.1. Named Curve // // secp224r1 OBJECT IDENTIFIER ::= { // iso(1) identified-organization(3) certicom(132) curve(0) 33 } // // secp256r1 OBJECT IDENTIFIER ::= { // iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3) // prime(1) 7 } // // secp384r1 OBJECT IDENTIFIER ::= { // iso(1) identified-organization(3) certicom(132) curve(0) 34 } // // secp521r1 OBJECT IDENTIFIER ::= { // iso(1) identified-organization(3) certicom(132) curve(0) 35 } // // NB: secp256r1 is equivalent to prime256v1 var ( oidNamedCurveP224 = asn1.ObjectIdentifier{1, 3, 132, 0, 33} oidNamedCurveP256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 3, 1, 7} oidNamedCurveP384 = asn1.ObjectIdentifier{1, 3, 132, 0, 34} oidNamedCurveP521 = asn1.ObjectIdentifier{1, 3, 132, 0, 35} oidNamedCurveP256SM2 = asn1.ObjectIdentifier{1, 2, 156, 10197, 1, 301} // I get the SM2 ID through parsing the pem file generated by gmssl ) func namedCurveFromOID(oid asn1.ObjectIdentifier) elliptic.Curve { switch { case oid.Equal(oidNamedCurveP224): return elliptic.P224() case oid.Equal(oidNamedCurveP256): return elliptic.P256() case oid.Equal(oidNamedCurveP384): return elliptic.P384() case oid.Equal(oidNamedCurveP521): return elliptic.P521() case oid.Equal(oidNamedCurveP256SM2): return P256Sm2() } return nil } func oidFromNamedCurve(curve elliptic.Curve) (asn1.ObjectIdentifier, bool) { switch curve { case elliptic.P224(): return oidNamedCurveP224, true case elliptic.P256(): return oidNamedCurveP256, true case elliptic.P384(): return oidNamedCurveP384, true case elliptic.P521(): return oidNamedCurveP521, true case P256Sm2(): return oidNamedCurveP256SM2, true } return nil, false } // KeyUsage represents the set of actions that are valid for a given key. It's // a bitmap of the KeyUsage* constants. type KeyUsage int const ( KeyUsageDigitalSignature KeyUsage = 1 << iota KeyUsageContentCommitment KeyUsageKeyEncipherment KeyUsageDataEncipherment KeyUsageKeyAgreement KeyUsageCertSign KeyUsageCRLSign KeyUsageEncipherOnly KeyUsageDecipherOnly ) // RFC 5280, 4.2.1.12 Extended Key Usage // // anyExtendedKeyUsage OBJECT IDENTIFIER ::= { id-ce-extKeyUsage 0 } // // id-kp OBJECT IDENTIFIER ::= { id-pkix 3 } // // id-kp-serverAuth OBJECT IDENTIFIER ::= { id-kp 1 } // id-kp-clientAuth OBJECT IDENTIFIER ::= { id-kp 2 } // id-kp-codeSigning OBJECT IDENTIFIER ::= { id-kp 3 } // id-kp-emailProtection OBJECT IDENTIFIER ::= { id-kp 4 } // id-kp-timeStamping OBJECT IDENTIFIER ::= { id-kp 8 } // id-kp-OCSPSigning OBJECT IDENTIFIER ::= { id-kp 9 } var ( oidExtKeyUsageAny = asn1.ObjectIdentifier{2, 5, 29, 37, 0} oidExtKeyUsageServerAuth = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 1} oidExtKeyUsageClientAuth = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 2} oidExtKeyUsageCodeSigning = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 3} oidExtKeyUsageEmailProtection = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 4} oidExtKeyUsageIPSECEndSystem = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 5} oidExtKeyUsageIPSECTunnel = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 6} oidExtKeyUsageIPSECUser = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 7} oidExtKeyUsageTimeStamping = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 8} oidExtKeyUsageOCSPSigning = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 9} oidExtKeyUsageMicrosoftServerGatedCrypto = asn1.ObjectIdentifier{1, 3, 6, 1, 4, 1, 311, 10, 3, 3} oidExtKeyUsageNetscapeServerGatedCrypto = asn1.ObjectIdentifier{2, 16, 840, 1, 113730, 4, 1} ) // ExtKeyUsage represents an extended set of actions that are valid for a given key. // Each of the ExtKeyUsage* constants define a unique action. type ExtKeyUsage int const ( ExtKeyUsageAny ExtKeyUsage = iota ExtKeyUsageServerAuth ExtKeyUsageClientAuth ExtKeyUsageCodeSigning ExtKeyUsageEmailProtection ExtKeyUsageIPSECEndSystem ExtKeyUsageIPSECTunnel ExtKeyUsageIPSECUser ExtKeyUsageTimeStamping ExtKeyUsageOCSPSigning ExtKeyUsageMicrosoftServerGatedCrypto ExtKeyUsageNetscapeServerGatedCrypto ) // extKeyUsageOIDs contains the mapping between an ExtKeyUsage and its OID. var extKeyUsageOIDs = []struct { extKeyUsage ExtKeyUsage oid asn1.ObjectIdentifier }{ {ExtKeyUsageAny, oidExtKeyUsageAny}, {ExtKeyUsageServerAuth, oidExtKeyUsageServerAuth}, {ExtKeyUsageClientAuth, oidExtKeyUsageClientAuth}, {ExtKeyUsageCodeSigning, oidExtKeyUsageCodeSigning}, {ExtKeyUsageEmailProtection, oidExtKeyUsageEmailProtection}, {ExtKeyUsageIPSECEndSystem, oidExtKeyUsageIPSECEndSystem}, {ExtKeyUsageIPSECTunnel, oidExtKeyUsageIPSECTunnel}, {ExtKeyUsageIPSECUser, oidExtKeyUsageIPSECUser}, {ExtKeyUsageTimeStamping, oidExtKeyUsageTimeStamping}, {ExtKeyUsageOCSPSigning, oidExtKeyUsageOCSPSigning}, {ExtKeyUsageMicrosoftServerGatedCrypto, oidExtKeyUsageMicrosoftServerGatedCrypto}, {ExtKeyUsageNetscapeServerGatedCrypto, oidExtKeyUsageNetscapeServerGatedCrypto}, } func extKeyUsageFromOID(oid asn1.ObjectIdentifier) (eku ExtKeyUsage, ok bool) { for _, pair := range extKeyUsageOIDs { if oid.Equal(pair.oid) { return pair.extKeyUsage, true } } return } func oidFromExtKeyUsage(eku ExtKeyUsage) (oid asn1.ObjectIdentifier, ok bool) { for _, pair := range extKeyUsageOIDs { if eku == pair.extKeyUsage { return pair.oid, true } } return } // A Certificate represents an X.509 certificate. type Certificate struct { Raw []byte // Complete ASN.1 DER content (certificate, signature algorithm and signature). RawTBSCertificate []byte // Certificate part of raw ASN.1 DER content. RawSubjectPublicKeyInfo []byte // DER encoded SubjectPublicKeyInfo. RawSubject []byte // DER encoded Subject RawIssuer []byte // DER encoded Issuer Signature []byte SignatureAlgorithm SignatureAlgorithm PublicKeyAlgorithm PublicKeyAlgorithm PublicKey interface{} Version int SerialNumber *big.Int Issuer pkix.Name Subject pkix.Name NotBefore, NotAfter time.Time // Validity bounds. KeyUsage KeyUsage // Extensions contains raw X.509 extensions. When parsing certificates, // this can be used to extract non-critical extensions that are not // parsed by this package. When marshaling certificates, the Extensions // field is ignored, see ExtraExtensions. Extensions []pkix.Extension // ExtraExtensions contains extensions to be copied, raw, into any // marshaled certificates. Values override any extensions that would // otherwise be produced based on the other fields. The ExtraExtensions // field is not populated when parsing certificates, see Extensions. ExtraExtensions []pkix.Extension // UnhandledCriticalExtensions contains a list of extension IDs that // were not (fully) processed when parsing. Verify will fail if this // slice is non-empty, unless verification is delegated to an OS // library which understands all the critical extensions. // // Users can access these extensions using Extensions and can remove // elements