// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package openpgp implements high level operations on OpenPGP messages. package openpgp // import "golang.org/x/crypto/openpgp" import ( "crypto" _ "crypto/sha256" "hash" "io" "strconv" "golang.org/x/crypto/openpgp/armor" "golang.org/x/crypto/openpgp/errors" "golang.org/x/crypto/openpgp/packet" ) // SignatureType is the armor type for a PGP signature. var SignatureType = "PGP SIGNATURE" // readArmored reads an armored block with the given type. func readArmored(r io.Reader, expectedType string) (body io.Reader, err error) { block, err := armor.Decode(r) if err != nil { return } if block.Type != expectedType { return nil, errors.InvalidArgumentError("expected '" + expectedType + "', got: " + block.Type) } return block.Body, nil } // MessageDetails contains the result of parsing an OpenPGP encrypted and/or // signed message. type MessageDetails struct { IsEncrypted bool // true if the message was encrypted. EncryptedToKeyIds []uint64 // the list of recipient key ids. IsSymmetricallyEncrypted bool // true if a passphrase could have decrypted the message. DecryptedWith Key // the private key used to decrypt the message, if any. IsSigned bool // true if the message is signed. SignedByKeyId uint64 // the key id of the signer, if any. SignedBy *Key // the key of the signer, if available. LiteralData *packet.LiteralData // the metadata of the contents UnverifiedBody io.Reader // the contents of the message. // If IsSigned is true and SignedBy is non-zero then the signature will // be verified as UnverifiedBody is read. The signature cannot be // checked until the whole of UnverifiedBody is read so UnverifiedBody // must be consumed until EOF before the data can be trusted. Even if a // message isn't signed (or the signer is unknown) the data may contain // an authentication code that is only checked once UnverifiedBody has // been consumed. Once EOF has been seen, the following fields are // valid. (An authentication code failure is reported as a // SignatureError error when reading from UnverifiedBody.) SignatureError error // nil if the signature is good. Signature *packet.Signature // the signature packet itself, if v4 (default) SignatureV3 *packet.SignatureV3 // the signature packet if it is a v2 or v3 signature decrypted io.ReadCloser } // A PromptFunction is used as a callback by functions that may need to decrypt // a private key, or prompt for a passphrase. It is called with a list of // acceptable, encrypted private keys and a boolean that indicates whether a // passphrase is usable. It should either decrypt a private key or return a // passphrase to try. If the decrypted private key or given passphrase isn't // correct, the function will be called again, forever. Any error returned will // be passed up. type PromptFunction func(keys []Key, symmetric bool) ([]byte, error) // A keyEnvelopePair is used to store a private key with the envelope that // contains a symmetric key, encrypted with that key. type keyEnvelopePair struct { key Key encryptedKey *packet.EncryptedKey } // ReadMessage parses an OpenPGP message that may be signed and/or encrypted. // The given KeyRing should contain both public keys (for signature // verification) and, possibly encrypted, private keys for decrypting. // If config is nil, sensible defaults will be used. func ReadMessage(r io.Reader, keyring KeyRing, prompt PromptFunction, config *packet.Config) (md *MessageDetails, err error) { var p packet.Packet var symKeys []*packet.SymmetricKeyEncrypted var pubKeys []keyEnvelopePair var se *packet.SymmetricallyEncrypted packets := packet.NewReader(r) md = new(MessageDetails) md.IsEncrypted = true // The message, if encrypted, starts with a number of packets // containing an encrypted decryption key. The decryption key is either // encrypted to a public key, or with a passphrase. This loop // collects these packets. ParsePackets: for { p, err = packets.Next() if err != nil { return nil, err } switch p := p.