OSDN Git Service

Remove SFTP support to release 1.98f.
[ffftp/ffftp.git] / putty / SSHDES.C
diff --git a/putty/SSHDES.C b/putty/SSHDES.C
deleted file mode 100644 (file)
index 0beb273..0000000
+++ /dev/null
@@ -1,1031 +0,0 @@
-#include <assert.h>\r
-#include "ssh.h"\r
-\r
-\r
-/* des.c - implementation of DES\r
- */\r
-\r
-/*\r
- * Description of DES\r
- * ------------------\r
- *\r
- * Unlike the description in FIPS 46, I'm going to use _sensible_ indices:\r
- * bits in an n-bit word are numbered from 0 at the LSB to n-1 at the MSB.\r
- * And S-boxes are indexed by six consecutive bits, not by the outer two\r
- * followed by the middle four.\r
- *\r
- * The DES encryption routine requires a 64-bit input, and a key schedule K\r
- * containing 16 48-bit elements.\r
- *\r
- *   First the input is permuted by the initial permutation IP.\r
- *   Then the input is split into 32-bit words L and R. (L is the MSW.)\r
- *   Next, 16 rounds. In each round:\r
- *     (L, R) <- (R, L xor f(R, K[i]))\r
- *   Then the pre-output words L and R are swapped.\r
- *   Then L and R are glued back together into a 64-bit word. (L is the MSW,\r
- *     again, but since we just swapped them, the MSW is the R that came out\r
- *     of the last round.)\r
- *   The 64-bit output block is permuted by the inverse of IP and returned.\r
- *\r
- * Decryption is identical except that the elements of K are used in the\r
- * opposite order. (This wouldn't work if that word swap didn't happen.)\r
- *\r
- * The function f, used in each round, accepts a 32-bit word R and a\r
- * 48-bit key block K. It produces a 32-bit output.\r
- *\r
- *   First R is expanded to 48 bits using the bit-selection function E.\r
- *   The resulting 48-bit block is XORed with the key block K to produce\r
- *     a 48-bit block X.\r
- *   This block X is split into eight groups of 6 bits. Each group of 6\r
- *     bits is then looked up in one of the eight S-boxes to convert\r
- *     it to 4 bits. These eight groups of 4 bits are glued back\r
- *     together to produce a 32-bit preoutput block.\r
- *   The preoutput block is permuted using the permutation P and returned.\r
- *\r
- * Key setup maps a 64-bit key word into a 16x48-bit key schedule. Although\r
- * the approved input format for the key is a 64-bit word, eight of the\r
- * bits are discarded, so the actual quantity of key used is 56 bits.\r
- *\r
- *   First the input key is converted to two 28-bit words C and D using\r
- *     the bit-selection function PC1.\r
- *   Then 16 rounds of key setup occur. In each round, C and D are each\r
- *     rotated left by either 1 or 2 bits (depending on which round), and\r
- *     then converted into a key schedule element using the bit-selection\r
- *     function PC2.\r
- *\r
- * That's the actual algorithm. Now for the tedious details: all those\r
- * painful permutations and lookup tables.\r
- *\r
- * IP is a 64-to-64 bit permutation. Its output contains the following\r
- * bits of its input (listed in order MSB to LSB of output).\r
- *\r
- *    6 14 22 30 38 46 54 62  4 12 20 28 36 44 52 60\r
- *    2 10 18 26 34 42 50 58  0  8 16 24 32 40 48 56\r
- *    7 15 23 31 39 47 55 63  5 13 21 29 37 45 53 61\r
- *    3 11 19 27 35 43 51 59  1  9 17 25 33 41 49 57\r
- *\r
- * E is a 32-to-48 bit selection function. Its output contains the following\r
- * bits of its input (listed in order MSB to LSB of output).\r
- *\r
- *    0 31 30 29 28 27 28 27 26 25 24 23 24 23 22 21 20 19 20 19 18 17 16 15\r
- *   16 15 14 13 12 11 12 11 10  9  8  7  8  7  6  5  4  3  4  3  2  1  0 31\r
- *\r
- * The S-boxes are arbitrary table-lookups each mapping a 6-bit input to a\r
- * 4-bit output. In other words, each S-box is an array[64] of 4-bit numbers.\r
- * The S-boxes are listed below. The first S-box listed is applied to the\r
- * most significant six bits of the block X; the last one is applied to the\r
- * least significant.\r
- *\r
- *   14  0  4 15 13  7  1  4  2 14 15  2 11 13  8  1\r
- *    3 10 10  6  6 12 12 11  5  9  9  5  0  3  7  8\r
- *    4 15  1 12 14  8  8  2 13  4  6  9  2  1 11  7\r
- *   15  5 12 11  9  3  7 14  3 10 10  0  5  6  0 13\r
- *\r
- *   15  3  1 13  8  4 14  7  6 15 11  2  3  8  4 14\r
- *    9 12  7  0  2  1 13 10 12  6  0  9  5 11 10  5\r
- *    0 13 14  8  7 10 11  1 10  3  4 15 13  4  1  2\r
- *    5 11  8  6 12  7  6 12  9  0  3  5  2 14 15  9\r
- *\r
- *   10 13  0  7  9  0 14  9  6  3  3  4 15  6  5 10\r
- *    1  2 13  8 12  5  7 14 11 12  4 11  2 15  8  1\r
- *   13  1  6 10  4 13  9  0  8  6 15  9  3  8  0  7\r
- *   11  4  1 15  2 14 12  3  5 11 10  5 14  2  7 12\r
- *\r
- *    7 13 13  8 14 11  3  5  0  6  6 15  9  0 10  3\r
- *    1  4  2  7  8  2  5 12 11  1 12 10  4 14 15  9\r
- *   10  3  6 15  9  0  0  6 12 10 11  1  7 13 13  8\r
- *   15  9  1  4  3  5 14 11  5 12  2  7  8  2  4 14\r
- *\r
- *    2 14 12 11  4  2  1 12  7  4 10  7 11 13  6  1\r
- *    8  5  5  0  3 15 15 10 13  3  0  9 14  8  9  6\r
- *    4 11  2  8  1 12 11  7 10  1 13 14  7  2  8 13\r