from this slice if they believe that they have been // handled. UnhandledCriticalExtensions []asn1.ObjectIdentifier ExtKeyUsage []ExtKeyUsage // Sequence of extended key usages. UnknownExtKeyUsage []asn1.ObjectIdentifier // Encountered extended key usages unknown to this package. BasicConstraintsValid bool // if true then the next two fields are valid. IsCA bool MaxPathLen int // MaxPathLenZero indicates that BasicConstraintsValid==true and // MaxPathLen==0 should be interpreted as an actual maximum path length // of zero. Otherwise, that combination is interpreted as MaxPathLen // not being set. MaxPathLenZero bool SubjectKeyId []byte AuthorityKeyId []byte // RFC 5280, 4.2.2.1 (Authority Information Access) OCSPServer []string IssuingCertificateURL []string // Subject Alternate Name values DNSNames []string EmailAddresses []string IPAddresses []net.IP // Name constraints PermittedDNSDomainsCritical bool // if true then the name constraints are marked critical. PermittedDNSDomains []string // CRL Distribution Points CRLDistributionPoints []string PolicyIdentifiers []asn1.ObjectIdentifier } // ErrUnsupportedAlgorithm results from attempting to perform an operation that // involves algorithms that are not currently implemented. var ErrUnsupportedAlgorithm = errors.New("x509: cannot verify signature: algorithm unimplemented") // An InsecureAlgorithmError type InsecureAlgorithmError SignatureAlgorithm func (e InsecureAlgorithmError) Error() string { return fmt.Sprintf("x509: cannot verify signature: insecure algorithm %v", SignatureAlgorithm(e)) } // ConstraintViolationError results when a requested usage is not permitted by // a certificate. For example: checking a signature when the public key isn't a // certificate signing key. type ConstraintViolationError struct{} func (ConstraintViolationError) Error() string { return "x509: invalid signature: parent certificate cannot sign this kind of certificate" } func (c *Certificate) Equal(other *Certificate) bool { return bytes.Equal(c.Raw, other.Raw) } // Entrust have a broken root certificate (CN=Entrust.net Certification // Authority (2048)) which isn't marked as a CA certificate and is thus invalid // according to PKIX. // We recognise this certificate by its SubjectPublicKeyInfo and exempt it // from the Basic Constraints requirement. // See http://www.entrust.net/knowledge-base/technote.cfm?tn=7869 // // TODO(agl): remove this hack once their reissued root is sufficiently // widespread. var entrustBrokenSPKI = []byte{ 0x30, 0x82, 0x01, 0x22, 0x30, 0x0d, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01, 0x05, 0x00, 0x03, 0x82, 0x01, 0x0f, 0x00, 0x30, 0x82, 0x01, 0x0a, 0x02, 0x82, 0x01, 0x01, 0x00, 0x97, 0xa3, 0x2d, 0x3c, 0x9e, 0xde, 0x05, 0xda, 0x13, 0xc2, 0x11, 0x8d, 0x9d, 0x8e, 0xe3, 0x7f, 0xc7, 0x4b, 0x7e, 0x5a, 0x9f, 0xb3, 0xff, 0x62, 0xab, 0x73, 0xc8, 0x28, 0x6b, 0xba, 0x10, 0x64, 0x82, 0x87, 0x13, 0xcd, 0x57, 0x18, 0xff, 0x28, 0xce, 0xc0, 0xe6, 0x0e, 0x06, 0x91, 0x50, 0x29, 0x83, 0xd1, 0xf2, 0xc3, 0x2a, 0xdb, 0xd8, 0xdb, 0x4e, 0x04, 0xcc, 0x00, 0xeb, 0x8b, 0xb6, 0x96, 0xdc, 0xbc, 0xaa, 0xfa, 0x52, 0x77, 0x04, 0xc1, 0xdb, 0x19, 0xe4, 0xae, 0x9c, 0xfd, 0x3c, 0x8b, 0x03, 0xef, 0x4d, 0xbc, 0x1a, 0x03, 0x65, 0xf9, 0xc1, 0xb1, 0x3f, 0x72, 0x86, 0xf2, 0x38, 0xaa, 0x19, 0xae, 0x10, 0x88, 0x78, 0x28, 0xda, 0x75, 0xc3, 0x3d, 0x02, 0x82, 0x02, 0x9c, 0xb9, 0xc1, 0x65, 0x77, 0x76, 0x24, 0x4c, 0x98, 0xf7, 0x6d, 0x31, 0x38, 0xfb, 0xdb, 0xfe, 0xdb, 0x37, 0x02, 0x76, 0xa1, 0x18, 0x97, 0xa6, 0xcc, 0xde, 0x20, 0x09, 0x49, 0x36, 0x24, 0x69, 0x42, 0xf6, 0xe4, 0x37, 0x62, 0xf1, 0x59, 0x6d, 0xa9, 0x3c, 0xed, 0x34, 0x9c, 0xa3, 0x8e, 0xdb, 0xdc, 0x3a, 0xd7, 0xf7, 0x0a, 0x6f, 0xef, 0x2e, 0xd8, 0xd5, 0x93, 0x5a, 0x7a, 0xed, 0x08, 0x49, 0x68, 0xe2, 0x41, 0xe3, 0x5a, 0x90, 0xc1, 0x86, 0x55, 0xfc, 0x51, 0x43, 0x9d, 0xe0, 0xb2, 0xc4, 0x67, 0xb4, 0xcb, 0x32, 0x31, 0x25, 0xf0, 0x54, 0x9f, 0x4b, 0xd1, 0x6f, 0xdb, 0xd4, 0xdd, 0xfc, 0xaf, 0x5e, 0x6c, 0x78, 0x90, 0x95, 0xde, 0xca, 0x3a, 0x48, 0xb9, 0x79, 0x3c, 0x9b, 0x19, 0xd6, 0x75, 0x05, 0xa0, 0xf9, 0x88, 0xd7, 0xc1, 0xe8, 0xa5, 0x09, 0xe4, 0x1a, 0x15, 0xdc, 0x87, 0x23, 0xaa, 0xb2, 0x75, 0x8c, 0x63, 0x25, 0x87, 0xd8, 0xf8, 0x3d, 0xa6, 0xc2, 0xcc, 0x66, 0xff, 0xa5, 0x66, 0x68, 0x55, 0x02, 0x03, 0x01, 0x00, 0x01, } // CheckSignatureFrom verifies that the signature on c is a valid signature // from parent. func (c *Certificate) CheckSignatureFrom(parent *Certificate) error { // RFC 5280, 4.2.1.9: // "If the basic constraints extension is not present in a version 3 // certificate, or the extension is present but the cA boolean is not // asserted, then the certified public key MUST NOT be used to verify // certificate signatures." // (except for Entrust, see comment above entrustBrokenSPKI) if (parent.Version == 3 && !parent.BasicConstraintsValid || parent.BasicConstraintsValid && !parent.IsCA) && !bytes.Equal(c.RawSubjectPublicKeyInfo, entrustBrokenSPKI) { return ConstraintViolationError{} } if parent.KeyUsage != 0 && parent.KeyUsage&KeyUsageCertSign == 0 { return ConstraintViolationError{} } if parent.PublicKeyAlgorithm == UnknownPublicKeyAlgorithm { return ErrUnsupportedAlgorithm } // TODO(agl): don't ignore the path length constraint. return parent.CheckSignature(c.SignatureAlgorithm, c.RawTBSCertificate, c.Signature) } // CheckSignature verifies that signature is a valid signature over signed from // c's public key. func (c *Certificate) CheckSignature(algo SignatureAlgorithm, signed, signature []byte) error { return checkSignature(algo, signed, signature, c.PublicKey) } // CheckSignature verifies that signature is a valid signature over signed from // a crypto.PublicKey. func checkSignature(algo SignatureAlgorithm, signed, signature []byte, publicKey crypto.PublicKey) (err error) { var hashType Hash switch algo { case SHA1WithRSA, DSAWithSHA1, ECDSAWithSHA1, SM2WithSHA1: hashType = SHA1 case SHA256WithRSA, SHA256WithRSAPSS, DSAWithSHA256, ECDSAWithSHA256, SM2WithSHA256: hashType = SHA256 case SHA384WithRSA, SHA384WithRSAPSS, ECDSAWithSHA384: hashType = SHA384 case SHA512WithRSA, SHA512WithRSAPSS, ECDSAWithSHA512: hashType = SHA512 case MD2WithRSA, MD5WithRSA: return InsecureAlgorithmError(algo) case SM2WithSM3: // SM3WithRSA reserve hashType = SM3 default: return ErrUnsupportedAlgorithm } if !hashType.Available() { return ErrUnsupportedAlgorithm } h := hashType.New() h.Write(signed) digest := h.Sum(nil) switch pub := publicKey.