// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package openpgp import ( "crypto" "hash" "io" "strconv" "time" "golang.org/x/crypto/openpgp/armor" "golang.org/x/crypto/openpgp/errors" "golang.org/x/crypto/openpgp/packet" "golang.org/x/crypto/openpgp/s2k" ) // DetachSign signs message with the private key from signer (which must // already have been decrypted) and writes the signature to w. // If config is nil, sensible defaults will be used. func DetachSign(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error { return detachSign(w, signer, message, packet.SigTypeBinary, config) } // ArmoredDetachSign signs message with the private key from signer (which // must already have been decrypted) and writes an armored signature to w. // If config is nil, sensible defaults will be used. func ArmoredDetachSign(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) (err error) { return armoredDetachSign(w, signer, message, packet.SigTypeBinary, config) } // DetachSignText signs message (after canonicalising the line endings) with // the private key from signer (which must already have been decrypted) and // writes the signature to w. // If config is nil, sensible defaults will be used. func DetachSignText(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error { return detachSign(w, signer, message, packet.SigTypeText, config) } // ArmoredDetachSignText signs message (after canonicalising the line endings) // with the private key from signer (which must already have been decrypted) // and writes an armored signature to w. // If config is nil, sensible defaults will be used. func ArmoredDetachSignText(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error { return armoredDetachSign(w, signer, message, packet.SigTypeText, config) } func armoredDetachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.SignatureType, config *packet.Config) (err error) { out, err := armor.Encode(w, SignatureType, nil) if err != nil { return } err = detachSign(out, signer, message, sigType, config) if err != nil { return } return out.Close() } func detachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.SignatureType, config *packet.Config) (err error) { if signer.PrivateKey == nil { return errors.InvalidArgumentError("signing key doesn't have a private key") } if signer.PrivateKey.Encrypted { return errors.InvalidArgumentError("signing key is encrypted") } sig := new(packet.Signature) sig.SigType = sigType sig.PubKeyAlgo = signer.PrivateKey.PubKeyAlgo sig.Hash = config.Hash() sig.CreationTime = config.Now() sig.IssuerKeyId = &signer.PrivateKey.KeyId h, wrappedHash, err := hashForSignature(sig.Hash, sig.SigType) if err != nil { return } io.Copy(wrappedHash, message) err = sig.Sign(h, signer.PrivateKey, config) if err != nil { return } return sig.Serialize(w) } // FileHints contains metadata about encrypted files. This metadata is, itself, // encrypted. type FileHints struct { // IsBinary can be set to hint that the contents are binary data. IsBinary bool // FileName hints at the name of the file that should be written. It's // truncated to 255 bytes if longer. It may be empty to suggest that the // file should not be written to disk. It may be equal to "_CONSOLE" to // suggest the data should not be written to disk. FileName string // ModTime contains the modification time of the file, or the zero time if not applicable. ModTime time.Time } // SymmetricallyEncrypt acts like gpg -c: it encrypts a file with a passphrase. // The resulting WriteCloser must be closed after the contents of the file have // been written. // If config is nil, sensible defaults will be used. func SymmetricallyEncrypt(ciphertext io.Writer, passphrase []byte, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) { if hints == nil { hints = &FileHints{} } key, err := packet.SerializeSymmetricKeyEncrypted(ciphertext, passphrase, config) if err != nil { return } w, err := packet.SerializeSymmetricallyEncrypted(ciphertext, config.Cipher(), key, config) if err != nil { return } literaldata := w if algo := config.Compression(); algo != packet.CompressionNone { var compConfig *packet.CompressionConfig if config != nil { compConfig = config.CompressionConfig } literaldata, err = packet.SerializeCompressed(w, algo, compConfig) if err != nil { return } } var epochSeconds uint32 if !hints.ModTime.IsZero() { epochSeconds = uint32(hints.ModTime.Unix()) } return packet.SerializeLiteral(literaldata, hints.IsBinary, hints.FileName, epochSeconds) } // intersectPreferences mutates and returns a prefix of a that contains only // the values in the intersection of a and b. The order of a is preserved. func intersectPreferences(a []uint8, b []uint8) (intersection []uint8) { var j int for _, v := range a { for _, v2 := range b { if v == v2 { a[j] = v j++ break } } } return a[:j] } func hashToHashId(h crypto.Hash) uint8 { v, ok := s2k.HashToHashId(h) if !ok { panic("tried to convert unknown hash") } return v } // Encrypt encrypts a message to a number of recipients and, optionally, signs // it. hints contains optional information, that is also encrypted, that aids // the recipients in processing the message. The resulting WriteCloser must // be closed after the contents of the file have been written. // If config is nil, sensible defaults will be used. func Encrypt(ciphertext io.Writer, to []*Entity, signed *Entity, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) { var signer *packet.PrivateKey if