(type) { case *packet.SymmetricKeyEncrypted: // This packet contains the decryption key encrypted with a passphrase. md.IsSymmetricallyEncrypted = true symKeys = append(symKeys, p) case *packet.EncryptedKey: // This packet contains the decryption key encrypted to a public key. md.EncryptedToKeyIds = append(md.EncryptedToKeyIds, p.KeyId) switch p.Algo { case packet.PubKeyAlgoRSA, packet.PubKeyAlgoRSAEncryptOnly, packet.PubKeyAlgoElGamal: break default: continue } var keys []Key if p.KeyId == 0 { keys = keyring.DecryptionKeys() } else { keys = keyring.KeysById(p.KeyId) } for _, k := range keys { pubKeys = append(pubKeys, keyEnvelopePair{k, p}) } case *packet.SymmetricallyEncrypted: se = p break ParsePackets case *packet.Compressed, *packet.LiteralData, *packet.OnePassSignature: // This message isn't encrypted. if len(symKeys) != 0 || len(pubKeys) != 0 { return nil, errors.StructuralError("key material not followed by encrypted message") } packets.Unread(p) return readSignedMessage(packets, nil, keyring) } } var candidates []Key var decrypted io.ReadCloser // Now that we have the list of encrypted keys we need to decrypt at // least one of them or, if we cannot, we need to call the prompt // function so that it can decrypt a key or give us a passphrase. FindKey: for { // See if any of the keys already have a private key available candidates = candidates[:0] candidateFingerprints := make(map[string]bool) for _, pk := range pubKeys { if pk.key.PrivateKey == nil { continue } if !pk.key.PrivateKey.Encrypted { if len(pk.encryptedKey.Key) == 0 { pk.encryptedKey.Decrypt(pk.key.PrivateKey, config) } if len(pk.encryptedKey.Key) == 0 { continue } decrypted, err = se.Decrypt(pk.encryptedKey.CipherFunc, pk.encryptedKey.Key) if err != nil && err != errors.ErrKeyIncorrect { return nil, err } if decrypted != nil { md.DecryptedWith = pk.key break FindKey } } else { fpr := string(pk.key.PublicKey.Fingerprint[:]) if v := candidateFingerprints[fpr]; v { continue } candidates = append(candidates, pk.key) candidateFingerprints[fpr] = true } } if len(candidates) == 0 && len(symKeys) == 0 { return nil, errors.ErrKeyIncorrect } if prompt == nil { return nil, errors.ErrKeyIncorrect } passphrase, err := prompt(candidates, len(symKeys) != 0) if err != nil { return nil, err } // Try the symmetric passphrase first if len(symKeys) != 0 && passphrase != nil { for _, s := range symKeys { key, cipherFunc, err := s.Decrypt(passphrase) if err == nil { decrypted, err = se.Decrypt(cipherFunc, key) if err != nil && err != errors.ErrKeyIncorrect { return nil, err } if decrypted != nil { break FindKey } } } } } md.decrypted = decrypted if err := packets.Push(decrypted); err != nil { return nil, err } return readSignedMessage(packets, md, keyring) } // readSignedMessage reads a possibly signed message if mdin is non-zero then // that structure is updated and returned. Otherwise a fresh MessageDetails is // used. func readSignedMessage(packets *packet.Reader, mdin *MessageDetails, keyring KeyRing) (md *MessageDetails, err error) { if mdin == nil { mdin = new(MessageDetails) } md = mdin var p packet.Packet var h hash.Hash var wrappedHash hash.Hash FindLiteralData: for { p, err = packets.Next() if err != nil { return nil, err } switch p := p.(type) { case *packet.Compressed: if err := packets.Push(p.Body); err != nil { return nil, err } case *packet.OnePassSignature: if !p.IsLast { return nil, errors.UnsupportedError("nested signatures") } h, wrappedHash, err = hashForSignature(p.Hash, p.SigType) if err != nil { md = nil return } md.IsSigned = true md.SignedByKeyId = p.KeyId keys := keyring.KeysByIdUsage(p.KeyId, packet.KeyFlagSign) if len(keys) > 0 { md.SignedBy = &keys[0] } case *packet.LiteralData: md.LiteralData = p break FindLiteralData } } if md.SignedBy != nil { md.UnverifiedBody = &signatureCheckReader{packets, h, wrappedHash, md} } else if md.decrypted != nil { md.UnverifiedBody = checkReader{md} } else { md.UnverifiedBody = md.LiteralData.Body } return md, nil } // hashForSignature returns a pair of hashes that can be used to verify a // signature. The signature may specify that the contents of the signed message // should be preprocessed (i.e. to normalize line endings). Thus this function // returns two hashes. The second