(type) { case *rsa.PublicKey: if algo.isRSAPSS() { return rsa.VerifyPSS(pub, crypto.Hash(hashType), digest, signature, &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash}) } else { return rsa.VerifyPKCS1v15(pub, crypto.Hash(hashType), digest, signature) } case *dsa.PublicKey: dsaSig := new(dsaSignature) if rest, err := asn1.Unmarshal(signature, dsaSig); err != nil { return err } else if len(rest) != 0 { return errors.New("x509: trailing data after DSA signature") } if dsaSig.R.Sign() <= 0 || dsaSig.S.Sign() <= 0 { return errors.New("x509: DSA signature contained zero or negative values") } if !dsa.Verify(pub, digest, dsaSig.R, dsaSig.S) { return errors.New("x509: DSA verification failure") } return case *ecdsa.PublicKey: ecdsaSig := new(ecdsaSignature) if rest, err := asn1.Unmarshal(signature, ecdsaSig); err != nil { return err } else if len(rest) != 0 { return errors.New("x509: trailing data after ECDSA signature") } if ecdsaSig.R.Sign() <= 0 || ecdsaSig.S.Sign() <= 0 { return errors.New("x509: ECDSA signature contained zero or negative values") } switch pub.Curve { case P256Sm2(): if !Verify(&PublicKey{ Curve: pub.Curve, X: pub.X, Y: pub.Y, }, digest, ecdsaSig.R, ecdsaSig.S) { return errors.New("x509: SM2 verification failure") } default: if !ecdsa.Verify(pub, digest, ecdsaSig.R, ecdsaSig.S) { return errors.New("x509: ECDSA verification failure") } } return } return ErrUnsupportedAlgorithm } // CheckCRLSignature checks that the signature in crl is from c. func (c *Certificate) CheckCRLSignature(crl *pkix.CertificateList) error { algo := getSignatureAlgorithmFromAI(crl.SignatureAlgorithm) return c.CheckSignature(algo, crl.TBSCertList.Raw, crl.SignatureValue.RightAlign()) } type UnhandledCriticalExtension struct{} func (h UnhandledCriticalExtension) Error() string { return "x509: unhandled critical extension" } type basicConstraints struct { IsCA bool `asn1:"optional"` MaxPathLen int `asn1:"optional,default:-1"` } // RFC 5280 4.2.1.4 type policyInformation struct { Policy asn1.ObjectIdentifier // policyQualifiers omitted } // RFC 5280, 4.2.1.10 type nameConstraints struct { Permitted []generalSubtree `asn1:"optional,tag:0"` Excluded []generalSubtree `asn1:"optional,tag:1"` } type generalSubtree struct { Name string `asn1:"tag:2,optional,ia5"` } // RFC 5280, 4.2.2.1 type authorityInfoAccess struct { Method asn1.ObjectIdentifier Location asn1.RawValue } // RFC 5280, 4.2.1.14 type distributionPoint struct { DistributionPoint distributionPointName `asn1:"optional,tag:0"` Reason asn1.BitString `asn1:"optional,tag:1"` CRLIssuer asn1.RawValue `asn1:"optional,tag:2"` } type distributionPointName struct { FullName asn1.RawValue `asn1:"optional,tag:0"` RelativeName pkix.RDNSequence `asn1:"optional,tag:1"` } // asn1Null is the ASN.1 encoding of a NULL value. var asn1Null = []byte{5, 0} func parsePublicKey(algo PublicKeyAlgorithm, keyData *publicKeyInfo) (interface{}, error) { asn1Data := keyData.PublicKey.RightAlign() switch algo { case RSA: // RSA public keys must have a NULL in the parameters // (https://tools.ietf.org/html/rfc3279#section-2.3.1). if !bytes.Equal(keyData.Algorithm.Parameters.FullBytes, asn1Null) { return nil, errors.New("x509: RSA key missing NULL parameters") } p := new(rsaPublicKey) rest, err := asn1.Unmarshal(asn1Data, p) if err != nil { return nil, err } if len(rest) != 0 { return nil, errors.New("x509: trailing data after RSA public key") } if p.N.Sign() <= 0 { return nil, errors.New("x509: RSA modulus is not a positive number") } if p.E <= 0 { return nil, errors.New("x509: RSA public exponent is not a positive number") } pub := &rsa.PublicKey{ E: p.E, N: p.N, } return pub, nil case DSA: var p *big.Int rest, err := asn1.Unmarshal(asn1Data, &p) if err != nil { return nil, err } if len(rest) != 0 { return nil, errors.New("x509: trailing data after DSA public key") } paramsData := keyData.Algorithm.Parameters.FullBytes params := new(dsaAlgorithmParameters) rest, err = asn1.Unmarshal(paramsData, params) if err != nil { return nil, err } if len(rest) != 0 { return nil, errors.New("x509: trailing data after DSA parameters") } if p.Sign() <= 0 || params.P.Sign() <= 0 || params.Q.Sign() <= 0 || params.G.Sign() <= 0 { return nil, errors.New("x509: zero or negative DSA parameter") } pub := &dsa.PublicKey{ Parameters: dsa.Parameters{ P: params.P, Q: params.Q, G: params.G, }, Y: p, } return pub, nil case ECDSA: paramsData := keyData.Algorithm.Parameters.FullBytes namedCurveOID := new(asn1.ObjectIdentifier) rest, err := asn1.Unmarshal(paramsData, namedCurveOID) if err != nil { return nil, err } if len(rest) != 0 { return nil, errors.New("x509: trailing data after ECDSA parameters") } namedCurve := namedCurveFromOID(*namedCurveOID) if namedCurve == nil { return nil, errors.New("x509: unsupported elliptic curve") } x, y := elliptic.Unmarshal(namedCurve, asn1Data) if x == nil { return nil, errors.New("x509: failed to unmarshal elliptic curve point") } pub := &ecdsa.PublicKey{ Curve: namedCurve, X: x, Y: y, } return pub, nil default: return nil, nil } } func parseSANExtension(value []byte) (dnsNames, emailAddresses []string, ipAddresses []net.IP, err error) { // RFC 5280, 4.2.1.6 // SubjectAltName ::= GeneralNames // // GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName // // GeneralName ::= CHOICE { // otherName [0] OtherName, // rfc822Name [1] IA5String, // dNSName [2] IA5String, // x400Address [3] ORAddress, // directoryName [4] Name, // ediPartyName [5] EDIPartyName, // uniformResourceIdentifier [6] IA5String, // iPAddress [7] OCTET STRING, // registeredID [8] OBJECT IDENTIFIER } var seq asn1.RawValue var rest []byte if rest, err = asn1.Unmarshal(value, &seq); err != nil { return } else if len(rest) != 0 { err = errors.New("x509: trailing data after X.509 extension") return } if !seq.IsCompound || seq.Tag != 16 || seq.Class != 0 { err = asn1.StructuralError{Msg: "bad SAN sequence"} return } rest = seq.Bytes for len(rest) > 0 { var v asn1.RawValue rest, err = asn1.Unmarshal(rest, &v) if err != nil { return } switch v.Tag { case 1: emailAddresses = append(emailAddresses, string(v.Bytes)) case 2: dnsNames = append(dnsNames, string(v.Bytes)) case 7: switch len(v.Bytes) { case net.IPv4len, net.IPv6len: ipAddresses = append(ipAddresses, v.Bytes) default: err = errors.New("x509: certificate contained IP address of length " + strconv.Itoa(len(v.Bytes))) return } } } return } func parseCertificate(in *certificate) (*Certificate, error) { out := new(Certificate) out.Raw = in.Raw out.RawTBSCertificate = in.TBSCertificate.Raw out.RawSubjectPublicKeyInfo = in.TBSCertificate.PublicKey.Raw out.RawSubject = in.TBSCertificate.Subject.FullBytes out.RawIssuer = in.TBSCertificate.Issuer.FullBytes out.Signature = in.SignatureValue.RightAlign() out.SignatureAlgorithm = getSignatureAlgorithmFromAI(in.TBSCertificate.SignatureAlgorithm) out.PublicKeyAlgorithm = getPublicKeyAlgorithmFromOID(in.TBSCertificate.PublicKey.Algorithm.Algorithm) var err error out.PublicKey, err = parsePublicKey(out.PublicKeyAlgorithm, &in.TBSCertificate.PublicKey) if err != nil { return nil, err } out.Version = in.TBSCertificate.Version + 1 out.SerialNumber = in.TBSCertificate.SerialNumber var issuer, subject pkix.RDNSequence