// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssh import ( "crypto/aes" "crypto/cipher" "crypto/des" "crypto/rc4" "crypto/subtle" "encoding/binary" "errors" "fmt" "hash" "io" "io/ioutil" ) const ( packetSizeMultiple = 16 // TODO(huin) this should be determined by the cipher. // RFC 4253 section 6.1 defines a minimum packet size of 32768 that implementations // MUST be able to process (plus a few more kilobytes for padding and mac). The RFC // indicates implementations SHOULD be able to handle larger packet sizes, but then // waffles on about reasonable limits. // // OpenSSH caps their maxPacket at 256kB so we choose to do // the same. maxPacket is also used to ensure that uint32 // length fields do not overflow, so it should remain well // below 4G. maxPacket = 256 * 1024 ) // noneCipher implements cipher.Stream and provides no encryption. It is used // by the transport before the first key-exchange. type noneCipher struct{} func (c noneCipher) XORKeyStream(dst, src []byte) { copy(dst, src) } func newAESCTR(key, iv []byte) (cipher.Stream, error) { c, err := aes.NewCipher(key) if err != nil { return nil, err } return cipher.NewCTR(c, iv), nil } func newRC4(key, iv []byte) (cipher.Stream, error) { return rc4.NewCipher(key) } type streamCipherMode struct { keySize int ivSize int skip int createFunc func(key, iv []byte) (cipher.Stream, error) } func (c *streamCipherMode) createStream(key, iv []byte) (cipher.Stream, error) { if len(key) < c.keySize { panic("ssh: key length too small for cipher") } if len(iv) < c.ivSize { panic("ssh: iv too small for cipher") } stream, err := c.createFunc(key[:c.keySize], iv[:c.ivSize]) if err != nil { return nil, err } var streamDump []byte if c.skip > 0 { streamDump = make([]byte, 512) } for remainingToDump := c.skip; remainingToDump > 0; { dumpThisTime := remainingToDump if dumpThisTime > len(streamDump) { dumpThisTime = len(streamDump) } stream.XORKeyStream(streamDump[:dumpThisTime], streamDump[:dumpThisTime]) remainingToDump -= dumpThisTime } return stream, nil } // cipherModes documents properties of supported ciphers. Ciphers not included // are not supported and will not be negotiated, even if explicitly requested in // ClientConfig.Crypto.Ciphers. var cipherModes = map[string]*streamCipherMode{ // Ciphers from RFC4344, which introduced many CTR-based ciphers. Algorithms // are defined in the order specified in the RFC. "aes128-ctr": {16, aes.BlockSize, 0, newAESCTR}, "aes192-ctr": {24, aes.BlockSize, 0, newAESCTR}, "aes256-ctr": {32, aes.BlockSize, 0, newAESCTR}, // Ciphers from RFC4345, which introduces security-improved arcfour ciphers. // They are defined in the order specified in the RFC. "arcfour128": {16, 0, 1536, newRC4}, "arcfour256": {32, 0, 1536, newRC4}, // Cipher defined in RFC 4253, which describes SSH Transport Layer Protocol. // Note that this cipher is not safe, as stated in RFC 4253: "Arcfour (and // RC4) has problems with weak keys, and should be used with caution." // RFC4345 introduces improved versions of Arcfour. "arcfour": {16, 0, 0, newRC4}, // AES-GCM is not a stream cipher, so it is constructed with a // special case. If we add any more non-stream ciphers, we // should invest a cleaner way to do this. gcmCipherID: {16, 12, 0, nil}, // CBC mode is insecure and so is not included in the default config. // (See http://www.isg.rhul.ac.uk/~kp/SandPfinal.pdf). If absolutely // needed, it's possible to specify a custom Config to enable it. // You should expect that an active attacker can recover plaintext if // you do. aes128cbcID: {16, aes.BlockSize, 0, nil}, // 3des-cbc is insecure and is disabled by default. tripledescbcID: {24, des.BlockSize, 0, nil}, } // prefixLen is the length of the packet prefix that contains the packet length // and number of padding bytes. const prefixLen = 5 // streamPacketCipher is a packetCipher using a stream cipher. type streamPacketCipher struct { mac hash.Hash cipher cipher.Stream etm bool // The following members are to avoid per-packet allocations. prefix [prefixLen]byte seqNumBytes [4]byte padding [2 * packetSizeMultiple]byte packetData []byte macResult []byte } // readPacket reads and decrypt a single packet from the reader argument. func (s *streamPacketCipher) readPacket(seqNum uint32, r io.Reader) ([]byte, error) { if _, err := io.ReadFull(r, s.prefix[:]); err != nil { return nil, err } var encryptedPaddingLength [1]byte if s.mac != nil && s.etm { copy(encryptedPaddingLength[:], s.prefix[4:5]) s.cipher.XORKeyStream(s.prefix[4:5], s.prefix[4:5]) } else { s.cipher.XORKeyStream(s.prefix[:], s.prefix[:]) } length := binary.BigEndian.Uint32(s.prefix[0:4]) paddingLength := uint32(s.prefix[4]) var macSize uint32 if s.mac != nil { s.mac.Reset() binary.BigEndian.PutUint32(s.seqNumBytes[:], seqNum) s.mac.Write(s.seqNumBytes[:]) if s.etm { s.mac.Write(s.prefix[:4]) s.mac.Write(encryptedPaddingLength[:]) } else { s.mac.Write(s.prefix[:]) } macSize = uint32(s.mac.Size()) } if length <= paddingLength+1 { return nil, errors.New("ssh: invalid packet length, packet too small") } if length > maxPacket { return nil, errors.New("ssh: invalid packet length, packet too large") } // the maxPacket check above ensures that length-1+macSize // does not overflow. if uint32(cap(s.packetData)) < length-1+macSize { s.packetData = make([]byte, length-1+macSize) } else { s.packetData = s.packetData[:length-1+macSize] } if _, err := io.ReadFull(r, s.packetData); err != nil { return nil, err } mac := s.packetData[length-1:] data := s.packetData[:length-1] if s.mac != nil && s.etm { s.mac.Write(data) } s.cipher.XORKeyStream(data, data) if s.mac != nil { if !s.etm { s.mac.Write(data) } s.macResult = s.mac.Sum(s.macResult[:0]) if subtle.ConstantTimeCompare(s.macResult, mac) != 1 { return nil, errors.New("ssh: MAC failure") } } return s.packetData[:length-paddingLength-1], nil } // writePacket encrypts and sends a packet of data to the writer argument func (s *streamPacketCipher) writePacket(seqNum uint32, w io.Writer, rand io.Reader, packet []byte) error { if len(packet) > maxPacket { return errors.New("ssh: packet too large") } aadlen := 0 if s.mac != nil && s.etm { // packet length is not encrypted for EtM modes aadlen = 4 } paddingLength := packetSizeMultiple - (prefixLen+len(packet)-aadlen)%packetSizeMultiple if paddingLength < 4 { paddingLength += packetSizeMultiple } length := len(packet) + 1 + paddingLength binary.BigEndian.PutUint32(s.prefix[:], uint32(length)) s.prefix[4] = byte(paddingLength) padding := s.padding[:paddingLength] if _, err := io.ReadFull(rand, padding); err != nil { return err } if s.mac != nil { s.mac.Reset() binary.BigEndian.PutUint32(s.seqNumBytes[:], seqNum) s.mac.Write(s.seqNumBytes[:]) if s.etm { // For EtM algorithms, the packet length must stay unencrypted, // but the following data (padding length) must be encrypted s.cipher.XORKeyStream(s.prefix[4:5], s.prefix[4:5]) } s.mac.Write(s.prefix[:]) if !s.etm { // For non-EtM algorithms, the algorithm is applied on unencrypted data s.mac.Write(packet) s.mac.Write(padding) } } if !(s.mac != nil && s.etm) { // For EtM algorithms, the padding length has already been encrypted // and the packet length must remain unencrypted s.cipher.XORKeyStream(s.prefix[:], s.prefix[:]) } s.cipher.XORKeyStream(packet, packet) s.cipher.XORKeyStream(padding, padding) if s.mac != nil && s.etm { // For EtM algorithms, packet and padding must be encrypted s.mac.Write(packet) s.mac.Write(padding) } if _, err := w.Write(s.prefix[:]); err != nil { return err } if _, err := w.Write(packet); err != nil { return err } if _, err := w.Write(padding); err != nil { return err } if s.mac != nil { s.macResult = s.mac.Sum(s.macResult[:0]) if _, err := w.Write(s.macResult); err != nil { return err } } return nil } type gcmCipher struct { aead cipher.AEAD prefix [4]byte iv []byte buf []byte } func newGCMCipher(iv, key, macKey []byte) (packetCipher, error) { c, err := aes.NewCipher(key) if err != nil { return nil, err } aead, err := cipher.NewGCM(c) if err != nil { return nil, err } return &gcmCipher{ aead: aead, iv: iv, }, nil } const gcmTagSize = 16 func (c *gcmCipher) writePacket(seqNum uint32, w io.Writer, rand io.Reader, packet []byte) error { // Pad out to multiple of 16 bytes. This is different from the // stream cipher because that encrypts the length too. padding := byte(packetSizeMultiple - (1+len(packet))%packetSizeMultiple) if padding < 4 { padding += packetSizeMultiple } length := uint32(len(packet) + int(padding) + 1) binary.BigEndian.PutUint32(c.prefix[:], length) if _, err := w.Write(c.prefix[:]); err != nil { return err } if cap(c.buf) < int(length) { c.buf = make([]byte, length) } else { c.buf = c.buf[:length] } c.buf[0] = padding copy(c.buf[1:], packet) if _, err := io.ReadFull(rand, c.buf[1+len(packet):]); err != nil { return err } c.buf = c.aead.Seal(c.buf[:0], c.iv, c.buf, c.prefix[:]) if _, err := w.Write(c.buf); err != nil { return err } c.incIV() return nil } func (c *gcmCipher) incIV() { for i := 4 + 7; i >= 4; i-- { c.iv[i]++ if c.iv[i] != 0 { break } } } func (c *gcmCipher) readPacket(seqNum uint32, r io.Reader) ([]byte, error) { if _, err := io.ReadFull(r, c.prefix[:]); err != nil { return nil, err } length := binary.BigEndian.Uint32(c.prefix[:]) if length > maxPacket { return nil, errors.New("ssh: max packet length exceeded.") } if cap(c.buf) < int(length+gcmTagSize) { c.buf = make([]byte, length+gcmTagSize) } else { c.buf = c.buf[:length+gcmTagSize] } if _, err := io.ReadFull(r, c.buf); err != nil { return nil, err } plain, err := c.aead.Open(c.buf[:0], c.iv, c.buf, c.prefix[:]) if err != nil { return nil, err } c.incIV() padding := plain[0] if padding < 4 { // padding is a byte, so it automatically satisfies // the maximum size, which is 255. return nil, fmt.Errorf("ssh: illegal padding %d", padding) } if int(padding+1) >= len(plain) { return nil, fmt.Errorf("ssh: padding %d too large", padding) } plain = plain[1 : length-uint32(padding)] return plain, nil } // cbcCipher implements aes128-cbc cipher defined in RFC 4253 section 6.1 type cbcCipher struct { mac hash.Hash macSize uint32 decrypter cipher.BlockMode encrypter cipher.BlockMode // The following members are to avoid per-packet allocations. seqNumBytes [4]byte packetData []byte macResult []byte // Amount of data we should still read to hide which // verification error triggered. oracleCamouflage uint32 } func newCBCCipher(c cipher.Block, iv, key, macKey []byte, algs directionAlgorithms) (packetCipher, error) { cbc := &cbcCipher{ mac: macModes[algs.MAC].new(macKey), decrypter: cipher.NewCBCDecrypter(c, iv), encrypter: cipher.NewCBCEncrypter(c, iv), packetData: make([]byte, 1024), } if cbc.mac != nil { cbc.macSize = uint32(cbc.mac.Size()) } return cbc, nil } func newAESCBCCipher(iv, key, macKey []byte, algs directionAlgorithms) (packetCipher, error) { c, err := aes.NewCipher(key) if err != nil { return nil, err } cbc, err := newCBCCipher(c, iv, key, macKey, algs) if err != nil { return nil, err } return cbc, nil } func newTripleDESCBCCipher(iv, key, macKey []byte, algs directionAlgorithms) (packetCipher, error) { c, err := des.NewTripleDESCipher(key) if err != nil { return nil, err } cbc, err := newCBCCipher(c, iv, key, macKey, algs) if err != nil { return nil, err } return cbc, nil } func maxUInt32(a, b int) uint32 { if a > b { return uint32(a) } return uint32(b) } const ( cbcMinPacketSizeMultiple = 8 cbcMinPacketSize = 16 cbcMinPaddingSize = 4 ) // cbcError represents a verification error that may leak information. type cbcError string func (e cbcError) Error() string { return string(e) } func (c *cbcCipher) readPacket(seqNum uint32, r io.Reader) ([]byte, error) { p, err := c.readPacketLeaky(seqNum, r) if err != nil { if _, ok := err.