
For submission to The Asian Journal of TEX
Draft of November 30, 2011

Development of LuaTEX-ja package

Hironori Kitagawa 北川弘典
LuaTEX-ja project team h_kitagawa2001@yahoo.co.jp

Keywords TEX, pTEX, LuaTEX, LuaTEX-ja, Japanese

Abstract LuaTEX-ja package is a macro package for typesetting Japanese documents un-
der LuaTEX. The package has more flexibility of typesetting than pTEX, which is
widely used Japanese extension of TEX, and has corrected some unwanted fea-
tures of pTEX. In this paper, we describe specifications, the current status and some
internal processing methods of LuaTEX-ja.

1 Introduction

1.1 History

To typeset Japanese documents with TEX, ASCII pTEX [2] has been widely used in
Japan. There are other methods—for example, using Omega and OTP [4], or with the
CJK package—to do so, however, these alternative methods did not become majority.
The author thinks that this is because pTEX enables us to produce high-quality doc-
uments (e.g., supporting vertical typesetting), and the appearance of pTEX is earlier
than that of alternatives described above.

However, pTEX has been left behind from the extensions of TEX such as ε-TEX and
pdfTEX, and the diffusion of UTF-8 encoding. In recent years, the situation has be-
come better, by development of ptexenc [19] by Nobuyuki Tsuchimura (土村展之),
ε-pTEX [7] by the author, and upTEX [18] by Takuji Tanaka (田中琢爾). However, con-
tinuing this approach, namely, to develop an engine extension localized for Japanese,
is not wise. This approach needs lots of work for each engine. In addition, if we use
LuaTEX, the necessity of an engine extension is getting smaller because LuaTEX has an
ability to hook TEX’s internal process by using Lua callbacks.

Before our LuaTEX-ja project, there were several experimental attempts to typeset
Japanese documents with LuaTEX. Here we cite three examples:

– luaums.sty [8] developed by the author. This experimental package is for cre-
ating a certain Japanese-based presentation with LuaTEX.

– the luajalayout package [12], formerly known as the jafontspec package, by Kazuki
Maeda (前田一貴). This package is based on LATEX 2ε and fontspec package.

– the luajp-test package [11], a test package made by Atsuhito Kohda (香田温人),
based on articles on the web page [5].

mailto:h\protect \ltjalchar "005F\relax kitagawa2001@yahoo.co.jp?subject=Re:%20AJT%20article%20

2 The Asian Journal of TEX

However, these packages are based on LATEX 2ε, and do not have much ability to control
the typesetting rule. And it is inefficient that more than one people separately develop
similar packages. Development of the LuaTEX-ja package is started initially by the
author and Kazuki Maeda, because of these situations.

1.2 Development policy of LuaTEX-ja

The first aim of LuaTEX-ja project was to implement features (from the ‘primitive’ level)
of pTEX as macros under LuaTEX, therefore LuaTEX-ja is much affected by pTEX. How-
ever, as development proceeded, some technical/conceptual difficulties arose. Hence
we changed the aim of the project as follows:

– LuaTEX-ja offers at least the same flexibility of typesetting that pTEX has.
We are not satisfied with the ability of producing (PDF) outputs conformed to
JIS X 4051 [6], the Japanese Industrial Standard for typesetting, or to a techni-
cal note [20] by W3C; if one wants to produce very incoherent outputs for some
reason, it should be possible. In this point, previous attempts of Japanese type-
setting with LuaTEX which we cited in the previous subsection are inadequate.
pTEX has some flexibility of typesetting, by changing internal parameters such
as \kanjiskip or \prebreakpenalty, and by using custom JFM (Japanese TFM).
Therefore we decided to include these functionality to LuaTEX-ja.

– LuaTEX-ja isn’t mere re-implementation or porting of pTEX; some (technically and/or
conceptually) inconvenient features of pTEX are modified.
We describe this point in more detail at the next section.

1.3 Overview of the processes

We describe an outline of LuaTEX-ja’s process in order.

– In the process_input_buffer callback: treatment of line-break after a Japanese
character (in Subsection 2.2).

– In the hyphenate callback: font replacement.
LuaTEX-ja looks into for each glyph_node p in the horizontal list. If the character
represented by p is considered as a Japanese character, the font used at p is re-
placed by the value of \ltj@curjfnt, an attribute for ‘the current Japanese font’
at p.
Furthermore, the subtype of p is subtracted by 1 to suppress hyphenation around
p by LuaTEX, because later processes of LuaTEX-ja take care of all things about
Japanese characters.

– In pre_linebreak_filter and hpack_filter callbacks:

1. LuaTEX-ja has its own stack system, and the current horizontal list is tra-
versed in this stage to determine what the level of LuaTEX-ja’s internal stack
at the end of the list is. We will discuss it in Subsection 5.2.

2. In this stage, LuaTEX-ja inserts glues/kerns for Japanese typesetting in the
list. This is the core routine of LuaTEX-ja. We will discuss it in Subsections
2.4 and 2.5 .