- *   15  6  9 15 12  0  5  9  6 10  3  4  0  5 14  3\r
- *\r
- *   12 10  1 15 10  4 15  2  9  7  2 12  6  9  8  5\r
- *    0  6 13  1  3 13  4 14 14  0  7 11  5  3 11  8\r
- *    9  4 14  3 15  2  5 12  2  9  8  5 12 15  3 10\r
- *    7 11  0 14  4  1 10  7  1  6 13  0 11  8  6 13\r
- *\r
- *    4 13 11  0  2 11 14  7 15  4  0  9  8  1 13 10\r
- *    3 14 12  3  9  5  7 12  5  2 10 15  6  8  1  6\r
- *    1  6  4 11 11 13 13  8 12  1  3  4  7 10 14  7\r
- *   10  9 15  5  6  0  8 15  0 14  5  2  9  3  2 12\r
- *\r
- *   13  1  2 15  8 13  4  8  6 10 15  3 11  7  1  4\r
- *   10 12  9  5  3  6 14 11  5  0  0 14 12  9  7  2\r
- *    7  2 11  1  4 14  1  7  9  4 12 10 14  8  2 13\r
- *    0 15  6 12 10  9 13  0 15  3  3  5  5  6  8 11\r
- *\r
- * P is a 32-to-32 bit permutation. Its output contains the following\r
- * bits of its input (listed in order MSB to LSB of output).\r
- *\r
- *   16 25 12 11  3 20  4 15 31 17  9  6 27 14  1 22\r
- *   30 24  8 18  0  5 29 23 13 19  2 26 10 21 28  7\r
- *\r
- * PC1 is a 64-to-56 bit selection function. Its output is in two words,\r
- * C and D. The word C contains the following bits of its input (listed\r
- * in order MSB to LSB of output).\r
- *\r
- *    7 15 23 31 39 47 55 63  6 14 22 30 38 46\r
- *   54 62  5 13 21 29 37 45 53 61  4 12 20 28\r
- *\r
- * And the word D contains these bits.\r
- *\r
- *    1  9 17 25 33 41 49 57  2 10 18 26 34 42\r
- *   50 58  3 11 19 27 35 43 51 59 36 44 52 60\r
- *\r
- * PC2 is a 56-to-48 bit selection function. Its input is in two words,\r
- * C and D. These are treated as one 56-bit word (with C more significant,\r
- * so that bits 55 to 28 of the word are bits 27 to 0 of C, and bits 27 to\r
- * 0 of the word are bits 27 to 0 of D). The output contains the following\r
- * bits of this 56-bit input word (listed in order MSB to LSB of output).\r
- *\r
- *   42 39 45 32 55 51 53 28 41 50 35 46 33 37 44 52 30 48 40 49 29 36 43 54\r
- *   15  4 25 19  9  1 26 16  5 11 23  8 12  7 17  0 22  3 10 14  6 20 27 24\r
- */\r
-\r
-/*\r
- * Implementation details\r
- * ----------------------\r
- * \r
- * If you look at the code in this module, you'll find it looks\r
- * nothing _like_ the above algorithm. Here I explain the\r
- * differences...\r
- *\r
- * Key setup has not been heavily optimised here. We are not\r
- * concerned with key agility: we aren't codebreakers. We don't\r
- * mind a little delay (and it really is a little one; it may be a\r
- * factor of five or so slower than it could be but it's still not\r
- * an appreciable length of time) while setting up. The only tweaks\r
- * in the key setup are ones which change the format of the key\r
- * schedule to speed up the actual encryption. I'll describe those\r
- * below.\r
- *\r
- * The first and most obvious optimisation is the S-boxes. Since\r
- * each S-box always targets the same four bits in the final 32-bit\r
- * word, so the output from (for example) S-box 0 must always be\r
- * shifted left 28 bits, we can store the already-shifted outputs\r
- * in the lookup tables. This reduces lookup-and-shift to lookup,\r
- * so the S-box step is now just a question of ORing together eight\r
- * table lookups.\r
- *\r
- * The permutation P is just a bit order change; it's invariant\r
- * with respect to OR, in that P(x)|P(y) = P(x|y). Therefore, we\r
- * can apply P to every entry of the S-box tables and then we don't\r
- * have to do it in the code of f(). This yields a set of tables\r
- * which might be called SP-boxes.\r
- *\r
- * The bit-selection function E is our next target. Note that E is\r
- * immediately followed by the operation of splitting into 6-bit\r
- * chunks. Examining the 6-bit chunks coming out of E we notice\r
- * they're all contiguous within the word (speaking cyclically -\r
- * the end two wrap round); so we can extract those bit strings\r
- * individually rather than explicitly running E. This would yield\r
- * code such as\r
- *\r
- *     y |= SPboxes[0][ (rotl(R, 5) ^  top6bitsofK) & 0x3F ];\r
- *     t |= SPboxes[1][ (rotl(R,11) ^ next6bitsofK) & 0x3F ];\r
- *\r
- * and so on; and the key schedule preparation would have to\r
- * provide each 6-bit chunk separately.\r
- *\r
- * Really we'd like to XOR in the key schedule element before\r
- * looking up bit strings in R. This we can't do, naively, because\r
- * the 6-bit strings we want overlap. But look at the strings:\r
- *\r
- *       3322222222221111111111\r
- * bit   10987654321098765432109876543210\r
- * \r
- * box0  XXXXX                          X\r
- * box1     XXXXXX\r
- * box2         XXXXXX\r
- * box3             XXXXXX\r
- * box4                 XXXXXX\r
- * box5                     XXXXXX\r
- * box6                         XXXXXX\r
- * box7  X                          XXXXX\r
- *\r
- * The bit strings we need to XOR in for boxes 0, 2, 4 and 6 don't\r
- * overlap with each other. Neither do the ones for boxes 1, 3, 5\r
- * and 7. So we could provide the key schedule in the form of two\r
- * words that we can separately XOR into R, and then every S-box\r