(cbcError); ok { // Verification error: read a fixed amount of // data, to make distinguishing between // failing MAC and failing length check more // difficult. io.CopyN(ioutil.Discard, r, int64(c.oracleCamouflage)) } } return p, err } func (c *cbcCipher) readPacketLeaky(seqNum uint32, r io.Reader) ([]byte, error) { blockSize := c.decrypter.BlockSize() // Read the header, which will include some of the subsequent data in the // case of block ciphers - this is copied back to the payload later. // How many bytes of payload/padding will be read with this first read. firstBlockLength := uint32((prefixLen + blockSize - 1) / blockSize * blockSize) firstBlock := c.packetData[:firstBlockLength] if _, err := io.ReadFull(r, firstBlock); err != nil { return nil, err } c.oracleCamouflage = maxPacket + 4 + c.macSize - firstBlockLength c.decrypter.CryptBlocks(firstBlock, firstBlock) length := binary.BigEndian.Uint32(firstBlock[:4]) if length > maxPacket { return nil, cbcError("ssh: packet too large") } if length+4 < maxUInt32(cbcMinPacketSize, blockSize) { // The minimum size of a packet is 16 (or the cipher block size, whichever // is larger) bytes. return nil, cbcError("ssh: packet too small") } // The length of the packet (including the length field but not the MAC) must // be a multiple of the block size or 8, whichever is larger. if (length+4)%maxUInt32(cbcMinPacketSizeMultiple, blockSize) != 0 { return nil, cbcError("ssh: invalid packet length multiple") } paddingLength := uint32(firstBlock[4]) if paddingLength < cbcMinPaddingSize || length <= paddingLength+1 { return nil, cbcError("ssh: invalid packet length") } // Positions within the c.packetData buffer: macStart := 4 + length paddingStart := macStart - paddingLength // Entire packet size, starting before length, ending at end of mac. entirePacketSize := macStart + c.macSize // Ensure c.packetData is large enough for the entire packet data. if uint32(cap(c.packetData)) < entirePacketSize { // Still need to upsize and copy, but this should be rare at runtime, only // on upsizing the packetData buffer. c.packetData = make([]byte, entirePacketSize) copy(c.packetData, firstBlock) } else { c.packetData = c.packetData[:entirePacketSize] } if n, err := io.ReadFull(r, c.packetData[firstBlockLength:]); err != nil { return nil, err } else { c.oracleCamouflage -= uint32(n) } remainingCrypted := c.packetData[firstBlockLength:macStart] c.decrypter.CryptBlocks(remainingCrypted, remainingCrypted) mac := c.packetData[macStart:] if c.mac != nil { c.mac.Reset() binary.BigEndian.PutUint32(c.seqNumBytes[:], seqNum) c.mac.Write(c.seqNumBytes[:]) c.mac.Write(c.packetData[:macStart]) c.macResult = c.mac.Sum(c.macResult[:0]) if subtle.ConstantTimeCompare(c.macResult, mac) != 1 { return nil, cbcError("ssh: MAC failure") } } return c.packetData[prefixLen:paddingStart], nil } func (c *cbcCipher) writePacket(seqNum uint32, w io.Writer, rand io.Reader, packet []byte) error { effectiveBlockSize := maxUInt32(cbcMinPacketSizeMultiple, c.encrypter.BlockSize()) // Length of encrypted portion of the packet (header, payload, padding). // Enforce minimum padding and packet size. encLength := maxUInt32(prefixLen+len(packet)+cbcMinPaddingSize, cbcMinPaddingSize) // Enforce block size. encLength = (encLength + effectiveBlockSize - 1) / effectiveBlockSize * effectiveBlockSize length := encLength - 4 paddingLength := int(length) - (1 + len(packet)) // Overall buffer contains: header, payload, padding, mac. // Space for the MAC is reserved in the capacity but not the slice length. bufferSize := encLength + c.macSize if uint32(cap(c.packetData)) < bufferSize { c.packetData = make([]byte, encLength, bufferSize) } else { c.packetData = c.packetData[:encLength] } p := c.packetData // Packet header. binary.BigEndian.PutUint32(p, length) p = p[4:] p[0] = byte(paddingLength) // Payload. p = p[1:] copy(p, packet) // Padding. p = p[len(packet):] if _, err := io.ReadFull(rand, p); err != nil { return err } if c.mac != nil { c.mac.Reset() binary.BigEndian.PutUint32(c.seqNumBytes[:], seqNum) c.mac.Write(c.seqNumBytes[:]) c.mac.Write(c.packetData) // The MAC is now appended into the capacity reserved for it earlier. c.packetData = c.mac.Sum(c.packetData) } c.encrypter.CryptBlocks(c.packetData[:encLength], c.packetData[:encLength]) if _, err := w.Write(c.packetData); err != nil { return err } return nil }