3

3. To make a match between a metric and a real font, sometimes adjustument
of the position of (Japanese) glyphs are performed. We will discuss it in
Subsection 5.3.

– In the mlist_to_hlist callback: treatment of Japanese characters in math for-
mulas. This stage is similar to adjustment of the position of glyphs (see above),
so we omit to describe this stage from this paper.

In this paper, a alphabetic character means a non-Japanese character. Similarly, we
use the word an alphabetic font as the counterpart of a jJpanese font.

1.4 Contents of this paper

Here we describe the contents of the rest of this paper briefly. In Section 2, we describe
major differences between pTEX and LuaTEX-ja. The next section, Section 3, is concen-
trated on a problem how we distinguish between Japanese characters and alphabetic
characters. In Section 4, we show current development status of the package. Finally,
in Section 5, we describe some internal routines of LuaTEX-ja.

1.5 General information of the project

This LuaTEX-ja project is hosted by SourceForge.jp. The official wiki is located on
http://sourceforge.jp/projects/luatex-ja/wiki/. There is no stable version on
October 22, 2011, however a set of developer sources can be obtained from the git
repository. Members of the project team are as follows (in random order): Hironori
Kitagawa, Kazuki Maeda, Takayuki Yato, Yusuke Kuroki, Noriyuki Abe, Munehiro
Yamamoto, Tomoaki Honda, and Shuzaburo Saito.

2 Major differences with pTEX

In this section, we explain several major differences between pTEX and our LuaTEX-ja.
For general information of Japanese typesetting and the overview of pTEX, please see
Okumura [14].

2.1 Names of control sequences

Because pTEX is an engine modification of Knuth’s original TEX82 engine, some of the
additional primitives take a form that is very difficult to be simulated by a macro. For
example, an additional primitive \prebreakpenalty〈char_code〉[=]〈penalty〉 in pTEX
sets the amount of penalty inserted before a character whose code is 〈char_code〉 to
〈penalty〉, and this form \prebreakpenalty〈char_code〉 can be also used for retrieving
the value.

Moreover, there are some internal parameters of pTEX which values of them at the
end of a horizontal box or that of a paragraph are valid in whole box or paragraph.
However, the implementation of these parameters in LuaTEX-ja is not so easy; we will
discuss it in Subsection 5.2.

From above two problems discussed above, the assignment and retrieval of most
parameters in LuaTEX-ja are summarized into the following three control sequences:

http://sourceforge.jp/projects/luatex-ja/wiki/

4 The Asian Journal of TEX

xあy

1 \font\x=IPAMincho \x
2 \ltjsetparameter{jacharrange={-6}}xあ
3 y

Figure 1. A notable sample showing the treatment of a line-break af-
ter a Japanese character.

– \ltjsetparameter{〈name〉=〈value〉,...}: for local assignment.

– \ltjglobalsetparameter: for global assignment. Note that these two control
sequences obey the value of \globaldefs primitive.

– \ltjgetparameter{〈name〉}[{〈optional argument〉}]: for retrieval. The returned
value is always a string.

2.2 Line-break after a Japanese character

Japanese texts can break lines almost everywhere, in contrast with alphabetic texts can
break lines only between words (or use hyphenation). Hence, pTEX’s input processor is
modified so that a line-break after a Japanese character doesn’t emit a space. However,
there is no way to customize the input processor of LuaTEX, other than to hack its
CWEB-source. All a macro package can do is to modify an input line before when
LuaTEX begin to process it, inside the process_input_buffer callback.

Hence, in LuaTEX-ja, a comment letter (we reserve U+FFFFF for this purpose) will
be appended to an input line, if this line ends with a Japanese character.1 One might
jump to a conclusion that the treatment of a line-break by pTEX and that of LuaTEX-ja
are totally same, however they are different in the respect that LuaTEX-ja’s judgement
whether a comment letter will be appended the line is done before the line is actually
processed by LuaTEX.

Figure 1 shows an example of this situation; the command at the first line marks
most of Japanese characters as ‘non-Japanese characters’. In other words, from that
command onward, the letter ‘あ’ will be treated as an alphabetic character by LuaTEX-ja.
Then, it is natural to have a space between ‘あ’ and ‘y’ in the output, where the actual
output in the figure does not so. This is because ‘あ’ is considered a Japanese character
by LuaTEX-ja, when LuaTEX-ja does the decision whether U+FFFFF will be added to
the input line 2.

2.3 Separation between ‘real’ fonts and metrics

Traditionally, most Japanese fonts used in typesetting are not proportional, that is,
most glyphs have same size (in most cases, square-shaped). Hence, it is not rare that
the contents of different JFMs are essentially same, and only differ in their names. For
example, min10.tfm and goth10.tfm, which are JFMs shipped with pTEX for seriffed
mincho family and sans-seriffed gothic family, differ their FAMILY and FACE only. More-
over, jis.tfm and jisg.tfm, which is included in the jis font metric, which is used in

1. Strictly speaking, it also requires that the catcode of the end-line character is 5 (end-of-line). This condi-
tion is useful under the verbatim environment.