if rest, err := asn1.Unmarshal(in.TBSCertificate.Subject.FullBytes, &subject); err != nil { return nil, err } else if len(rest) != 0 { return nil, errors.New("x509: trailing data after X.509 subject") } if rest, err := asn1.Unmarshal(in.TBSCertificate.Issuer.FullBytes, &issuer); err != nil { return nil, err } else if len(rest) != 0 { return nil, errors.New("x509: trailing data after X.509 subject") } out.Issuer.FillFromRDNSequence(&issuer) out.Subject.FillFromRDNSequence(&subject) out.NotBefore = in.TBSCertificate.Validity.NotBefore out.NotAfter = in.TBSCertificate.Validity.NotAfter for _, e := range in.TBSCertificate.Extensions { out.Extensions = append(out.Extensions, e) unhandled := false if len(e.Id) == 4 && e.Id[0] == 2 && e.Id[1] == 5 && e.Id[2] == 29 { switch e.Id[3] { case 15: // RFC 5280, 4.2.1.3 var usageBits asn1.BitString if rest, err := asn1.Unmarshal(e.Value, &usageBits); err != nil { return nil, err } else if len(rest) != 0 { return nil, errors.New("x509: trailing data after X.509 KeyUsage") } var usage int for i := 0; i < 9; i++ { if usageBits.At(i) != 0 { usage |= 1 << uint(i) } } out.KeyUsage = KeyUsage(usage) case 19: // RFC 5280, 4.2.1.9 var constraints basicConstraints if rest, err := asn1.Unmarshal(e.Value, &constraints); err != nil { return nil, err } else if len(rest) != 0 { return nil, errors.New("x509: trailing data after X.509 BasicConstraints") } out.BasicConstraintsValid = true out.IsCA = constraints.IsCA out.MaxPathLen = constraints.MaxPathLen out.MaxPathLenZero = out.MaxPathLen == 0 case 17: out.DNSNames, out.EmailAddresses, out.IPAddresses, err = parseSANExtension(e.Value) if err != nil { return nil, err } if len(out.DNSNames) == 0 && len(out.EmailAddresses) == 0 && len(out.IPAddresses) == 0 { // If we didn't parse anything then we do the critical check, below. unhandled = true } case 30: // RFC 5280, 4.2.1.10 // NameConstraints ::= SEQUENCE { // permittedSubtrees [0] GeneralSubtrees OPTIONAL, // excludedSubtrees [1] GeneralSubtrees OPTIONAL } // // GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree // // GeneralSubtree ::= SEQUENCE { // base GeneralName, // minimum [0] BaseDistance DEFAULT 0, // maximum [1] BaseDistance OPTIONAL } // // BaseDistance ::= INTEGER (0..MAX) var constraints nameConstraints if rest, err := asn1.Unmarshal(e.Value, &constraints); err != nil { return nil, err } else if len(rest) != 0 { return nil, errors.New("x509: trailing data after X.509 NameConstraints") } if len(constraints.Excluded) > 0 && e.Critical { return out, UnhandledCriticalExtension{} } for _, subtree := range constraints.Permitted { if len(subtree.Name) == 0 { if e.Critical { return out, UnhandledCriticalExtension{} } continue } out.PermittedDNSDomains = append(out.PermittedDNSDomains, subtree.Name) } case 31: // RFC 5280, 4.2.1.13 // CRLDistributionPoints ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint // // DistributionPoint ::= SEQUENCE { // distributionPoint [0] DistributionPointName OPTIONAL, // reasons [1] ReasonFlags OPTIONAL, // cRLIssuer [2] GeneralNames OPTIONAL } // // DistributionPointName ::= CHOICE { // fullName [0] GeneralNames, // nameRelativeToCRLIssuer [1] RelativeDistinguishedName } var cdp []distributionPoint if rest, err := asn1.Unmarshal(e.Value, &cdp); err != nil { return nil, err } else if len(rest) != 0 { return nil, errors.New("x509: trailing data after X.509 CRL distribution point") } for i := range cdp { // use index & pointer here to avoid value copy (each iteration copies 200 bytes) dp := &cdp[i] // Per RFC 5280, 4.2.1.13, one of distributionPoint or cRLIssuer may be empty. if len(dp.DistributionPoint.FullName.Bytes) == 0 { continue } var n asn1.RawValue if _, err := asn1.Unmarshal(dp.DistributionPoint.FullName.Bytes, &n); err != nil { return nil, err } // Trailing data after the fullName is // allowed because other elements of // the SEQUENCE can appear. if n.Tag == 6 { out.CRLDistributionPoints = append(out.CRLDistributionPoints, string(n.Bytes)) } } case 35: // RFC 5280, 4.2.1.1 var a authKeyId if rest, err := asn1.Unmarshal(e.Value, &a); err != nil { return nil, err } else if len(rest) != 0 { return nil, errors.New("x509: trailing data after X.509 authority key-id") } out.AuthorityKeyId = a.Id case 37: // RFC 5280, 4.2.1.12. Extended Key Usage // id-ce-extKeyUsage OBJECT IDENTIFIER ::= { id-ce 37 } // // ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId // // KeyPurposeId ::= OBJECT IDENTIFIER var keyUsage []asn1.ObjectIdentifier if rest, err := asn1.Unmarshal(e.Value, &keyUsage); err != nil { return nil, err } else if len(rest) != 0 { return nil, errors.New("x509: trailing data after X.509 ExtendedKeyUsage") } for _, u := range keyUsage { if extKeyUsage, ok := extKeyUsageFromOID(u); ok { out.ExtKeyUsage = append(out.ExtKeyUsage, extKeyUsage) } else { out.UnknownExtKeyUsage = append(out.UnknownExtKeyUsage, u) } } case 14: // RFC 5280, 4.2.1.2 var keyid []byte if rest, err := asn1.Unmarshal(e.Value, &keyid); err != nil { return nil, err } else if len(rest) != 0 { return nil, errors.New("x509: trailing data after X.509 key-id") } out.SubjectKeyId = keyid case 32: // RFC 5280 4.2.1.4: Certificate Policies var policies []policyInformation if rest, err := asn1.Unmarshal(e.Value, &policies); err != nil { return nil, err } else if len(rest) != 0 { return nil, errors.New("x509: trailing data after X.509 certificate policies") } out.PolicyIdentifiers = make([]asn1.ObjectIdentifier, len(policies)) for i, policy := range policies { out.PolicyIdentifiers[i] = policy.Policy } default: // Unknown extensions are recorded if critical. unhandled = true } } else if e.Id.Equal(oidExtensionAuthorityInfoAccess) { // RFC 5280 4.2.2.1: Authority Information Access var aia []authorityInfoAccess if rest, err := asn1.Unmarshal(e.Value, &aia); err != nil { return nil, err } else if len(rest) != 0 { return nil, errors.New("x509: trailing data after X.509 authority information") } for _, v := range aia { // GeneralName: uniformResourceIdentifier [6] IA5String if v.Location.Tag != 6 { continue } if v.Method.Equal(oidAuthorityInfoAccessOcsp) { out.OCSPServer = append(out.OCSPServer, string(v.Location.Bytes)) } else if v.Method.Equal(oidAuthorityInfoAccessIssuers) { out.IssuingCertificateURL = append(out.IssuingCertificateURL, string(v.Location.Bytes)) } } } else { // Unknown extensions are recorded if critical. unhandled = true } if e.Critical && unhandled { out.UnhandledCriticalExtensions = append(out.UnhandledCriticalExtensions, e.Id) } } return out, nil } // ParseCertificate parses a single certificate from the given ASN.1 DER data. func ParseCertificate(asn1Data []byte) (*Certificate, error) { var cert certificate rest, err := asn1.Unmarshal(asn1Data, &cert) if err != nil { return nil, err } if len(rest) > 0 { return nil, asn1.SyntaxError{Msg: "trailing data"} } return parseCertificate(&cert) } // ParseCertificates parses one or more certificates from the given ASN.1 DER // data. The certificates must be concatenated with no intermediate padding. func ParseCertificates(asn1Data []byte) ([]*Certificate, error) { var v []*certificate for len(asn1Data) > 0 { cert := new(certificate) var err error asn1Data, err = asn1.Unmarshal(asn1Data, cert) if err != nil { return nil, err } v = append(v, cert) } ret := make([]*Certificate, len(v)) for i, ci := range v { cert, err := parseCertificate(ci) if err != nil { return nil, err } ret[i] = cert } return ret, nil } func reverseBitsInAByte(in byte) byte { b1 := in>>4 | in<<4 b2 := b1>>2&0x33 | b1<<2&0xcc b3 := b2>>1&0x55 | b2<<1&0xaa return b3 } // asn1BitLength returns the bit-length of bitString by considering the // most-significant bit in a byte to be the "first" bit. This convention // matches ASN.1, but differs from almost everything else. func asn1BitLength(bitString []byte) int { bitLen := len(bitString) * 8 for i := range bitString { b := bitString[len(bitString)-i-1] for bit := uint(0); bit < 8; bit++ { if (b>>bit)&1 == 1 { return bitLen } bitLen-- } } return 0 } var ( oidExtensionSubjectKeyId = []int{2, 5, 29, 14} oidExtensionKeyUsage = []int{2, 5, 29, 15} oidExtensionExtendedKeyUsage = []int{2, 5, 29, 37} oidExtensionAuthorityKeyId = []int{2, 5, 29, 35} oidExtensionBasicConstraints = []int{2, 5, 29, 19} oidExtensionSubjectAltName = []int{2, 5, 29, 17} oidExtensionCertificatePolicies = []int{2, 5, 29, 32} oidExtensionNameConstraints = []int{2, 5, 29, 30} oidExtensionCRLDistributionPoints = []int{2, 5, 29, 31} oidExtensionAuthorityInfoAccess = []int{1, 3, 6, 1, 5, 5, 7, 1, 1} ) var ( oidAuthorityInfoAccessOcsp = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 48, 1} oidAuthorityInfoAccessIssuers = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 48, 2} ) // oidNotInExtensions returns whether an extension with the given oid exists in // extensions. func oidInExtensions(oid asn1.ObjectIdentifier, extensions []pkix.Extension) bool { for _, e := range extensions { if e.Id.Equal(oid) { return true } } return false } // marshalSANs marshals a list of addresses into a the contents of an X.509 // SubjectAlternativeName extension. func marshalSANs(dnsNames, emailAddresses []string, ipAddresses []net.IP) (derBytes []byte, err error) { var rawValues []asn1.RawValue for _, name := range dnsNames { rawValues = append(rawValues, asn1.RawValue{Tag: 2, Class: 2, Bytes: []byte(name)}) } for _, email := range emailAddresses { rawValues = append(rawValues, asn1.RawValue{Tag: 1, Class: 2, Bytes: []byte(email)}) } for _, rawIP := range ipAddresses { // If possible, we always want to encode IPv4 addresses in 4 bytes. ip := rawIP.To4() if ip == nil { ip = rawIP } rawValues = append(rawValues, asn1.RawValue{Tag: 7, Class: 2, Bytes: ip}) } return asn1.Marshal(rawValues) } func buildExtensions(template *Certificate) (ret []pkix.Extension, err error) { ret = make([]pkix.Extension, 10 /* maximum number of elements. */) n := 0 if template.KeyUsage != 0 && !oidInExtensions(oidExtensionKeyUsage, template.ExtraExtensions) { ret[n].Id = oidExtensionKeyUsage ret[n].Critical = true var a [2]byte a[0] = reverseBitsInAByte(byte(template.KeyUsage)) a[1] = reverseBitsInAByte(byte(template.KeyUsage >> 8)) l := 1 if a[1] != 0 { l = 2 } bitString := a[:l] ret[n].Value, err = asn1.Marshal(asn1.BitString{Bytes: bitString, BitLength: asn1BitLength(bitString)}) if err != nil { return } n++ } if (len(template.ExtKeyUsage) > 0 || len(template.UnknownExtKeyUsage) > 0) && !oidInExtensions(oidExtensionExtendedKeyUsage, template.ExtraExtensions) { ret[n].Id = oidExtensionExtendedKeyUsage var oids []asn1.ObjectIdentifier for _, u := range template.ExtKeyUsage { if oid, ok := oidFromExtKeyUsage(u); ok { oids = append(oids, oid) } else { panic("internal error") } } oids = append(oids, template.UnknownExtKeyUsage...) ret[n].Value, err = asn1.Marshal(oids) if err != nil { return } n++ } if template.BasicConstraintsValid && !oidInExtensions(oidExtensionBasicConstraints, template.ExtraExtensions) { // Leaving MaxPathLen as zero indicates that no maximum path // length is desired, unless MaxPathLenZero is set. A value of // -1 causes encoding/asn1 to omit the value as desired. maxPathLen := template.MaxPathLen if maxPathLen == 0 && !template.MaxPathLenZero { maxPathLen = -1 } ret[n].Id = oidExtensionBasicConstraints ret[n].Value, err = asn1.Marshal(basicConstraints{template.IsCA, maxPathLen}) ret[n].Critical = true if err != nil { return } n++ } if len(template.SubjectKeyId) > 0 && !oidInExtensions(oidExtensionSubjectKeyId, template.ExtraExtensions) { ret[n].Id = oidExtensionSubjectKeyId ret[n].Value, err = asn1.Marshal(template.SubjectKeyId) if err != nil { return } n++ } if len(template.AuthorityKeyId) > 0 && !oidInExtensions(oidExtensionAuthorityKeyId, template.ExtraExtensions) { ret[n].Id = oidExtensionAuthorityKeyId ret[n].Value, err = asn1.Marshal(authKeyId{template.AuthorityKeyId}) if err != nil { return } n++ } if (len(template.OCSPServer) > 0 || len(template.IssuingCertificateURL) > 0) && !oidInExtensions(oidExtensionAuthorityInfoAccess, template.ExtraExtensions) { ret[n].Id = oidExtensionAuthorityInfoAccess var aiaValues []authorityInfoAccess for _, name := range template.OCSPServer { aiaValues = append(aiaValues, authorityInfoAccess{ Method: oidAuthorityInfoAccessOcsp, Location: asn1.RawValue{Tag: 6, Class: 2, Bytes: []byte(name)}, }) } for _, name := range template.IssuingCertificateURL { aiaValues = append(aiaValues, authorityInfoAccess{ Method: oidAuthorityInfoAccessIssuers, Location: asn1.RawValue{Tag: 6, Class: 2, Bytes: []byte(name)}, }) } ret[n].Value, err = asn1.Marshal(aiaValues) if err != nil { return } n++ } if (len(template.DNSNames) > 0 || len(template.EmailAddresses) > 0 || len(template.IPAddresses) > 0) && !oidInExtensions(oidExtensionSubjectAltName, template.ExtraExtensions) { ret[n].Id = oidExtensionSubjectAltName ret[n].Value, err = marshalSANs(template.DNSNames, template.EmailAddresses, template.IPAddresses) if err != nil { return } n++ } if len(template.PolicyIdentifiers) > 0 && !oidInExtensions(oidExtensionCertificatePolicies, template.ExtraExtensions) { ret[n].Id = oidExtensionCertificatePolicies policies := make([]policyInformation, len(template.PolicyIdentifiers)) for i, policy := range template.PolicyIdentifiers { policies[i].Policy = policy } ret[n].Value, err = asn1.Marshal(policies) if err != nil { return } n++ } if len(template.PermittedDNSDomains) > 0 && !oidInExtensions(oidExtensionNameConstraints, template.ExtraExtensions) { ret[n].Id = oidExtensionNameConstraints ret[n].Critical = template.PermittedDNSDomainsCritical var out nameConstraints out.Permitted = make([]generalSubtree, len(template.PermittedDNSDomains)) for