
KEPLER COMPATIBILITY GUIDE FOR
CUDA APPLICATIONS

DA-06287-001_v5.5 | May 2013

Application Note

www.nvidia.com
Kepler Compatibility Guide for CUDA Applications DA-06287-001_v5.5 | ii

TABLE OF CONTENTS

Chapter 1. Kepler Compatibility.. 1
1.1. About this Document...1
1.2. Application Compatibility on Kepler...1
1.3. Verifying Kepler Compatibility for Existing Applications... 2

1.3.1. Applications Using CUDA Toolkit 4.1 or Earlier...2
1.3.2. Applications Using CUDA Toolkit 5.0... 2

1.4. Building Applications with Kepler Support... 2
1.4.1. Applications Using CUDA Toolkit 4.1 or Earlier...3
1.4.2. Applications Using CUDA Toolkit 5.0... 4

Appendix A. Revision History..5

www.nvidia.com
Kepler Compatibility Guide for CUDA Applications DA-06287-001_v5.5 | 1

Chapter 1.
KEPLER COMPATIBILITY

1.1. About this Document
This application note, Kepler Compatibility Guide for CUDA Applications, is intended to
help developers ensure that their NVIDIA® CUDA™ applications will run effectively on
GPUs based on the NVIDIA® Kepler Architecture. This document provides guidance to
developers who are already familiar with programming in CUDA C/C++ and want to
make sure that their software applications are compatible with Kepler.

1.2. Application Compatibility on Kepler
The NVIDIA CUDA C compiler, nvcc, can be used to generate both architecture-
specific cubin files and forward-compatible PTX versions of each kernel. Each cubin
file targets a specific compute-capability version and is forward-compatible only with
GPU architectures of the same major version number. For example, cubin files that target
compute capability 2.0 are supported on all compute-capability 2.x (Fermi) devices but
are not supported on compute-capability 3.x (Kepler) devices. For this reason, to ensure
forward compatibility with GPU architectures introduced after the application has been
released, it is recommended that all applications support launching PTX versions of
their kernels.1

Applications that already include PTX versions of their kernels should work as-is on
Kepler-based GPUs. Applications that only support specific GPU architectures via
cubin files, however, will need to be updated to provide Kepler-compatible PTX or
cubins.

1 CUDA Runtime applications containing both cubin and PTX code for a given architecture will automatically use the
cubin by default, keeping the PTX path strictly for forward-compatibility purposes.

Kepler Compatibility

www.nvidia.com
Kepler Compatibility Guide for CUDA Applications DA-06287-001_v5.5 | 2

1.3. Verifying Kepler Compatibility for Existing
Applications
The first step is to check that Kepler-compatible device code (at least PTX) is compiled in
to the application. The following sections show how to accomplish this for applications
built with different CUDA Toolkit versions.

1.3.1. Applications Using CUDA Toolkit 4.1 or Earlier
CUDA applications built using CUDA Toolkit versions 2.1 through 4.1 are compatible
with Kepler as long as they are built to include PTX versions of their kernels. To test that
PTX JIT is working for your application, you can do the following:

‣ Download and install the latest driver from http://www.nvidia.com/drivers.
‣ Set the environment variable CUDA_FORCE_PTX_JIT=1.
‣ Create an empty temporary directory on your system.
‣ Set the environment variable CUDA_CACHE_PATH to be the path to this empty

directory.
‣ Launch your application.

When starting a CUDA application for the first time with the above environment flag,
the CUDA driver will JIT-compile the PTX for each CUDA kernel that is used into native
cubin code. The generated cubin for the target GPU architecture is cached on disk by
the CUDA driver.

If you set the environment variables above and then launch your program and it works
properly, and if the directory you specified with the CUDA_CACHE_PATH environment
variable is now populated with cache files, then you have successfully verified Kepler
compatibility. Note that it is not necessary to inspect the contents of the cache files
themselves; just check that the previously empty cache directory is now non-empty.

Be sure to unset these two environment variables when you are done testing if you do
not normally use them. The temporary cache directory you created is safe to delete.

1.3.2. Applications Using CUDA Toolkit 5.0
CUDA applications built using CUDA Toolkit 5.0 are compatible with Kepler as long
as they are built to include kernels in either Kepler-native cubin format (see Building
Applications with Kepler Support) or PTX format (see Applications Using CUDA
Toolkit 4.1 or Earlier) or both.

1.4. Building Applications with Kepler Support
When a CUDA application launches a kernel, the CUDA Runtime determines
the compute capability of each GPU in the system and uses this information to
automatically find the best matching cubin or PTX version of the kernel that is

http://www.nvidia.com/drivers

Kepler Compatibility

www.nvidia.com
Kepler Compatibility Guide for CUDA Applications DA-06287-001_v5.5 | 3

available. If a cubin file supporting the architecture of the target GPU is available, it is
used; otherwise, the CUDA Runtime will load the PTX and JIT-compile that PTX to the
GPU's native cubin format before launching it. If neither is available, then the kernel
launch will fail.

The method used to build your application with either native cubin or at least PTX
support for Kepler depend on the version of the CUDA Toolkit used.