- * index is available as a (cyclically) contiguous 6-bit substring\r
- * of one or the other of the results.\r
- *\r
- * The comments in Eric Young's libdes implementation point out\r
- * that two of these bit strings require a rotation (rather than a\r
- * simple shift) to extract. It's unavoidable that at least _one_\r
- * must do; but we can actually run the whole inner algorithm (all\r
- * 16 rounds) rotated one bit to the left, so that what the `real'\r
- * DES description sees as L=0x80000001 we see as L=0x00000003.\r
- * This requires rotating all our SP-box entries one bit to the\r
- * left, and rotating each word of the key schedule elements one to\r
- * the left, and rotating L and R one bit left just after IP and\r
- * one bit right again just before FP. And in each round we convert\r
- * a rotate into a shift, so we've saved a few per cent.\r
- *\r
- * That's about it for the inner loop; the SP-box tables as listed\r
- * below are what I've described here (the original S value,\r
- * shifted to its final place in the input to P, run through P, and\r
- * then rotated one bit left). All that remains is to optimise the\r
- * initial permutation IP.\r
- *\r
- * IP is not an arbitrary permutation. It has the nice property\r
- * that if you take any bit number, write it in binary (6 bits),\r
- * permute those 6 bits and invert some of them, you get the final\r
- * position of that bit. Specifically, the bit whose initial\r
- * position is given (in binary) as fedcba ends up in position\r
- * AcbFED (where a capital letter denotes the inverse of a bit).\r
- *\r
- * We have the 64-bit data in two 32-bit words L and R, where bits\r
- * in L are those with f=1 and bits in R are those with f=0. We\r
- * note that we can do a simple transformation: suppose we exchange\r
- * the bits with f=1,c=0 and the bits with f=0,c=1. This will cause\r
- * the bit fedcba to be in position cedfba - we've `swapped' bits c\r
- * and f in the position of each bit!\r
- * \r
- * Better still, this transformation is easy. In the example above,\r
- * bits in L with c=0 are bits 0x0F0F0F0F, and those in R with c=1\r
- * are 0xF0F0F0F0. So we can do\r
- *\r
- *     difference = ((R >> 4) ^ L) & 0x0F0F0F0F\r
- *     R ^= (difference << 4)\r
- *     L ^= difference\r
- *\r
- * to perform the swap. Let's denote this by bitswap(4,0x0F0F0F0F).\r
- * Also, we can invert the bit at the top just by exchanging L and\r
- * R. So in a few swaps and a few of these bit operations we can\r
- * do:\r
- * \r
- * Initially the position of bit fedcba is     fedcba\r
- * Swap L with R to make it                    Fedcba\r
- * Perform bitswap( 4,0x0F0F0F0F) to make it   cedFba\r
- * Perform bitswap(16,0x0000FFFF) to make it   ecdFba\r
- * Swap L with R to make it                    EcdFba\r
- * Perform bitswap( 2,0x33333333) to make it   bcdFEa\r
- * Perform bitswap( 8,0x00FF00FF) to make it   dcbFEa\r
- * Swap L with R to make it                    DcbFEa\r
- * Perform bitswap( 1,0x55555555) to make it   acbFED\r
- * Swap L with R to make it                    AcbFED\r
- *\r
- * (In the actual code the four swaps are implicit: R and L are\r
- * simply used the other way round in the first, second and last\r
- * bitswap operations.)\r
- *\r
- * The final permutation is just the inverse of IP, so it can be\r
- * performed by a similar set of operations.\r
- */\r
-\r
-typedef struct {\r
-    word32 k0246[16], k1357[16];\r
-    word32 iv0, iv1;\r
-} DESContext;\r
-\r
-#define rotl(x, c) ( (x << c) | (x >> (32-c)) )\r
-#define rotl28(x, c) ( ( (x << c) | (x >> (28-c)) ) & 0x0FFFFFFF)\r
-\r
-static word32 bitsel(word32 * input, const int *bitnums, int size)\r
-{\r
-    word32 ret = 0;\r
-    while (size--) {\r
-       int bitpos = *bitnums++;\r
-       ret <<= 1;\r
-       if (bitpos >= 0)\r
-           ret |= 1 & (input[bitpos / 32] >> (bitpos % 32));\r
-    }\r
-    return ret;\r
-}\r
-\r
-static void des_key_setup(word32 key_msw, word32 key_lsw, DESContext * sched)\r
-{\r
-\r
-    static const int PC1_Cbits[] = {\r
-       7, 15, 23, 31, 39, 47, 55, 63, 6, 14, 22, 30, 38, 46,\r
-       54, 62, 5, 13, 21, 29, 37, 45, 53, 61, 4, 12, 20, 28\r
-    };\r
-    static const int PC1_Dbits[] = {\r
-       1, 9, 17, 25, 33, 41, 49, 57, 2, 10, 18, 26, 34, 42,\r
-       50, 58, 3, 11, 19, 27, 35, 43, 51, 59, 36, 44, 52, 60\r
-    };\r
-    /*\r
-     * The bit numbers in the two lists below don't correspond to\r
-     * the ones in the above description of PC2, because in the\r
-     * above description C and D are concatenated so `bit 28' means\r
-     * bit 0 of C. In this implementation we're using the standard\r
-     * `bitsel' function above and C is in the second word, so bit\r
-     * 0 of C is addressed by writing `32' here.\r
-     */\r
-    static const int PC2_0246[] = {\r
-       49, 36, 59, 55, -1, -1, 37, 41, 48, 56, 34, 52, -1, -1, 15, 4,\r
-       25, 19, 9, 1, -1, -1, 12, 7, 17, 0, 22, 3, -1, -1, 46, 43\r
-    };\r
-    static const int PC2_1357[] = {\r
-       -1, -1, 57, 32, 45, 54, 39, 50, -1, -1, 44, 53, 33, 40, 47, 58,\r