i, permitted := range template.PermittedDNSDomains { out.Permitted[i] = generalSubtree{Name: permitted} } ret[n].Value, err = asn1.Marshal(out) if err != nil { return } n++ } if len(template.CRLDistributionPoints) > 0 && !oidInExtensions(oidExtensionCRLDistributionPoints, template.ExtraExtensions) { ret[n].Id = oidExtensionCRLDistributionPoints var crlDp []distributionPoint for _, name := range template.CRLDistributionPoints { rawFullName, _ := asn1.Marshal(asn1.RawValue{Tag: 6, Class: 2, Bytes: []byte(name)}) dp := distributionPoint{ DistributionPoint: distributionPointName{ FullName: asn1.RawValue{Tag: 0, Class: 2, IsCompound: true, Bytes: rawFullName}, }, } crlDp = append(crlDp, dp) } ret[n].Value, err = asn1.Marshal(crlDp) if err != nil { return } n++ } // Adding another extension here? Remember to update the maximum number // of elements in the make() at the top of the function. return append(ret[:n], template.ExtraExtensions...), nil } func subjectBytes(cert *Certificate) ([]byte, error) { if len(cert.RawSubject) > 0 { return cert.RawSubject, nil } return asn1.Marshal(cert.Subject.ToRDNSequence()) } // signingParamsForPublicKey returns the parameters to use for signing with // priv. If requestedSigAlgo is not zero then it overrides the default // signature algorithm. func signingParamsForPublicKey(pub interface{}, requestedSigAlgo SignatureAlgorithm) (hashFunc Hash, sigAlgo pkix.AlgorithmIdentifier, err error) { var pubType PublicKeyAlgorithm switch pub := pub.(type) { case *rsa.PublicKey: pubType = RSA hashFunc = SHA256 sigAlgo.Algorithm = oidSignatureSHA256WithRSA sigAlgo.Parameters = asn1.RawValue{ Tag: 5, } case *ecdsa.PublicKey: pubType = ECDSA switch pub.Curve { case elliptic.P224(), elliptic.P256(): hashFunc = SHA256 sigAlgo.Algorithm = oidSignatureECDSAWithSHA256 case elliptic.P384(): hashFunc = SHA384 sigAlgo.Algorithm = oidSignatureECDSAWithSHA384 case elliptic.P521(): hashFunc = SHA512 sigAlgo.Algorithm = oidSignatureECDSAWithSHA512 default: err = errors.New("x509: unknown elliptic curve") } case *PublicKey: pubType = ECDSA switch pub.Curve { case P256Sm2(): hashFunc = SM3 sigAlgo.Algorithm = oidSignatureSM2WithSM3 default: err = errors.New("x509: unknown SM2 curve") } default: err = errors.New("x509: only RSA and ECDSA keys supported") } if err != nil { return } if requestedSigAlgo == 0 { return } found := false for _, details := range signatureAlgorithmDetails { if details.algo == requestedSigAlgo { if details.pubKeyAlgo != pubType { err = errors.New("x509: requested SignatureAlgorithm does not match private key type") return } sigAlgo.Algorithm, hashFunc = details.oid, details.hash if hashFunc == 0 { err = errors.New("x509: cannot sign with hash function requested") return } if requestedSigAlgo.isRSAPSS() { sigAlgo.Parameters = rsaPSSParameters(hashFunc) } found = true break } } if !found { err = errors.New("x509: unknown SignatureAlgorithm") } return } // CreateCertificate creates a new certificate based on a template. The // following members of template are used: SerialNumber, Subject, NotBefore, // NotAfter, KeyUsage, ExtKeyUsage, UnknownExtKeyUsage, BasicConstraintsValid, // IsCA, MaxPathLen, SubjectKeyId, DNSNames, PermittedDNSDomainsCritical, // PermittedDNSDomains, SignatureAlgorithm. // // The certificate is signed by parent. If parent is equal to template then the // certificate is self-signed. The parameter pub is the public key of the // signee and priv is the private key of the signer. // // The returned slice is the certificate in DER encoding. // // All keys types that are implemented via crypto.Signer are supported (This // includes *rsa.PublicKey and *ecdsa.PublicKey.) func CreateCertificate(rand io.Reader, template, parent *Certificate, pub, priv interface{}) (cert []byte, err error) { key, ok := priv.(crypto.Signer) if !ok { return nil, errors.New("x509: certificate private key does not implement crypto.Signer") } if template.SerialNumber == nil { return nil, errors.New("x509: no SerialNumber given") } hashFunc, signatureAlgorithm, err := signingParamsForPublicKey(key.Public(), template.SignatureAlgorithm) if err != nil { return nil, err } publicKeyBytes, publicKeyAlgorithm, err := marshalPublicKey(pub) if err != nil { return nil, err } asn1Issuer, err := subjectBytes(parent) if err != nil { return } asn1Subject, err := subjectBytes(template) if err != nil { return } if !bytes.Equal(asn1Issuer, asn1Subject) && len(parent.SubjectKeyId) > 0 { template.AuthorityKeyId = parent.SubjectKeyId } extensions, err := buildExtensions(template) if err != nil { return } encodedPublicKey := asn1.BitString{BitLength: len(publicKeyBytes) * 8, Bytes: publicKeyBytes} c := tbsCertificate{ Version: 2, SerialNumber: template.SerialNumber, SignatureAlgorithm: signatureAlgorithm, Issuer: asn1.RawValue{FullBytes: asn1Issuer}, Validity: validity{template.NotBefore.UTC(), template.NotAfter.UTC()}, Subject: asn1.RawValue{FullBytes: asn1Subject}, PublicKey: publicKeyInfo{nil, publicKeyAlgorithm, encodedPublicKey}, Extensions: extensions, } tbsCertContents, err := asn1.Marshal(c) if err != nil { return } c.Raw = tbsCertContents h := hashFunc.New() h.Write(tbsCertContents) digest := h.Sum(nil) var signerOpts crypto.SignerOpts signerOpts = hashFunc if template.SignatureAlgorithm != 0 && template.SignatureAlgorithm.isRSAPSS() { signerOpts = &rsa.PSSOptions{ SaltLength: rsa.PSSSaltLengthEqualsHash, Hash: crypto.Hash(hashFunc), } } var signature []byte signature, err = key.Sign(rand, digest, signerOpts) if err != nil { return } return asn1.Marshal(certificate{ nil, c, signatureAlgorithm, asn1.BitString{Bytes: signature, BitLength: len(signature) * 8}, }) } // pemCRLPrefix is the magic string that indicates that we have a PEM encoded // CRL. var pemCRLPrefix = []byte("-----BEGIN X509 CRL") // pemType is the type of a PEM encoded CRL. var pemType = "X509 CRL" // ParseCRL parses a CRL from the given bytes. It's often the case that PEM // encoded CRLs will appear where they should be DER encoded, so this function // will transparently handle PEM encoding as long as there isn't any leading // garbage. func ParseCRL(crlBytes []byte) (*pkix.CertificateList, error) { if bytes.HasPrefix(crlBytes, pemCRLPrefix) { block, _ := pem.Decode(crlBytes) if block != nil && block.Type == pemType { crlBytes = block.Bytes } } return ParseDERCRL(crlBytes) } // ParseDERCRL parses a DER encoded CRL from the given bytes. func ParseDERCRL(derBytes []byte) (*pkix.CertificateList, error) { certList := new(pkix.CertificateList) if rest, err := asn1.Unmarshal(derBytes, certList); err != nil { return nil, err } else if len(rest) != 0 { return nil, errors.New("x509: trailing data after CRL") } return certList, nil } // CreateCRL returns a DER encoded CRL, signed by this Certificate, that // contains the given list of revoked certificates. func (c *Certificate) CreateCRL(rand io.Reader, priv interface{}, revokedCerts []pkix.RevokedCertificate, now, expiry time.Time) (crlBytes []byte, err error) { key, ok := priv.