// Copyright ©2016 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gonum import ( "math" "gonum.org/v1/gonum/blas" ) // Dlaqr04 computes the eigenvalues of a block of an n×n upper Hessenberg matrix // H, and optionally the matrices T and Z from the Schur decomposition // H = Z T Z^T // where T is an upper quasi-triangular matrix (the Schur form), and Z is the // orthogonal matrix of Schur vectors. // // wantt indicates whether the full Schur form T is required. If wantt is false, // then only enough of H will be updated to preserve the eigenvalues. // // wantz indicates whether the n×n matrix of Schur vectors Z is required. If it // is true, the orthogonal similarity transformation will be accumulated into // Z[iloz:ihiz+1,ilo:ihi+1], otherwise Z will not be referenced. // // ilo and ihi determine the block of H on which Dlaqr04 operates. It must hold that // 0 <= ilo <= ihi < n, if n > 0, // ilo == 0 and ihi == -1, if n == 0, // and the block must be isolated, that is, // ilo == 0 or H[ilo,ilo-1] == 0, // ihi == n-1 or H[ihi+1,ihi] == 0, // otherwise Dlaqr04 will panic. // // wr and wi must have length ihi+1. // // iloz and ihiz specify the rows of Z to which transformations will be applied // if wantz is true. It must hold that // 0 <= iloz <= ilo, and ihi <= ihiz < n, // otherwise Dlaqr04 will panic. // // work must have length at least lwork and lwork must be // lwork >= 1, if n <= 11, // lwork >= n, if n > 11, // otherwise Dlaqr04 will panic. lwork as large as 6*n may be required for // optimal performance. On return, work[0] will contain the optimal value of // lwork. // // If lwork is -1, instead of performing Dlaqr04, the function only estimates the // optimal workspace size and stores it into work[0]. Neither h nor z are // accessed. // // recur is the non-negative recursion depth. For recur > 0, Dlaqr04 behaves // as DLAQR0, for recur == 0 it behaves as DLAQR4. // // unconverged indicates whether Dlaqr04 computed all the eigenvalues of H[ilo:ihi+1,ilo:ihi+1]. // // If unconverged is zero and wantt is true, H will contain on return the upper // quasi-triangular matrix T from the Schur decomposition. 2×2 diagonal blocks // (corresponding to complex conjugate pairs of eigenvalues) will be returned in // standard form, with H[i,i] == H[i+1,i+1] and H[i+1,i]*H[i,i+1] < 0. // // If unconverged is zero and if wantt is false, the contents of h on return is // unspecified. // // If unconverged is zero, all the eigenvalues have been computed and their real // and imaginary parts will be stored on return in wr[ilo:ihi+1] and // wi[ilo:ihi+1], respectively. If two eigenvalues are computed as a complex // conjugate pair, they are stored in consecutive elements of wr and wi, say the // i-th and (i+1)th, with wi[i] > 0 and wi[i+1] < 0. If wantt is true, then the // eigenvalues are stored in the same order as on the diagonal of the Schur form // returned in H, with wr[i] = H[i,i] and, if H[i:i+2,i:i+2] is a 2×2 diagonal // block, wi[i] = sqrt(-H[i+1,i]*H[i,i+1]) and wi[i+1] = -wi[i]. // // If unconverged is positive, some eigenvalues have not converged, and // wr[unconverged:ihi+1] and wi[unconverged:ihi+1] will contain those // eigenvalues which have been successfully computed. Failures are rare. // // If unconverged is positive and wantt is true, then on return // (initial H)*U = U*(final H), (*) // where U is an orthogonal matrix. The final H is upper Hessenberg and // H[unconverged:ihi+1,unconverged:ihi+1] is upper quasi-triangular. // // If unconverged is positive and wantt is false, on return the remaining // unconverged eigenvalues are the eigenvalues of the upper Hessenberg matrix // H[ilo:unconverged,ilo:unconverged]. // // If unconverged is positive and wantz is true, then on return // (final Z) = (initial Z)*U, // where U is the orthogonal matrix in (*) regardless of the value of wantt. // // References: // [1] K. Braman, R. Byers, R. Mathias. The Multishift QR Algorithm. Part I: // Maintaining Well-Focused Shifts and Level 3 Performance. SIAM J. Matrix // Anal. Appl. 23(4) (2002), pp. 929—947 // URL: http://dx.doi.org/10.1137/S0895479801384573 // [2] K. Braman, R. Byers, R. Mathias. The Multishift QR Algorithm. Part II: // Aggressive Early Deflation. SIAM J. Matrix Anal. Appl. 23(4) (2002), pp. 948—973 // URL: http://dx.doi.org/10.1137/S0895479801384585 // // Dlaqr04 is an internal routine. It is exported for testing purposes. func (impl Implementation) Dlaqr04(wantt, wantz bool, n, ilo, ihi int, h []float64, ldh int, wr, wi []float64, iloz, ihiz int, z []float64, ldz int, work []float64, lwork int, recur int) (unconverged int) { const ( // Matrices of order ntiny or smaller must be processed by // Dlahqr because of insufficient subdiagonal scratch space. // This is a hard limit. ntiny = 11 // Exceptional deflation windows: try to cure rare slow // convergence by varying the size of the deflation window after // kexnw iterations. kexnw = 5 // Exceptional shifts: try to cure rare slow convergence with // ad-hoc exceptional shifts every kexsh iterations. kexsh = 6 // See https://github.com/gonum/lapack/pull/151#discussion_r68162802 // and the surrounding discussion for an explanation where these // constants come from. // TODO(vladimir-ch): Similar constants for exceptional shifts // are used also in dlahqr.go. The first constant is different // there, it is equal to 3. Why? And does it matter? wilk1 = 0.75 wilk2 = -0.4375 ) switch { case ilo < 0 || max(0, n-1) < ilo: panic(badIlo) case ihi < min(ilo, n-1) || n <= ihi: panic(badIhi) case lwork < 1 && n <= ntiny && lwork != -1: panic(badWork) // TODO(vladimir-ch): Enable if and when we figure out what the minimum // necessary lwork value is. Dlaqr04 says that the minimum is n which // clashes with Dlaqr23's opinion about optimal work when nw <= 2 // (independent of n). // case lwork < n && n > ntiny && lwork != -1: // panic(badWork) case len(work) < lwork: panic(shortWork) case recur < 0: panic("lapack: recur is negative") } if wantz { if iloz < 0 || ilo < iloz { panic("lapack: invalid value of iloz") } if ihiz < ihi || n <= ihiz { panic("lapack: invalid value of ihiz") } } if lwork != -1 { checkMatrix(n, n, h, ldh) if wantz { checkMatrix(n, n, z, ldz) } switch { case ilo > 0 && h[ilo*ldh+ilo-1] != 0: panic("lapack: block not isolated") case ihi+1 < n && h[(ihi+1)*ldh+ihi] != 0: panic("lapack: block not isolated") case len(wr) != ihi+1: panic("lapack: bad length of wr") case len(wi) != ihi+1: panic("lapack: bad length of wi") } } // Quick return. if n == 0 { work[0] = 1 return 0 } if n <= ntiny { // Tiny matrices must use Dlahqr. work[0] = 1 if lwork == -1 { return 0 } return impl.Dlahqr(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz) } // Use small bulge multi-shift QR with aggressive early deflation on // larger-than-tiny matrices. var jbcmpz string if wantt { jbcmpz = "S" } else { jbcmpz = "E" } if wantz { jbcmpz += "V" } else { jbcmpz += "N" } var fname string if recur > 0 { fname = "DLAQR0" } else { fname = "DLAQR4" } // nwr is the recommended deflation window size. n is greater than 11, // so there is enough subdiagonal workspace for nwr >= 2 as required. // (In fact, there is enough subdiagonal space for nwr >= 3.) // TODO(vladimir-ch): If there is enough space for nwr >= 3, should we // use it? nwr := impl.Ilaenv(13, fname, jbcmpz, n, ilo, ihi, lwork) nwr = max(2, nwr) nwr = min(ihi-ilo+1, min((n-1)/3, nwr)) // nsr is the recommended number of simultaneous shifts. n is greater // than 11, so there is enough