-       -1, -1, 26, 16, 5, 11, 23, 8, -1, -1, 10, 14, 6, 20, 27, 24\r
-    };\r
-    static const int leftshifts[] =\r
-       { 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 };\r
-\r
-    word32 C, D;\r
-    word32 buf[2];\r
-    int i;\r
-\r
-    buf[0] = key_lsw;\r
-    buf[1] = key_msw;\r
-\r
-    C = bitsel(buf, PC1_Cbits, 28);\r
-    D = bitsel(buf, PC1_Dbits, 28);\r
-\r
-    for (i = 0; i < 16; i++) {\r
-       C = rotl28(C, leftshifts[i]);\r
-       D = rotl28(D, leftshifts[i]);\r
-       buf[0] = D;\r
-       buf[1] = C;\r
-       sched->k0246[i] = bitsel(buf, PC2_0246, 32);\r
-       sched->k1357[i] = bitsel(buf, PC2_1357, 32);\r
-    }\r
-\r
-    sched->iv0 = sched->iv1 = 0;\r
-}\r
-\r
-static const word32 SPboxes[8][64] = {\r
-    {0x01010400, 0x00000000, 0x00010000, 0x01010404,\r
-     0x01010004, 0x00010404, 0x00000004, 0x00010000,\r
-     0x00000400, 0x01010400, 0x01010404, 0x00000400,\r
-     0x01000404, 0x01010004, 0x01000000, 0x00000004,\r
-     0x00000404, 0x01000400, 0x01000400, 0x00010400,\r
-     0x00010400, 0x01010000, 0x01010000, 0x01000404,\r
-     0x00010004, 0x01000004, 0x01000004, 0x00010004,\r
-     0x00000000, 0x00000404, 0x00010404, 0x01000000,\r
-     0x00010000, 0x01010404, 0x00000004, 0x01010000,\r
-     0x01010400, 0x01000000, 0x01000000, 0x00000400,\r
-     0x01010004, 0x00010000, 0x00010400, 0x01000004,\r
-     0x00000400, 0x00000004, 0x01000404, 0x00010404,\r
-     0x01010404, 0x00010004, 0x01010000, 0x01000404,\r
-     0x01000004, 0x00000404, 0x00010404, 0x01010400,\r
-     0x00000404, 0x01000400, 0x01000400, 0x00000000,\r
-     0x00010004, 0x00010400, 0x00000000, 0x01010004L},\r
-\r
-    {0x80108020, 0x80008000, 0x00008000, 0x00108020,\r
-     0x00100000, 0x00000020, 0x80100020, 0x80008020,\r
-     0x80000020, 0x80108020, 0x80108000, 0x80000000,\r
-     0x80008000, 0x00100000, 0x00000020, 0x80100020,\r
-     0x00108000, 0x00100020, 0x80008020, 0x00000000,\r
-     0x80000000, 0x00008000, 0x00108020, 0x80100000,\r
-     0x00100020, 0x80000020, 0x00000000, 0x00108000,\r
-     0x00008020, 0x80108000, 0x80100000, 0x00008020,\r
-     0x00000000, 0x00108020, 0x80100020, 0x00100000,\r
-     0x80008020, 0x80100000, 0x80108000, 0x00008000,\r
-     0x80100000, 0x80008000, 0x00000020, 0x80108020,\r
-     0x00108020, 0x00000020, 0x00008000, 0x80000000,\r
-     0x00008020, 0x80108000, 0x00100000, 0x80000020,\r
-     0x00100020, 0x80008020, 0x80000020, 0x00100020,\r
-     0x00108000, 0x00000000, 0x80008000, 0x00008020,\r
-     0x80000000, 0x80100020, 0x80108020, 0x00108000L},\r
-\r
-    {0x00000208, 0x08020200, 0x00000000, 0x08020008,\r
-     0x08000200, 0x00000000, 0x00020208, 0x08000200,\r
-     0x00020008, 0x08000008, 0x08000008, 0x00020000,\r
-     0x08020208, 0x00020008, 0x08020000, 0x00000208,\r
-     0x08000000, 0x00000008, 0x08020200, 0x00000200,\r
-     0x00020200, 0x08020000, 0x08020008, 0x00020208,\r
-     0x08000208, 0x00020200, 0x00020000, 0x08000208,\r
-     0x00000008, 0x08020208, 0x00000200, 0x08000000,\r
-     0x08020200, 0x08000000, 0x00020008, 0x00000208,\r
-     0x00020000, 0x08020200, 0x08000200, 0x00000000,\r
-     0x00000200, 0x00020008, 0x08020208, 0x08000200,\r
-     0x08000008, 0x00000200, 0x00000000, 0x08020008,\r
-     0x08000208, 0x00020000, 0x08000000, 0x08020208,\r
-     0x00000008, 0x00020208, 0x00020200, 0x08000008,\r
-     0x08020000, 0x08000208, 0x00000208, 0x08020000,\r
-     0x00020208, 0x00000008, 0x08020008, 0x00020200L},\r
-\r
-    {0x00802001, 0x00002081, 0x00002081, 0x00000080,\r
-     0x00802080, 0x00800081, 0x00800001, 0x00002001,\r
-     0x00000000, 0x00802000, 0x00802000, 0x00802081,\r
-     0x00000081, 0x00000000, 0x00800080, 0x00800001,\r
-     0x00000001, 0x00002000, 0x00800000, 0x00802001,\r
-     0x00000080, 0x00800000, 0x00002001, 0x00002080,\r
-     0x00800081, 0x00000001, 0x00002080, 0x00800080,\r
-     0x00002000, 0x00802080, 0x00802081, 0x00000081,\r
-     0x00800080, 0x00800001, 0x00802000, 0x00802081,\r
-     0x00000081, 0x00000000, 0x00000000, 0x00802000,\r
-     0x00002080, 0x00800080, 0x00800081, 0x00000001,\r
-     0x00802001, 0x00002081, 0x00002081, 0x00000080,\r
-     0x00802081, 0x00000081, 0x00000001, 0x00002000,\r
-     0x00800001, 0x00002001, 0x00802080, 0x00800081,\r
-     0x00002001, 0x00002080, 0x00800000, 0x00802001,\r
-     0x00000080, 0x00800000, 0x00002000, 0x00802080L},\r
-\r
-    {0x00000100, 0x02080100, 0x02080000, 0x42000100,\r
-     0x00080000, 0x00000100, 0x40000000, 0x02080000,\r
-     0x40080100, 0x00080000, 0x02000100, 0x40080100,\r
-     0x42000100, 0x42080000, 0x00080100, 0x40000000,\r
-     0x02000000, 0x40080000, 0x40080000, 0x00000000,\r
-     0x40000100, 0x42080100, 0x42080100, 0x02000100,\r
-     0x42080000, 0x40000100, 0x00000000, 0x42000000,\r
-     0x02080100, 0x02000000, 0x42000000, 0x00080100,\r
-     0x00080000, 0x42000100, 0x00000100, 0x02000000,\r
-     0x40000000, 0x02080000, 0x42000100, 0x40080100,\r
-     0x02000100, 0x40000000, 0x42080000, 0x02080100,\r
-     0x40080100, 0x00000100, 0x02000000, 0x42080000,\r