signed != nil { signKey, ok := signed.signingKey(config.Now()) if !ok { return nil, errors.InvalidArgumentError("no valid signing keys") } signer = signKey.PrivateKey if signer == nil { return nil, errors.InvalidArgumentError("no private key in signing key") } if signer.Encrypted { return nil, errors.InvalidArgumentError("signing key must be decrypted") } } // These are the possible ciphers that we'll use for the message. candidateCiphers := []uint8{ uint8(packet.CipherAES128), uint8(packet.CipherAES256), uint8(packet.CipherCAST5), } // These are the possible hash functions that we'll use for the signature. candidateHashes := []uint8{ hashToHashId(crypto.SHA256), hashToHashId(crypto.SHA512), hashToHashId(crypto.SHA1), hashToHashId(crypto.RIPEMD160), } // In the event that a recipient doesn't specify any supported ciphers // or hash functions, these are the ones that we assume that every // implementation supports. defaultCiphers := candidateCiphers[len(candidateCiphers)-1:] defaultHashes := candidateHashes[len(candidateHashes)-1:] encryptKeys := make([]Key, len(to)) for i := range to { var ok bool encryptKeys[i], ok = to[i].encryptionKey(config.Now()) if !ok { return nil, errors.InvalidArgumentError("cannot encrypt a message to key id " + strconv.FormatUint(to[i].PrimaryKey.KeyId, 16) + " because it has no encryption keys") } sig := to[i].primaryIdentity().SelfSignature preferredSymmetric := sig.PreferredSymmetric if len(preferredSymmetric) == 0 { preferredSymmetric = defaultCiphers } preferredHashes := sig.PreferredHash if len(preferredHashes) == 0 { preferredHashes = defaultHashes } candidateCiphers = intersectPreferences(candidateCiphers, preferredSymmetric) candidateHashes = intersectPreferences(candidateHashes, preferredHashes) } if len(candidateCiphers) == 0 || len(candidateHashes) == 0 { return nil, errors.InvalidArgumentError("cannot encrypt because recipient set shares no common algorithms") } cipher := packet.CipherFunction(candidateCiphers[0]) // If the cipher specified by config is a candidate, we'll use that. configuredCipher := config.Cipher() for _, c := range candidateCiphers { cipherFunc := packet.CipherFunction(c) if cipherFunc == configuredCipher { cipher = cipherFunc break } } var hash crypto.Hash for _, hashId := range candidateHashes { if h, ok := s2k.HashIdToHash(hashId); ok && h.Available() { hash = h break } } // If the hash specified by config is a candidate, we'll use that. if configuredHash := config.Hash(); configuredHash.Available() { for _, hashId := range candidateHashes { if h, ok := s2k.HashIdToHash(hashId); ok && h == configuredHash { hash = h break } } } if hash == 0 { hashId := candidateHashes[0] name, ok := s2k.HashIdToString(hashId) if !ok { name = "#" + strconv.Itoa(int(hashId)) } return nil, errors.InvalidArgumentError("cannot encrypt because no candidate hash functions are compiled in. (Wanted " + name + " in this case.)") } symKey := make([]byte, cipher.KeySize()) if _, err := io.ReadFull(config.Random(), symKey); err != nil { return nil, err } for _, key := range encryptKeys { if err := packet.SerializeEncryptedKey(ciphertext, key.PublicKey, cipher, symKey, config); err != nil { return nil, err } } encryptedData, err := packet.SerializeSymmetricallyEncrypted(ciphertext, cipher, symKey, config) if err != nil { return } if signer != nil { ops := &packet.OnePassSignature{ SigType: packet.SigTypeBinary, Hash: hash, PubKeyAlgo: signer.PubKeyAlgo, KeyId: signer.KeyId, IsLast: true, } if err := ops.Serialize(encryptedData); err != nil { return nil, err } } if hints == nil { hints = &FileHints{} } w := encryptedData if signer != nil { // If we need to write a signature packet after the literal // data then we need to stop literalData from closing // encryptedData. w = noOpCloser{encryptedData} } var epochSeconds uint32 if !hints.ModTime.IsZero() { epochSeconds = uint32(hints.ModTime.Unix()) } literalData, err := packet.SerializeLiteral(w, hints.IsBinary, hints.FileName, epochSeconds) if err != nil { return nil, err } if signer != nil { return signatureWriter{encryptedData, literalData, hash, hash.New(), signer, config}, nil } return literalData, nil } // signatureWriter hashes the contents of a message while passing it along to // literalData. When closed, it closes literalData, writes a signature packet // to encryptedData and then also closes encryptedData. type signatureWriter struct { encryptedData io.WriteCloser literalData io.WriteCloser hashType crypto.Hash h hash.Hash signer *packet.PrivateKey config *packet.Config } func (s signatureWriter) Write(data []byte) (int, error) { s.h.Write(data) return s.literalData.Write(data) } func (s signatureWriter) Close() error { sig := &packet.Signature{ SigType: packet.SigTypeBinary, PubKeyAlgo: s.signer.PubKeyAlgo, Hash: s.hashType, CreationTime: s.config.Now(), IssuerKeyId: &s.signer.KeyId, } if err := sig.Sign(s.h, s.signer, s.config); err != nil { return err } if err := s.literalData.Close(); err != nil { return err } if err := sig.Serialize(s.encryptedData); err != nil { return err } return s.encryptedData.Close() } // noOpCloser is like an ioutil.NopCloser, but for an io.Writer. // TODO: we have two of these in OpenPGP packages alone. This probably needs // to be promoted somewhere more common. type noOpCloser struct { w io.Writer } func (c noOpCloser) Write(data []byte) (n int, err error) { return c.w.Write(data) } func (c noOpCloser) Close() error { return nil }