(crypto.Signer) if !ok { return nil, errors.New("x509: certificate private key does not implement crypto.Signer") } hashFunc, signatureAlgorithm, err := signingParamsForPublicKey(key.Public(), 0) if err != nil { return nil, err } // Force revocation times to UTC per RFC 5280. revokedCertsUTC := make([]pkix.RevokedCertificate, len(revokedCerts)) for i, rc := range revokedCerts { rc.RevocationTime = rc.RevocationTime.UTC() revokedCertsUTC[i] = rc } tbsCertList := pkix.TBSCertificateList{ Version: 1, Signature: signatureAlgorithm, Issuer: c.Subject.ToRDNSequence(), ThisUpdate: now.UTC(), NextUpdate: expiry.UTC(), RevokedCertificates: revokedCertsUTC, } // Authority Key Id if len(c.SubjectKeyId) > 0 { var aki pkix.Extension aki.Id = oidExtensionAuthorityKeyId aki.Value, err = asn1.Marshal(authKeyId{Id: c.SubjectKeyId}) if err != nil { return } tbsCertList.Extensions = append(tbsCertList.Extensions, aki) } tbsCertListContents, err := asn1.Marshal(tbsCertList) if err != nil { return } h := hashFunc.New() h.Write(tbsCertListContents) digest := h.Sum(nil) var signature []byte signature, err = key.Sign(rand, digest, hashFunc) if err != nil { return } return asn1.Marshal(pkix.CertificateList{ TBSCertList: tbsCertList, SignatureAlgorithm: signatureAlgorithm, SignatureValue: asn1.BitString{Bytes: signature, BitLength: len(signature) * 8}, }) } // CertificateRequest represents a PKCS #10, certificate signature request. type CertificateRequest struct { Raw []byte // Complete ASN.1 DER content (CSR, signature algorithm and signature). RawTBSCertificateRequest []byte // Certificate request info part of raw ASN.1 DER content. RawSubjectPublicKeyInfo []byte // DER encoded SubjectPublicKeyInfo. RawSubject []byte // DER encoded Subject. Version int Signature []byte SignatureAlgorithm SignatureAlgorithm PublicKeyAlgorithm PublicKeyAlgorithm PublicKey interface{} Subject pkix.Name // Attributes is the dried husk of a bug and shouldn't be used. Attributes []pkix.AttributeTypeAndValueSET // Extensions contains raw X.509 extensions. When parsing CSRs, this // can be used to extract extensions that are not parsed by this // package. Extensions []pkix.Extension // ExtraExtensions contains extensions to be copied, raw, into any // marshaled CSR. Values override any extensions that would otherwise // be produced based on the other fields but are overridden by any // extensions specified in Attributes. // // The ExtraExtensions field is not populated when parsing CSRs, see // Extensions. ExtraExtensions []pkix.Extension // Subject Alternate Name values. DNSNames []string EmailAddresses []string IPAddresses []net.IP } // These structures reflect the ASN.1 structure of X.509 certificate // signature requests (see RFC 2986): type tbsCertificateRequest struct { Raw asn1.RawContent Version int Subject asn1.RawValue PublicKey publicKeyInfo RawAttributes []asn1.RawValue `asn1:"tag:0"` } type certificateRequest struct { Raw asn1.RawContent TBSCSR tbsCertificateRequest SignatureAlgorithm pkix.AlgorithmIdentifier SignatureValue asn1.BitString } // oidExtensionRequest is a PKCS#9 OBJECT IDENTIFIER that indicates requested // extensions in a CSR. var oidExtensionRequest = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 9, 14} // newRawAttributes converts AttributeTypeAndValueSETs from a template // CertificateRequest's Attributes into tbsCertificateRequest RawAttributes. func newRawAttributes(attributes []pkix.AttributeTypeAndValueSET) ([]asn1.RawValue, error) { var rawAttributes []asn1.RawValue b, err := asn1.Marshal(attributes) if err != nil { return nil, err } rest, err := asn1.Unmarshal(b, &rawAttributes) if err != nil { return nil, err } if len(rest) != 0 { return nil, errors.New("x509: failed to unmarshal raw CSR Attributes") } return rawAttributes, nil } // parseRawAttributes Unmarshals RawAttributes intos AttributeTypeAndValueSETs. func parseRawAttributes(rawAttributes []asn1.RawValue) []pkix.AttributeTypeAndValueSET { var attributes []pkix.AttributeTypeAndValueSET for _, rawAttr := range rawAttributes { var attr pkix.AttributeTypeAndValueSET rest, err := asn1.Unmarshal(rawAttr.FullBytes, &attr) // Ignore attributes that don't parse into pkix.AttributeTypeAndValueSET // (i.e.: challengePassword or unstructuredName). if err == nil && len(rest) == 0 { attributes = append(attributes, attr) } } return attributes } // parseCSRExtensions parses the attributes from a CSR and extracts any // requested extensions. func parseCSRExtensions(rawAttributes []asn1.RawValue) ([]pkix.Extension, error) { // pkcs10Attribute reflects the Attribute structure from section 4.1 of // https://tools.ietf.org/html/rfc2986. type pkcs10Attribute struct { Id asn1.ObjectIdentifier Values []asn1.RawValue `asn1:"set"` } var ret []pkix.Extension for _, rawAttr := range rawAttributes { var attr pkcs10Attribute if rest, err := asn1.Unmarshal(rawAttr.FullBytes, &attr); err != nil || len(rest) != 0 || len(attr.Values) == 0 { // Ignore attributes that don't parse. continue } if !attr.Id.Equal(oidExtensionRequest) { continue } var extensions []pkix.Extension if _, err := asn1.Unmarshal(attr.Values[0].FullBytes, &extensions); err != nil { return nil, err } ret = append(ret, extensions...) } return ret, nil } // CreateCertificateRequest creates a new certificate request based on a template. // The following members of template are used: Subject, Attributes, // SignatureAlgorithm, Extensions, DNSNames, EmailAddresses, and IPAddresses. // The private key is the private key of the signer. // // The returned slice is the certificate request in DER encoding. // // All keys types that are implemented via crypto.Signer are supported (This // includes *rsa.PublicKey and *ecdsa.PublicKey.) func CreateCertificateRequest(rand io.Reader, template *CertificateRequest, priv interface{}) (csr []byte, err error) { key, ok := priv.