-     0x42080100, 0x00080100, 0x42000000, 0x42080100,\r
-     0x02080000, 0x00000000, 0x40080000, 0x42000000,\r
-     0x00080100, 0x02000100, 0x40000100, 0x00080000,\r
-     0x00000000, 0x40080000, 0x02080100, 0x40000100L},\r
-\r
-    {0x20000010, 0x20400000, 0x00004000, 0x20404010,\r
-     0x20400000, 0x00000010, 0x20404010, 0x00400000,\r
-     0x20004000, 0x00404010, 0x00400000, 0x20000010,\r
-     0x00400010, 0x20004000, 0x20000000, 0x00004010,\r
-     0x00000000, 0x00400010, 0x20004010, 0x00004000,\r
-     0x00404000, 0x20004010, 0x00000010, 0x20400010,\r
-     0x20400010, 0x00000000, 0x00404010, 0x20404000,\r
-     0x00004010, 0x00404000, 0x20404000, 0x20000000,\r
-     0x20004000, 0x00000010, 0x20400010, 0x00404000,\r
-     0x20404010, 0x00400000, 0x00004010, 0x20000010,\r
-     0x00400000, 0x20004000, 0x20000000, 0x00004010,\r
-     0x20000010, 0x20404010, 0x00404000, 0x20400000,\r
-     0x00404010, 0x20404000, 0x00000000, 0x20400010,\r
-     0x00000010, 0x00004000, 0x20400000, 0x00404010,\r
-     0x00004000, 0x00400010, 0x20004010, 0x00000000,\r
-     0x20404000, 0x20000000, 0x00400010, 0x20004010L},\r
-\r
-    {0x00200000, 0x04200002, 0x04000802, 0x00000000,\r
-     0x00000800, 0x04000802, 0x00200802, 0x04200800,\r
-     0x04200802, 0x00200000, 0x00000000, 0x04000002,\r
-     0x00000002, 0x04000000, 0x04200002, 0x00000802,\r
-     0x04000800, 0x00200802, 0x00200002, 0x04000800,\r
-     0x04000002, 0x04200000, 0x04200800, 0x00200002,\r
-     0x04200000, 0x00000800, 0x00000802, 0x04200802,\r
-     0x00200800, 0x00000002, 0x04000000, 0x00200800,\r
-     0x04000000, 0x00200800, 0x00200000, 0x04000802,\r
-     0x04000802, 0x04200002, 0x04200002, 0x00000002,\r
-     0x00200002, 0x04000000, 0x04000800, 0x00200000,\r
-     0x04200800, 0x00000802, 0x00200802, 0x04200800,\r
-     0x00000802, 0x04000002, 0x04200802, 0x04200000,\r
-     0x00200800, 0x00000000, 0x00000002, 0x04200802,\r
-     0x00000000, 0x00200802, 0x04200000, 0x00000800,\r
-     0x04000002, 0x04000800, 0x00000800, 0x00200002L},\r
-\r
-    {0x10001040, 0x00001000, 0x00040000, 0x10041040,\r
-     0x10000000, 0x10001040, 0x00000040, 0x10000000,\r
-     0x00040040, 0x10040000, 0x10041040, 0x00041000,\r
-     0x10041000, 0x00041040, 0x00001000, 0x00000040,\r
-     0x10040000, 0x10000040, 0x10001000, 0x00001040,\r
-     0x00041000, 0x00040040, 0x10040040, 0x10041000,\r
-     0x00001040, 0x00000000, 0x00000000, 0x10040040,\r
-     0x10000040, 0x10001000, 0x00041040, 0x00040000,\r
-     0x00041040, 0x00040000, 0x10041000, 0x00001000,\r
-     0x00000040, 0x10040040, 0x00001000, 0x00041040,\r
-     0x10001000, 0x00000040, 0x10000040, 0x10040000,\r
-     0x10040040, 0x10000000, 0x00040000, 0x10001040,\r
-     0x00000000, 0x10041040, 0x00040040, 0x10000040,\r
-     0x10040000, 0x10001000, 0x10001040, 0x00000000,\r
-     0x10041040, 0x00041000, 0x00041000, 0x00001040,\r
-     0x00001040, 0x00040040, 0x10000000, 0x10041000L}\r
-};\r
-\r
-#define f(R, K0246, K1357) (\\r
-    s0246 = R ^ K0246, \\r
-    s1357 = R ^ K1357, \\r
-    s0246 = rotl(s0246, 28), \\r
-    SPboxes[0] [(s0246 >> 24) & 0x3F] | \\r
-    SPboxes[1] [(s1357 >> 24) & 0x3F] | \\r
-    SPboxes[2] [(s0246 >> 16) & 0x3F] | \\r
-    SPboxes[3] [(s1357 >> 16) & 0x3F] | \\r
-    SPboxes[4] [(s0246 >>  8) & 0x3F] | \\r
-    SPboxes[5] [(s1357 >>  8) & 0x3F] | \\r
-    SPboxes[6] [(s0246      ) & 0x3F] | \\r
-    SPboxes[7] [(s1357      ) & 0x3F])\r
-\r
-#define bitswap(L, R, n, mask) (\\r
-    swap = mask & ( (R >> n) ^ L ), \\r
-    R ^= swap << n, \\r
-    L ^= swap)\r
-\r
-/* Initial permutation */\r
-#define IP(L, R) (\\r
-    bitswap(R, L,  4, 0x0F0F0F0F), \\r
-    bitswap(R, L, 16, 0x0000FFFF), \\r
-    bitswap(L, R,  2, 0x33333333), \\r
-    bitswap(L, R,  8, 0x00FF00FF), \\r
-    bitswap(R, L,  1, 0x55555555))\r
-\r
-/* Final permutation */\r
-#define FP(L, R) (\\r
-    bitswap(R, L,  1, 0x55555555), \\r
-    bitswap(L, R,  8, 0x00FF00FF), \\r
-    bitswap(L, R,  2, 0x33333333), \\r
-    bitswap(R, L, 16, 0x0000FFFF), \\r
-    bitswap(R, L,  4, 0x0F0F0F0F))\r
-\r
-static void des_encipher(word32 * output, word32 L, word32 R,\r
-                        DESContext * sched)\r
-{\r
-    word32 swap, s0246, s1357;\r
-\r
-    IP(L, R);\r
-\r
-    L = rotl(L, 1);\r
-    R = rotl(R, 1);\r
-\r
-    L ^= f(R, sched->k0246[0], sched->k1357[0]);\r
-    R ^= f(L, sched->k0246[1], sched->k1357[1]);\r
-    L ^= f(R, sched->k0246[2], sched->k1357[2]);\r
-    R ^= f(L, sched->k0246[3], sched->k1357[3]);\r
-    L ^= f(R, sched->k0246[4], sched->k1357[4]);\r
-    R ^= f(L, sched->k0246[5], sched->k1357[5]);\r
-    L ^= f(R, sched->k0246[6], sched->k1357[6]);\r
-    R ^= f(L, sched->k0246[7], sched->k1357[7]);\r
-    L ^= f(R, sched->k0246[8], sched->k1357[8]);\r
-    R ^= f(L, sched->k0246[9], sched->k1357[9]);\r
-    L ^= f(R, sched->k0246[10], sched->k1357[10]);\r
-    R ^= f(L, sched->k0246[11], sched->k1357[11]);\r
-    L ^= f(R, sched->k0246[12], sched->k1357[12]);\r
-    R ^= f(L, sched->k0246[13], sched->k1357[13]);\r