subdiagonal workspace for nsr to be even // and greater than or equal to two as required. nsr := impl.Ilaenv(15, fname, jbcmpz, n, ilo, ihi, lwork) nsr = min(nsr, min((n+6)/9, ihi-ilo)) nsr = max(2, nsr&^1) // Workspace query call to Dlaqr23. impl.Dlaqr23(wantt, wantz, n, ilo, ihi, nwr+1, nil, 0, iloz, ihiz, nil, 0, nil, nil, nil, 0, n, nil, 0, n, nil, 0, work, -1, recur) // Optimal workspace is max(Dlaqr5, Dlaqr23). lwkopt := max(3*nsr/2, int(work[0])) // Quick return in case of workspace query. if lwork == -1 { work[0] = float64(lwkopt) return 0 } // Dlahqr/Dlaqr04 crossover point. nmin := impl.Ilaenv(12, fname, jbcmpz, n, ilo, ihi, lwork) nmin = max(ntiny, nmin) // Nibble determines when to skip a multi-shift QR sweep (Dlaqr5). nibble := impl.Ilaenv(14, fname, jbcmpz, n, ilo, ihi, lwork) nibble = max(0, nibble) // Computation mode of far-from-diagonal orthogonal updates in Dlaqr5. kacc22 := impl.Ilaenv(16, fname, jbcmpz, n, ilo, ihi, lwork) kacc22 = max(0, min(kacc22, 2)) // nwmax is the largest possible deflation window for which there is // sufficient workspace. nwmax := min((n-1)/3, lwork/2) nw := nwmax // Start with maximum deflation window size. // nsmax is the largest number of simultaneous shifts for which there is // sufficient workspace. nsmax := min((n+6)/9, 2*lwork/3) &^ 1 ndfl := 1 // Number of iterations since last deflation. ndec := 0 // Deflation window size decrement. // Main loop. var ( itmax = max(30, 2*kexsh) * max(10, (ihi-ilo+1)) it = 0 ) for kbot := ihi; kbot >= ilo; { if it == itmax { unconverged = kbot + 1 break } it++ // Locate active block. ktop := ilo for k := kbot; k >= ilo+1; k-- { if h[k*ldh+k-1] == 0 { ktop = k break } } // Select deflation window size nw. // // Typical Case: // If possible and advisable, nibble the entire active block. // If not, use size min(nwr,nwmax) or min(nwr+1,nwmax) // depending upon which has the smaller corresponding // subdiagonal entry (a heuristic). // // Exceptional Case: // If there have been no deflations in kexnw or more // iterations, then vary the deflation window size. At first, // because larger windows are, in general, more powerful than // smaller ones, rapidly increase the window to the maximum // possible. Then, gradually reduce the window size. nh := kbot - ktop + 1 nwupbd := min(nh, nwmax) if ndfl < kexnw { nw = min(nwupbd, nwr) } else { nw = min(nwupbd, 2*nw) } if nw < nwmax { if nw >= nh-1 { nw = nh } else { kwtop := kbot - nw + 1 if math.Abs(h[kwtop*ldh+kwtop-1]) > math.Abs(h[(kwtop-1)*ldh+kwtop-2]) { nw++ } } } if ndfl < kexnw { ndec = -1 } else if ndec >= 0 || nw >= nwupbd { ndec++ if nw-ndec < 2 { ndec = 0 } nw -= ndec } // Split workspace under the subdiagonal of H into: // - an nw×nw work array V in the lower left-hand corner, // - an nw×nhv horizontal work array along the bottom edge (nhv // must be at least nw but more is better), // - an nve×nw vertical work array along the left-hand-edge // (nhv can be any positive integer but more is better). kv := n - nw kt := nw kwv := nw + 1 nhv := n - kwv - kt // Aggressive early deflation. ls, ld := impl.Dlaqr23(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, wr[:kbot+1], wi[:kbot+1], h[kv*ldh:], ldh, nhv, h[kv*ldh+kt:], ldh, nhv, h[kwv*ldh:], ldh, work, lwork, recur) // Adjust kbot accounting for new deflations. kbot -= ld // ks points to the shifts. ks := kbot - ls + 1 // Skip an expensive QR sweep if there is a (partly heuristic) // reason to expect that many eigenvalues will deflate without // it. Here, the QR sweep is skipped if many eigenvalues have // just been deflated or if the remaining active block is small. if ld > 0 && (100*ld > nw*nibble || kbot-ktop+1 <= min(nmin, nwmax)) { // ld is positive, note progress. ndfl = 1 continue } // ns is the nominal