should be used to hash the message itself and // performs any needed preprocessing. func hashForSignature(hashId crypto.Hash, sigType packet.SignatureType) (hash.Hash, hash.Hash, error) { if !hashId.Available() { return nil, nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hashId))) } h := hashId.New() switch sigType { case packet.SigTypeBinary: return h, h, nil case packet.SigTypeText: return h, NewCanonicalTextHash(h), nil } return nil, nil, errors.UnsupportedError("unsupported signature type: " + strconv.Itoa(int(sigType))) } // checkReader wraps an io.Reader from a LiteralData packet. When it sees EOF // it closes the ReadCloser from any SymmetricallyEncrypted packet to trigger // MDC checks. type checkReader struct { md *MessageDetails } func (cr checkReader) Read(buf []byte) (n int, err error) { n, err = cr.md.LiteralData.Body.Read(buf) if err == io.EOF { mdcErr := cr.md.decrypted.Close() if mdcErr != nil { err = mdcErr } } return } // signatureCheckReader wraps an io.Reader from a LiteralData packet and hashes // the data as it is read. When it sees an EOF from the underlying io.Reader // it parses and checks a trailing Signature packet and triggers any MDC checks. type signatureCheckReader struct { packets *packet.Reader h, wrappedHash hash.Hash md *MessageDetails } func (scr *signatureCheckReader) Read(buf []byte) (n int, err error) { n, err = scr.md.LiteralData.Body.Read(buf) scr.wrappedHash.Write(buf[:n]) if err == io.EOF { var p packet.Packet p, scr.md.SignatureError = scr.packets.Next() if scr.md.SignatureError != nil { return } var ok bool if scr.md.Signature, ok = p.(*packet.Signature); ok { scr.md.SignatureError = scr.md.SignedBy.PublicKey.VerifySignature(scr.h, scr.md.Signature) } else if scr.md.SignatureV3, ok = p.(*packet.SignatureV3); ok { scr.md.SignatureError = scr.md.SignedBy.PublicKey.VerifySignatureV3(scr.h, scr.md.SignatureV3) } else { scr.md.SignatureError = errors.StructuralError("LiteralData not followed by Signature") return } // The SymmetricallyEncrypted packet, if any, might have an // unsigned hash of its own. In order to check this we need to // close that Reader. if scr.md.decrypted != nil { mdcErr := scr.md.decrypted.Close() if mdcErr != nil { err = mdcErr } } } return } // CheckDetachedSignature takes a signed file and a detached signature and // returns the signer if the signature is valid. If the signer isn't known, // ErrUnknownIssuer is returned. func CheckDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, err error) { var issuerKeyId uint64 var hashFunc crypto.Hash var sigType packet.SignatureType var keys []Key var p packet.Packet packets := packet.NewReader(signature) for { p, err = packets.Next() if err == io.EOF { return nil, errors.ErrUnknownIssuer } if err != nil { return nil, err } switch sig := p.(type) { case *packet.Signature: if sig.IssuerKeyId == nil { return nil, errors.StructuralError("signature doesn't have an issuer") } issuerKeyId = *sig.IssuerKeyId hashFunc = sig.Hash sigType = sig.SigType case *packet.SignatureV3: issuerKeyId = sig.IssuerKeyId hashFunc = sig.Hash sigType = sig.SigType default: return nil, errors.StructuralError("non signature packet found") } keys = keyring.KeysByIdUsage(issuerKeyId, packet.KeyFlagSign) if len(keys) > 0 { break } } if len(keys) == 0 { panic("unreachable") } h, wrappedHash, err := hashForSignature(hashFunc, sigType) if err != nil { return nil, err } if _, err := io.Copy(wrappedHash, signed); err != nil && err != io.EOF { return nil, err } for _, key := range keys { switch sig := p.(type) { case *packet.Signature: err = key.PublicKey.VerifySignature(h, sig) case *packet.SignatureV3: err = key.PublicKey.VerifySignatureV3(h, sig) default: panic("unreachable") } if err == nil { return key.Entity, nil } } return nil, err } // CheckArmoredDetachedSignature performs the same actions as // CheckDetachedSignature but expects the signature to be armored. func CheckArmoredDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, err error) { body, err := readArmored(signature, SignatureType) if err != nil { return } return CheckDetachedSignature(keyring, signed, body) }