-    L ^= f(R, sched->k0246[14], sched->k1357[14]);\r
-    R ^= f(L, sched->k0246[15], sched->k1357[15]);\r
-\r
-    L = rotl(L, 31);\r
-    R = rotl(R, 31);\r
-\r
-    swap = L;\r
-    L = R;\r
-    R = swap;\r
-\r
-    FP(L, R);\r
-\r
-    output[0] = L;\r
-    output[1] = R;\r
-}\r
-\r
-static void des_decipher(word32 * output, word32 L, word32 R,\r
-                        DESContext * sched)\r
-{\r
-    word32 swap, s0246, s1357;\r
-\r
-    IP(L, R);\r
-\r
-    L = rotl(L, 1);\r
-    R = rotl(R, 1);\r
-\r
-    L ^= f(R, sched->k0246[15], sched->k1357[15]);\r
-    R ^= f(L, sched->k0246[14], sched->k1357[14]);\r
-    L ^= f(R, sched->k0246[13], sched->k1357[13]);\r
-    R ^= f(L, sched->k0246[12], sched->k1357[12]);\r
-    L ^= f(R, sched->k0246[11], sched->k1357[11]);\r
-    R ^= f(L, sched->k0246[10], sched->k1357[10]);\r
-    L ^= f(R, sched->k0246[9], sched->k1357[9]);\r
-    R ^= f(L, sched->k0246[8], sched->k1357[8]);\r
-    L ^= f(R, sched->k0246[7], sched->k1357[7]);\r
-    R ^= f(L, sched->k0246[6], sched->k1357[6]);\r
-    L ^= f(R, sched->k0246[5], sched->k1357[5]);\r
-    R ^= f(L, sched->k0246[4], sched->k1357[4]);\r
-    L ^= f(R, sched->k0246[3], sched->k1357[3]);\r
-    R ^= f(L, sched->k0246[2], sched->k1357[2]);\r
-    L ^= f(R, sched->k0246[1], sched->k1357[1]);\r
-    R ^= f(L, sched->k0246[0], sched->k1357[0]);\r
-\r
-    L = rotl(L, 31);\r
-    R = rotl(R, 31);\r
-\r
-    swap = L;\r
-    L = R;\r
-    R = swap;\r
-\r
-    FP(L, R);\r
-\r
-    output[0] = L;\r
-    output[1] = R;\r
-}\r
-\r
-static void des_cbc_encrypt(unsigned char *blk,\r
-                           unsigned int len, DESContext * sched)\r
-{\r
-    word32 out[2], iv0, iv1;\r
-    unsigned int i;\r
-\r
-    assert((len & 7) == 0);\r
-\r
-    iv0 = sched->iv0;\r
-    iv1 = sched->iv1;\r
-    for (i = 0; i < len; i += 8) {\r
-       iv0 ^= GET_32BIT_MSB_FIRST(blk);\r
-       iv1 ^= GET_32BIT_MSB_FIRST(blk + 4);\r
-       des_encipher(out, iv0, iv1, sched);\r
-       iv0 = out[0];\r
-       iv1 = out[1];\r
-       PUT_32BIT_MSB_FIRST(blk, iv0);\r
-       PUT_32BIT_MSB_FIRST(blk + 4, iv1);\r
-       blk += 8;\r
-    }\r
-    sched->iv0 = iv0;\r
-    sched->iv1 = iv1;\r
-}\r
-\r
-static void des_cbc_decrypt(unsigned char *blk,\r
-                           unsigned int len, DESContext * sched)\r
-{\r
-    word32 out[2], iv0, iv1, xL, xR;\r
-    unsigned int i;\r
-\r
-    assert((len & 7) == 0);\r
-\r
-    iv0 = sched->iv0;\r
-    iv1 = sched->iv1;\r
-    for (i = 0; i < len; i += 8) {\r
-       xL = GET_32BIT_MSB_FIRST(blk);\r
-       xR = GET_32BIT_MSB_FIRST(blk + 4);\r
-       des_decipher(out, xL, xR, sched);\r
-       iv0 ^= out[0];\r
-       iv1 ^= out[1];\r
-       PUT_32BIT_MSB_FIRST(blk, iv0);\r
-       PUT_32BIT_MSB_FIRST(blk + 4, iv1);\r
-       blk += 8;\r
-       iv0 = xL;\r
-       iv1 = xR;\r
-    }\r
-    sched->iv0 = iv0;\r
-    sched->iv1 = iv1;\r
-}\r
-\r
-static void des_3cbc_encrypt(unsigned char *blk,\r
-                            unsigned int len, DESContext * scheds)\r
-{\r
-    des_cbc_encrypt(blk, len, &scheds[0]);\r
-    des_cbc_decrypt(blk, len, &scheds[1]);\r
-    des_cbc_encrypt(blk, len, &scheds[2]);\r
-}\r
-\r
-static void des_cbc3_encrypt(unsigned char *blk,\r
-                            unsigned int len, DESContext * scheds)\r
-{\r
-    word32 out[2], iv0, iv1;\r
-    unsigned int i;\r
-\r
-    assert((len & 7) == 0);\r
-\r
-    iv0 = scheds->iv0;\r
-    iv1 = scheds->iv1;\r
-    for (i = 0; i < len; i += 8) {\r
-       iv0 ^= GET_32BIT_MSB_FIRST(blk);\r
-       iv1 ^= GET_32BIT_MSB_FIRST(blk + 4);\r
-       des_encipher(out, iv0, iv1, &scheds[0]);\r
-       des_decipher(out, out[0], out[1], &scheds[1]);\r
-       des_encipher(out, out[0], out[1], &scheds[2]);\r
-       iv0 = out[0];\r
-       iv1 = out[1];\r
-       PUT_32BIT_MSB_FIRST(blk, iv0);\r
-       PUT_32BIT_MSB_FIRST(blk + 4, iv1);\r
-       blk += 8;\r
-    }\r
-    scheds->iv0 = iv0;\r
-    scheds->iv1 = iv1;\r
-}\r
-\r
-static void des_3cbc_decrypt(unsigned char *blk,\r
-                            unsigned int len, DESContext * scheds)\r
-{\r
-    des_cbc_decrypt(blk, len, &scheds[2]);\r
-    des_cbc_encrypt(blk, len, &scheds[1]);\r
-    des_cbc_decrypt(blk, len, &scheds[0]);\r
-}\r
-\r
-static void des_cbc3_decrypt(unsigned char *blk,\r
-                            unsigned int len, DESContext * scheds)\r
-{\r
-    word32 out[2], iv0, iv1, xL, xR;\r
-    unsigned int i;\r
-\r
-    assert((len & 7) == 0);\r
-\r
-    iv0 = scheds->iv0;\r
-    iv1 = scheds->iv1;\r
-    for (i = 0; i < len; i += 8) {\r
-       xL = GET_32BIT_MSB_FIRST(blk);\r
-       xR = GET_32BIT_MSB_FIRST(blk + 4);\r
-       des_decipher(out, xL, xR, &scheds[2]);\r
-       des_encipher(out, out[0], out[1], &scheds[1]);\r
-       des_decipher(out, out[0], out[1], &scheds[0]);\r
-       iv0 ^= out[0];\r
-       iv1 ^= out[1];\r
-       PUT_32BIT_MSB_FIRST(blk, iv0);\r
-       PUT_32BIT_MSB_FIRST(blk + 4, iv1);\r
-       blk += 8;\r
-       iv0 = xL;\r
-       iv1 = xR;\r
-    }\r
-    scheds->iv0 = iv0;\r