number of simultaneous shifts. This may be // lowered (slightly) if Dlaqr23 did not provide that many // shifts. ns := min(min(nsmax, nsr), max(2, kbot-ktop)) &^ 1 // If there have been no deflations in a multiple of kexsh // iterations, then try exceptional shifts. Otherwise use shifts // provided by Dlaqr23 above or from the eigenvalues of a // trailing principal submatrix. if ndfl%kexsh == 0 { ks = kbot - ns + 1 for i := kbot; i > max(ks, ktop+1); i -= 2 { ss := math.Abs(h[i*ldh+i-1]) + math.Abs(h[(i-1)*ldh+i-2]) aa := wilk1*ss + h[i*ldh+i] _, _, _, _, wr[i-1], wi[i-1], wr[i], wi[i], _, _ = impl.Dlanv2(aa, ss, wilk2*ss, aa) } if ks == ktop { wr[ks+1] = h[(ks+1)*ldh+ks+1] wi[ks+1] = 0 wr[ks] = wr[ks+1] wi[ks] = wi[ks+1] } } else { // If we got ns/2 or fewer shifts, use Dlahqr or recur // into Dlaqr04 on a trailing principal submatrix to get // more. Since ns <= nsmax <=(n+6)/9, there is enough // space below the subdiagonal to fit an ns×ns scratch // array. if kbot-ks+1 <= ns/2 { ks = kbot - ns + 1 kt = n - ns impl.Dlacpy(blas.All, ns, ns, h[ks*ldh+ks:], ldh, h[kt*ldh:], ldh) if ns > nmin && recur > 0 { ks += impl.Dlaqr04(false, false, ns, 1, ns-1, h[kt*ldh:], ldh, wr[ks:ks+ns], wi[ks:ks+ns], 0, 0, nil, 0, work, lwork, recur-1) } else { ks += impl.Dlahqr(false, false, ns, 0, ns-1, h[kt*ldh:], ldh, wr[ks:ks+ns], wi[ks:ks+ns], 0, 0, nil, 0) } // In case of a rare QR failure use eigenvalues // of the trailing 2×2 principal submatrix. if ks >= kbot { aa := h[(kbot-1)*ldh+kbot-1] bb := h[(kbot-1)*ldh+kbot] cc := h[kbot*ldh+kbot-1] dd := h[kbot*ldh+kbot] _, _, _, _, wr[kbot-1], wi[kbot-1], wr[kbot], wi[kbot], _, _ = impl.Dlanv2(aa, bb, cc, dd) ks = kbot - 1 } } if kbot-ks+1 > ns { // Sorting the shifts helps a little. Bubble // sort keeps complex conjugate pairs together. sorted := false for k := kbot; k > ks; k-- { if sorted { break } sorted = true for i := ks; i < k; i++ { if math.Abs(wr[i])+math.Abs(wi[i]) >= math.Abs(wr[i+1])+math.Abs(wi[i+1]) { continue } sorted = false wr[i], wr[i+1] = wr[i+1], wr[i] wi[i], wi[i+1] = wi[i+1], wi[i] } } } // Shuffle shifts into pairs of real shifts and pairs of // complex conjugate shifts using the fact that complex // conjugate shifts are already adjacent to one another. // TODO(vladimir-ch): The shuffling here could probably // be removed but I'm not sure right now and it's safer // to leave it. for i := kbot; i > ks+1; i -= 2 { if wi[i] == -wi[i-1] { continue } wr[i], wr[i-1], wr[i-2] = wr[i-1], wr[i-2], wr[i] wi[i], wi[i-1], wi[i-2] = wi[i-1], wi[i-2], wi[i] } } // If there are only two shifts and both are real, then use only one. if kbot-ks+1 == 2 && wi[kbot] == 0 { if math.Abs(wr[kbot]-h[kbot*ldh+kbot]) < math.Abs(wr[kbot-1]-h[kbot*ldh+kbot]) { wr[kbot-1] = wr[kbot] } else { wr[kbot] = wr[kbot-1] } } // Use up to ns of the the smallest magnitude shifts. If there // aren't ns shifts available, then use them all, possibly // dropping one to make the number of shifts even. ns = min(ns, kbot-ks+1) &^ 1 ks = kbot - ns + 1 // Split workspace under the subdiagonal into: // - a kdu×kdu work array U in the lower left-hand-corner, // - a kdu×nhv horizontal work array WH along the bottom edge // (nhv must be at least kdu but more is better), // - an nhv×kdu vertical work array WV along the left-hand-edge // (nhv must be at least kdu but more is better). kdu := 3*ns - 3 ku := n - kdu kwh := kdu kwv = kdu + 3 nhv = n - kwv - kdu // Small-bulge multi-shift QR sweep. impl.Dlaqr5(wantt, wantz, kacc22, n, ktop, kbot, ns, wr[ks:ks+ns], wi[ks:ks+ns], h, ldh, iloz, ihiz, z, ldz, work, 3, h[ku*ldh:], ldh, nhv, h[kwv*ldh:], ldh, nhv, h[ku*ldh+kwh:], ldh) // Note progress (or the lack of it). if ld > 0 { ndfl = 1 } else { ndfl++ } } work[0] = float64(lwkopt) return unconverged }