(crypto.Signer) if !ok { return nil, errors.New("x509: certificate private key does not implement crypto.Signer") } var hashFunc Hash var sigAlgo pkix.AlgorithmIdentifier hashFunc, sigAlgo, err = signingParamsForPublicKey(key.Public(), template.SignatureAlgorithm) if err != nil { return nil, err } var publicKeyBytes []byte var publicKeyAlgorithm pkix.AlgorithmIdentifier publicKeyBytes, publicKeyAlgorithm, err = marshalPublicKey(key.Public()) if err != nil { return nil, err } var extensions []pkix.Extension if (len(template.DNSNames) > 0 || len(template.EmailAddresses) > 0 || len(template.IPAddresses) > 0) && !oidInExtensions(oidExtensionSubjectAltName, template.ExtraExtensions) { sanBytes, err := marshalSANs(template.DNSNames, template.EmailAddresses, template.IPAddresses) if err != nil { return nil, err } extensions = append(extensions, pkix.Extension{ Id: oidExtensionSubjectAltName, Value: sanBytes, }) } extensions = append(extensions, template.ExtraExtensions...) var attributes []pkix.AttributeTypeAndValueSET attributes = append(attributes, template.Attributes...) if len(extensions) > 0 { // specifiedExtensions contains all the extensions that we // found specified via template.Attributes. specifiedExtensions := make(map[string]bool) for _, atvSet := range template.Attributes { if !atvSet.Type.Equal(oidExtensionRequest) { continue } for _, atvs := range atvSet.Value { for _, atv := range atvs { specifiedExtensions[atv.Type.String()] = true } } } atvs := make([]pkix.AttributeTypeAndValue, 0, len(extensions)) for _, e := range extensions { if specifiedExtensions[e.Id.String()] { // Attributes already contained a value for // this extension and it takes priority. continue } atvs = append(atvs, pkix.AttributeTypeAndValue{ // There is no place for the critical flag in a CSR. Type: e.Id, Value: e.Value, }) } // Append the extensions to an existing attribute if possible. appended := false for _, atvSet := range attributes { if !atvSet.Type.Equal(oidExtensionRequest) || len(atvSet.Value) == 0 { continue } atvSet.Value[0] = append(atvSet.Value[0], atvs...) appended = true break } // Otherwise, add a new attribute for the extensions. if !appended { attributes = append(attributes, pkix.AttributeTypeAndValueSET{ Type: oidExtensionRequest, Value: [][]pkix.AttributeTypeAndValue{ atvs, }, }) } } asn1Subject := template.RawSubject if len(asn1Subject) == 0 { asn1Subject, err = asn1.Marshal(template.Subject.ToRDNSequence()) if err != nil { return } } rawAttributes, err := newRawAttributes(attributes) if err != nil { return } tbsCSR := tbsCertificateRequest{ Version: 0, // PKCS #10, RFC 2986 Subject: asn1.RawValue{FullBytes: asn1Subject}, PublicKey: publicKeyInfo{ Algorithm: publicKeyAlgorithm, PublicKey: asn1.BitString{ Bytes: publicKeyBytes, BitLength: len(publicKeyBytes) * 8, }, }, RawAttributes: rawAttributes, } tbsCSRContents, err := asn1.Marshal(tbsCSR) if err != nil { return } tbsCSR.Raw = tbsCSRContents h := hashFunc.New() h.Write(tbsCSRContents) digest := h.Sum(nil) var signature []byte signature, err = key.Sign(rand, digest, hashFunc) if err != nil { return } return asn1.Marshal(certificateRequest{ TBSCSR: tbsCSR, SignatureAlgorithm: sigAlgo, SignatureValue: asn1.BitString{ Bytes: signature, BitLength: len(signature) * 8, }, }) } // ParseCertificateRequest parses a single certificate request from the // given ASN.1 DER data. func ParseCertificateRequest(asn1Data []byte) (*CertificateRequest, error) { var csr certificateRequest rest, err := asn1.Unmarshal(asn1Data, &csr) if err != nil { return nil, err } else if len(rest) != 0 { return nil, asn1.SyntaxError{Msg: "trailing data"} } return parseCertificateRequest(&csr) } func parseCertificateRequest(in *certificateRequest) (*CertificateRequest, error) { out := &CertificateRequest{ Raw: in.Raw, RawTBSCertificateRequest: in.TBSCSR.Raw, RawSubjectPublicKeyInfo: in.TBSCSR.PublicKey.Raw, RawSubject: in.TBSCSR.Subject.FullBytes, Signature: in.SignatureValue.RightAlign(), SignatureAlgorithm: getSignatureAlgorithmFromAI(in.SignatureAlgorithm), PublicKeyAlgorithm: getPublicKeyAlgorithmFromOID(in.TBSCSR.PublicKey.Algorithm.Algorithm), Version: in.TBSCSR.Version, Attributes: parseRawAttributes(in.TBSCSR.RawAttributes), } var err error out.PublicKey, err = parsePublicKey(out.PublicKeyAlgorithm, &in.TBSCSR.PublicKey) if err != nil { return nil, err } var subject pkix.RDNSequence if rest, err := asn1.Unmarshal(in.TBSCSR.Subject.FullBytes, &subject); err != nil { return nil, err } else if len(rest) != 0 { return nil, errors.New("x509: trailing data after X.509 Subject") } out.Subject.FillFromRDNSequence(&subject) if out.Extensions, err = parseCSRExtensions(in.TBSCSR.RawAttributes); err != nil { return nil, err } for _, extension := range out.Extensions { if extension.Id.Equal(oidExtensionSubjectAltName) { out.DNSNames, out.EmailAddresses, out.IPAddresses, err = parseSANExtension(extension.Value) if err != nil { return nil, err } } } return out, nil } // CheckSignature reports whether the signature on c is valid. func (c *CertificateRequest) CheckSignature() error { return checkSignature(c.SignatureAlgorithm, c.RawTBSCertificateRequest, c.Signature, c.PublicKey) } func ReadCertificateRequestFromMem(data []byte) (*CertificateRequest, error) { block, _ := pem.Decode(data) if block == nil { return nil, errors.New("failed to decode certificate request") } return ParseCertificateRequest(block.Bytes) } func ReadCertificateRequestFromPem(FileName string) (*CertificateRequest, error) { data, err := ioutil.ReadFile(FileName) if err != nil { return nil, err } return ReadCertificateRequestFromMem(data) } func CreateCertificateRequestToMem(template *CertificateRequest, privKey *PrivateKey) ([]byte, error) { der, err := CreateCertificateRequest(rand.Reader, template, privKey) if err != nil { return nil, err } block := &pem.Block{ Type: "CERTIFICATE REQUEST", Bytes: der, } return pem.EncodeToMemory(block), nil } func CreateCertificateRequestToPem(FileName string, template *CertificateRequest, privKey *PrivateKey) (bool, error) { der, err := CreateCertificateRequest(rand.Reader, template, privKey) if err != nil { return false, err } block := &pem.Block{ Type: "CERTIFICATE REQUEST", Bytes: der, } file, err := os.Create(FileName) if err != nil { return false, err } defer file.Close() err = pem.Encode(file, block) if err != nil { return false, err } return true, nil } func ReadCertificateFromMem(data []byte) (*Certificate, error) { block, _ := pem.Decode(data) if block == nil { return nil, errors.New("failed to decode certificate request") } return ParseCertificate(block.Bytes) } func ReadCertificateFromPem(FileName string) (*Certificate, error) { data, err := ioutil.ReadFile(FileName) if err != nil { return nil, err } return ReadCertificateFromMem(data) } func CreateCertificateToMem(template, parent *Certificate, pubKey *PublicKey, privKey *PrivateKey) ([]byte, error) { der, err := CreateCertificate(rand.Reader, template, parent, pubKey, privKey) if err != nil { return nil, err } block := &pem.Block{ Type: "CERTIFICATE", Bytes: der, } return pem.EncodeToMemory(block), nil } func CreateCertificateToPem(FileName string, template, parent *Certificate, pubKey *PublicKey, privKey *PrivateKey) (bool, error) { der, err := CreateCertificate(rand.Reader, template, parent, pubKey, privKey) if err != nil { return false, err } block := &pem.Block{ Type: "CERTIFICATE", Bytes: der, } file, err := os.Create(FileName) if err != nil { return false, err } defer file.Close() err = pem.Encode(file, block) if err != nil { return false, err } return true, nil }