-    scheds->iv1 = iv1;\r
-}\r
-\r
-static void des_sdctr3(unsigned char *blk,\r
-                            unsigned int len, DESContext * scheds)\r
-{\r
-    word32 b[2], iv0, iv1, tmp;\r
-    unsigned int i;\r
-\r
-    assert((len & 7) == 0);\r
-\r
-    iv0 = scheds->iv0;\r
-    iv1 = scheds->iv1;\r
-    for (i = 0; i < len; i += 8) {\r
-       des_encipher(b, iv0, iv1, &scheds[0]);\r
-       des_decipher(b, b[0], b[1], &scheds[1]);\r
-       des_encipher(b, b[0], b[1], &scheds[2]);\r
-       tmp = GET_32BIT_MSB_FIRST(blk);\r
-       PUT_32BIT_MSB_FIRST(blk, tmp ^ b[0]);\r
-       blk += 4;\r
-       tmp = GET_32BIT_MSB_FIRST(blk);\r
-       PUT_32BIT_MSB_FIRST(blk, tmp ^ b[1]);\r
-       blk += 4;\r
-       if ((iv1 = (iv1 + 1) & 0xffffffff) == 0)\r
-           iv0 = (iv0 + 1) & 0xffffffff;\r
-    }\r
-    scheds->iv0 = iv0;\r
-    scheds->iv1 = iv1;\r
-}\r
-\r
-static void *des3_make_context(void)\r
-{\r
-    return snewn(3, DESContext);\r
-}\r
-\r
-static void *des3_ssh1_make_context(void)\r
-{\r
-    /* Need 3 keys for each direction, in SSH-1 */\r
-    return snewn(6, DESContext);\r
-}\r
-\r
-static void *des_make_context(void)\r
-{\r
-    return snew(DESContext);\r
-}\r
-\r
-static void *des_ssh1_make_context(void)\r
-{\r
-    /* Need one key for each direction, in SSH-1 */\r
-    return snewn(2, DESContext);\r
-}\r
-\r
-static void des3_free_context(void *handle)   /* used for both 3DES and DES */\r
-{\r
-    sfree(handle);\r
-}\r
-\r
-static void des3_key(void *handle, unsigned char *key)\r
-{\r
-    DESContext *keys = (DESContext *) handle;\r
-    des_key_setup(GET_32BIT_MSB_FIRST(key),\r
-                 GET_32BIT_MSB_FIRST(key + 4), &keys[0]);\r
-    des_key_setup(GET_32BIT_MSB_FIRST(key + 8),\r
-                 GET_32BIT_MSB_FIRST(key + 12), &keys[1]);\r
-    des_key_setup(GET_32BIT_MSB_FIRST(key + 16),\r
-                 GET_32BIT_MSB_FIRST(key + 20), &keys[2]);\r
-}\r
-\r
-static void des3_iv(void *handle, unsigned char *key)\r
-{\r
-    DESContext *keys = (DESContext *) handle;\r
-    keys[0].iv0 = GET_32BIT_MSB_FIRST(key);\r
-    keys[0].iv1 = GET_32BIT_MSB_FIRST(key + 4);\r
-}\r
-\r
-static void des_key(void *handle, unsigned char *key)\r
-{\r
-    DESContext *keys = (DESContext *) handle;\r
-    des_key_setup(GET_32BIT_MSB_FIRST(key),\r
-                 GET_32BIT_MSB_FIRST(key + 4), &keys[0]);\r
-}\r
-\r
-static void des3_sesskey(void *handle, unsigned char *key)\r
-{\r
-    DESContext *keys = (DESContext *) handle;\r
-    des3_key(keys, key);\r
-    des3_key(keys+3, key);\r
-}\r
-\r
-static void des3_encrypt_blk(void *handle, unsigned char *blk, int len)\r
-{\r
-    DESContext *keys = (DESContext *) handle;\r
-    des_3cbc_encrypt(blk, len, keys);\r
-}\r
-\r
-static void des3_decrypt_blk(void *handle, unsigned char *blk, int len)\r
-{\r
-    DESContext *keys = (DESContext *) handle;\r
-    des_3cbc_decrypt(blk, len, keys+3);\r
-}\r
-\r
-static void des3_ssh2_encrypt_blk(void *handle, unsigned char *blk, int len)\r
-{\r
-    DESContext *keys = (DESContext *) handle;\r
-    des_cbc3_encrypt(blk, len, keys);\r
-}\r
-\r
-static void des3_ssh2_decrypt_blk(void *handle, unsigned char *blk, int len)\r
-{\r
-    DESContext *keys = (DESContext *) handle;\r
-    des_cbc3_decrypt(blk, len, keys);\r
-}\r
-\r
-static void des3_ssh2_sdctr(void *handle, unsigned char *blk, int len)\r
-{\r
-    DESContext *keys = (DESContext *) handle;\r
-    des_sdctr3(blk, len, keys);\r
-}\r
-\r
-static void des_ssh2_encrypt_blk(void *handle, unsigned char *blk, int len)\r
-{\r
-    DESContext *keys = (DESContext *) handle;\r
-    des_cbc_encrypt(blk, len, keys);\r
-}\r
-\r
-static void des_ssh2_decrypt_blk(void *handle, unsigned char *blk, int len)\r
-{\r
-    DESContext *keys = (DESContext *) handle;\r
-    des_cbc_decrypt(blk, len, keys);\r
-}\r
-\r
-void des3_decrypt_pubkey(unsigned char *key, unsigned char *blk, int len)\r
-{\r
-    DESContext ourkeys[3];\r
-    des_key_setup(GET_32BIT_MSB_FIRST(key),\r
-                 GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);\r
-    des_key_setup(GET_32BIT_MSB_FIRST(key + 8),\r
-                 GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);\r
-    des_key_setup(GET_32BIT_MSB_FIRST(key),\r
-                 GET_32BIT_MSB_FIRST(key + 4), &ourkeys[2]);\r
-    des_3cbc_decrypt(blk, len, ourkeys);\r
-    memset(ourkeys, 0, sizeof(ourkeys));\r
-}\r
-\r
-void des3_encrypt_pubkey(unsigned char *key, unsigned char *blk, int len)\r
-{\r
-    DESContext ourkeys[3];\r
-    des_key_setup(GET_32BIT_MSB_FIRST(key),\r
-                 GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);\r
-    des_key_setup(GET_32BIT_MSB_FIRST(key + 8),\r
-                 GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);\r
-    des_key_setup(GET_32BIT_MSB_FIRST(key),\r
-                 GET_32BIT_MSB_FIRST(key + 4), &ourkeys[2]);\r
-    des_3cbc_encrypt(blk, len, ourkeys);\r
-    memset(ourkeys, 0, sizeof(ourkeys));\r
-}\r
-\r
-void des3_decrypt_pubkey_ossh(unsigned char *key, unsigned char *iv,\r