The main advantages of providing native cubins are as follows:

‣ It saves the end user the time it takes to PTX JIT a kernel that has been compiled as
PTX. (However, since the CUDA driver will cache the cubin generated as a result of
the PTX JIT, this is mostly a one-time cost for a given user.)

‣ PTX JIT-compiled kernels often cannot take advantage of architectural features
of newer GPUs, meaning that native-compiled code may be faster or of greater
accuracy.

1.4.1. Applications Using CUDA Toolkit 4.1 or Earlier
The compilers included in CUDA Toolkit 4.1 or earlier generate cubin files native to
earlier NVIDIA architectures such as Fermi, but they cannot generate cubin files native
to the Kepler architecture. To allow support for Kepler and future architectures when
using version 4.1 or earlier of the CUDA Toolkit, the compiler must generate a PTX
version of each kernel.

Below are compiler settings that could be used to build mykernel.cu to run on Fermi
and earlier devices natively and on Kepler devices via PTX JIT.

Note that compute_XX refers to a PTX version and sm_XX refers to a cubin version. The
arch= clause of the -gencode= command-line option to nvcc specifies the front-end
compilation target and must always be a PTX version. The code= clause specifies the
back-end compilation target and can either be cubin or PTX or both. Only the back-end
target version(s) specified by the code= clause will be retained in the resulting binary;
at least one must be PTX to provide Kepler compatibility.

Windows

nvcc.exe -ccbin "C:\vs2008\VC\bin"
 -Xcompiler "/EHsc /W3 /nologo /O2 /Zi /MT"
 -gencode=arch=compute_10,code=sm_10
 -gencode=arch=compute_20,code=sm_20
 -gencode=arch=compute_20,code=compute_20
 --compile -o "Release\mykernel.cu.obj" "mykernel.cu"

Mac/Linux

/usr/local/cuda/bin/nvcc
 -gencode=arch=compute_10,code=sm_10
 -gencode=arch=compute_20,code=sm_20
 -gencode=arch=compute_20,code=compute_20
 -O2 -o mykernel.o -c mykernel.cu

Kepler Compatibility

www.nvidia.com
Kepler Compatibility Guide for CUDA Applications DA-06287-001_v5.5 | 4

Alternatively, you may be familiar with the simplified nvcc command-line option -
arch=sm_XX, which is a shorthand equivalent to the following more explicit -gencode=
command-line options used above. -arch=sm_XX expands to the following:

-gencode=arch=compute_XX,code=sm_XX
-gencode=arch=compute_XX,code=compute_XX

However, while the -arch=sm_XX command-line option does result in inclusion of a
PTX back-end target by default, it can only specify a single target cubin architecture at a
time, and it is not possible to use multiple -arch= options on the same nvcc command
line, which is why the examples above use -gencode= explicitly.

1.4.2. Applications Using CUDA Toolkit 5.0
With version 5.0 of the CUDA Toolkit, nvcc can generate cubin files native to the
Kepler architecture (compute capability 3.x). When using CUDA Toolkit 5.0, to ensure
that nvcc will generate cubin files for all released GPU architectures as well as a PTX
version for forward compatibility with future GPU architectures, specify the appropriate
-gencode= parameters on the nvcc command line as shown in the examples below.

Windows

nvcc.exe -ccbin "C:\vs2008\VC\bin"
 -Xcompiler "/EHsc /W3 /nologo /O2 /Zi /MT"
 -gencode=arch=compute_10,code=sm_10
 -gencode=arch=compute_20,code=sm_20
 -gencode=arch=compute_30,code=sm_30
 -gencode=arch=compute_35,code=sm_35
 -gencode=arch=compute_35,code=compute_35
 --compile -o "Release\mykernel.cu.obj" "mykernel.cu"

Mac/Linux

/usr/local/cuda/bin/nvcc
 -gencode=arch=compute_10,code=sm_10
 -gencode=arch=compute_20,code=sm_20
 -gencode=arch=compute_30,code=sm_30
 -gencode=arch=compute_35,code=sm_35
 -gencode=arch=compute_35,code=compute_35
 -O2 -o mykernel.o -c mykernel.cu

Note that compute_XX refers to a PTX version and sm_XX refers to a cubin version. The
arch= clause of the -gencode= command-line option to nvcc specifies the front-end
compilation target and must always be a PTX version. The code= clause specifies the
back-end compilation target and can either be cubin or PTX or both. Only the back-end
target version(s) specified by the code= clause will be retained in the resulting binary;
at least one should be PTX to provide compatibility with future architectures.

www.nvidia.com
Kepler Compatibility Guide for CUDA Applications DA-06287-001_v5.5 | 5

Appendix A.
REVISION HISTORY

Version 1.0

‣ Initial public release.

Version 1.1

‣ Added sm_35.
‣ Simplified by removing discussion of CUDA Driver API, which is infrequently used

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2013 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	Kepler Compatibility
	1.1. About this Document
	1.2. Application Compatibility on Kepler
	1.3. Verifying Kepler Compatibility for Existing Applications
	1.3.1. Applications Using CUDA Toolkit 4.1 or Earlier
	1.3.2. Applications Using CUDA Toolkit 5.0

	1.4. Building Applications with Kepler Support
	1.4.1. Applications Using CUDA Toolkit 4.1 or Earlier
	1.4.2. Applications Using CUDA Toolkit 5.0

	Revision History