-                             unsigned char *blk, int len)\r
-{\r
-    DESContext ourkeys[3];\r
-    des_key_setup(GET_32BIT_MSB_FIRST(key),\r
-                 GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);\r
-    des_key_setup(GET_32BIT_MSB_FIRST(key + 8),\r
-                 GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);\r
-    des_key_setup(GET_32BIT_MSB_FIRST(key + 16),\r
-                 GET_32BIT_MSB_FIRST(key + 20), &ourkeys[2]);\r
-    ourkeys[0].iv0 = GET_32BIT_MSB_FIRST(iv);\r
-    ourkeys[0].iv1 = GET_32BIT_MSB_FIRST(iv+4);\r
-    des_cbc3_decrypt(blk, len, ourkeys);\r
-    memset(ourkeys, 0, sizeof(ourkeys));\r
-}\r
-\r
-void des3_encrypt_pubkey_ossh(unsigned char *key, unsigned char *iv,\r
-                             unsigned char *blk, int len)\r
-{\r
-    DESContext ourkeys[3];\r
-    des_key_setup(GET_32BIT_MSB_FIRST(key),\r
-                 GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);\r
-    des_key_setup(GET_32BIT_MSB_FIRST(key + 8),\r
-                 GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);\r
-    des_key_setup(GET_32BIT_MSB_FIRST(key + 16),\r
-                 GET_32BIT_MSB_FIRST(key + 20), &ourkeys[2]);\r
-    ourkeys[0].iv0 = GET_32BIT_MSB_FIRST(iv);\r
-    ourkeys[0].iv1 = GET_32BIT_MSB_FIRST(iv+4);\r
-    des_cbc3_encrypt(blk, len, ourkeys);\r
-    memset(ourkeys, 0, sizeof(ourkeys));\r
-}\r
-\r
-static void des_keysetup_xdmauth(unsigned char *keydata, DESContext *dc)\r
-{\r
-    unsigned char key[8];\r
-    int i, nbits, j;\r
-    unsigned int bits;\r
-\r
-    bits = 0;\r
-    nbits = 0;\r
-    j = 0;\r
-    for (i = 0; i < 8; i++) {\r
-       if (nbits < 7) {\r
-           bits = (bits << 8) | keydata[j];\r
-           nbits += 8;\r
-           j++;\r
-       }\r
-       key[i] = (bits >> (nbits - 7)) << 1;\r
-       bits &= ~(0x7F << (nbits - 7));\r
-       nbits -= 7;\r
-    }\r
-\r
-    des_key_setup(GET_32BIT_MSB_FIRST(key), GET_32BIT_MSB_FIRST(key + 4), dc);\r
-}\r
-\r
-void des_encrypt_xdmauth(unsigned char *keydata, unsigned char *blk, int len)\r
-{\r
-    DESContext dc;\r
-    des_keysetup_xdmauth(keydata, &dc);\r
-    des_cbc_encrypt(blk, 24, &dc);\r
-}\r
-\r
-void des_decrypt_xdmauth(unsigned char *keydata, unsigned char *blk, int len)\r
-{\r
-    DESContext dc;\r
-    des_keysetup_xdmauth(keydata, &dc);\r
-    des_cbc_decrypt(blk, 24, &dc);\r
-}\r
-\r
-static const struct ssh2_cipher ssh_3des_ssh2 = {\r
-    des3_make_context, des3_free_context, des3_iv, des3_key,\r
-    des3_ssh2_encrypt_blk, des3_ssh2_decrypt_blk,\r
-    "3des-cbc",\r
-    8, 168, SSH_CIPHER_IS_CBC, "triple-DES CBC"\r
-};\r
-\r
-static const struct ssh2_cipher ssh_3des_ssh2_ctr = {\r
-    des3_make_context, des3_free_context, des3_iv, des3_key,\r
-    des3_ssh2_sdctr, des3_ssh2_sdctr,\r
-    "3des-ctr",\r
-    8, 168, 0, "triple-DES SDCTR"\r
-};\r
-\r
-/*\r
- * Single DES in SSH-2. "des-cbc" is marked as HISTORIC in\r
- * RFC 4250, referring to\r
- * FIPS-46-3.  ("Single DES (i.e., DES) will be permitted \r
- * for legacy systems only.") , but ssh.com support it and \r
- * apparently aren't the only people to do so, so we sigh \r
- * and implement it anyway.\r
- */\r
-static const struct ssh2_cipher ssh_des_ssh2 = {\r
-    des_make_context, des3_free_context, des3_iv, des_key,\r
-    des_ssh2_encrypt_blk, des_ssh2_decrypt_blk,\r
-    "des-cbc",\r
-    8, 56, SSH_CIPHER_IS_CBC, "single-DES CBC"\r
-};\r
-\r
-static const struct ssh2_cipher ssh_des_sshcom_ssh2 = {\r
-    des_make_context, des3_free_context, des3_iv, des_key,\r
-    des_ssh2_encrypt_blk, des_ssh2_decrypt_blk,\r
-    "des-cbc@ssh.com",\r
-    8, 56, SSH_CIPHER_IS_CBC, "single-DES CBC"\r
-};\r
-\r
-static const struct ssh2_cipher *const des3_list[] = {\r
-    &ssh_3des_ssh2_ctr,\r
-    &ssh_3des_ssh2\r
-};\r
-\r
-const struct ssh2_ciphers ssh2_3des = {\r
-    sizeof(des3_list) / sizeof(*des3_list),\r
-    des3_list\r
-};\r
-\r
-static const struct ssh2_cipher *const des_list[] = {\r
-    &ssh_des_ssh2,\r
-    &ssh_des_sshcom_ssh2\r
-};\r
-\r
-const struct ssh2_ciphers ssh2_des = {\r
-    sizeof(des_list) / sizeof(*des_list),\r
-    des_list\r
-};\r
-\r
-const struct ssh_cipher ssh_3des = {\r
-    des3_ssh1_make_context, des3_free_context, des3_sesskey,\r
-    des3_encrypt_blk, des3_decrypt_blk,\r
-    8, "triple-DES inner-CBC"\r
-};\r
-\r
-static void des_sesskey(void *handle, unsigned char *key)\r
-{\r
-    DESContext *keys = (DESContext *) handle;\r
-    des_key(keys, key);\r
-    des_key(keys+1, key);\r
-}\r
-\r
-static void des_encrypt_blk(void *handle, unsigned char *blk, int len)\r
-{\r
-    DESContext *keys = (DESContext *) handle;\r
-    des_cbc_encrypt(blk, len, keys);\r
-}\r
-\r
-static void des_decrypt_blk(void *handle, unsigned char *blk, int len)\r
-{\r
-    DESContext *keys = (DESContext *) handle;\r
-    des_cbc_decrypt(blk, len, keys+1);\r
-}\r
-\r
-const struct ssh_cipher ssh_des = {\r
-    des_ssh1_make_context, des3_free_context, des_sesskey,\r
-    des_encrypt_blk, des_decrypt_blk,\r
-    8, "single-DES CBC"\r
-};\r