5

\jfont\foo=file:ipam.ttf:jfm=ujis;script=latn;-kern;+jp04 at 12pt
\jfont\bar=psft:Ryumin-Light:jfm=ujis at 10pt

Figure 2. Typical declarations of Japanese fonts.

jsclasses [13] by Haruhiko Okumura (奥村晴彦), are totally same as binary files. Con-
sidering this situation, we decided to separate ‘real’ fonts and metrics used for them
in LuaTEX-ja. Typical declarations of Japanese fonts in the style of plain TEX are shown
in Figure 2. We would like to add several remarks:

– A control sequence \jfont must be used for Japanese fonts, instead of \font.

– LuaTEX-ja automatically loads the luaotfload package, so file: and name: pre-
fixes, and various font features can be used as the first line in Figure 2.

– The jfm key specifies the metric for the font. In Figure 2, \foo and \bar will use
a metric stored in a Lua script named jfm-ujis.lua. This metric is the standard
metric in LuaTEX-ja, and is based on JFMs used in the otf package [16] (hence
almost all characters are square-shaped).

– The psft: prefix can be used to specify name-only, non-embedded fonts. When
one displays a pdf with these fonts, actual fonts which will be used for them
depend on a pdf reader.

The specification of a metric for LuaTEX-ja is similar to that of a JFM (see [14]); charac-
ters are grouped into several classes, the size information of characters are specified for
each class, and glue/kern insertions are specified for each pair of classes. Although the
author have not tried, it may be possible to develop a program that ‘converts’ a JFM
to a metric for LuaTEX-ja. LuaTEX-ja offers three metrics by default; jfm-ujis.lua,
jfm-jis.lua based on the jis font metric, and jfm-min.lua based on old min10.tfm.

Note that -kern in features is important, because kerning information from a real
font itself will clash with glue/kern information from the metric.

2.4 Insertion of glues/kerns for Japanese typesetting: timing

As described in [9], LuaTEX’s kerning and ligaturing processes are totally different
from those of TEX82. TEX82’s process is done just when a (sequence of) character is
appended to the current list. Thus we can interrupt this process by writing as f{}irm.
However, LuaTEX’s process is node-based, that is, the process will be done when a hor-
izontal box or a paragraph is ended, so f{}irm and firm yield same outputs under
LuaTEX.

The situation for Japanese characters is more complicated. Glues (and kerns) which
are needed for Japanese typesetting are divided into the following three categories:

– Glue (or kern) from the metric of Japanese fonts (JFM glue, for short).

– Default glue between a Japanese character and an alphabetic character (we say
xkanjiskip, for short), usually 1/4 of full-width (shibuaki) with some stretch and
shrink for justifying each line.

6 The Asian Journal of TEX

Table 1. Examples of differences between pTEX and LuaTEX-ja.

(1) (2) (3) (4)
Input あ】{}【〕\/〔 い』\/a う）\hbox{}（ え］\special{}［

pTEX あ】【〕〔 い』a う）（ え］［

LuaTEX-ja あ】【〕〔 い』a う）（ え］［

あ】【〕〔
Figure 3. Detail of the output of pTEX in the input (1) in Table 1.

– Default glue between two consecutive Japanese characters (kanjiskip, for short).
The main reason of this glue is to enable breaking lines almost everywhere in
Japanese texts. In most cases, its natural width is zero, and some stretch/shrink
for justifying each line.

In pTEX, these three kinds of glues are treated differently. A JFM glue is inserted when
a (sequence of) Japanese character is appended to the current list, same as the case of al-
phabetic characters in TEX82. This means that one can interrupt the insertion process
by saying {}. A xkanjiskip is inserted just before ‘hpack’ or line-breaking of a para-
graph; this timing is somewhat similar to that of LuaTEX’s kerning process. Finally, A
kanjiskip is not appeared as a node anywhere; only appears implicitly in calculation of
the width of a horizontal box, that of breaking lines, and the actual output process to
a DVI file. These specifications have made pTEX’s behavior very hard to understand.

LuaTEX-ja inserts glues in all three categories simultaneously inside hpack_filter
and pre_linebreak_filter callbacks. The reasons of this specification are to behave
like alphabetic characters in LuaTEX (as described in the first paragraph in this subsec-
tion), and to clarify the specification for LuaTEX-ja’s process.

2.5 Insertion of glues/kerns for Japanese typesetting: specification

Now we will take a look at the insertion process itself through four points.

Ignored nodes As noted in the previous subsection, the insertion process in pTEX can be
interrupted by saying {} or anything else.2 This leads the second row in Table 1,
or Figure 3. Here ‘the process is interrupted’ means that pTEX does not think the
letter ‘】’ is followed by ‘【’, hence two half-width glues are inserted between ‘】’
and ‘【’, where the left one is from ‘】’ and the right one is from ‘【’.

On the other hand, in LuaTEX-ja, the process is done inside hpack_filter
and pre_linebreak_filter callbacks. Hence, anything that does not make any node
will be ignored in LuaTEX-ja, as shown in (1) in Table 1. LuaTEX-ja also ignores any
nodes which does not make any contribution to current horizontal list—ins_node,
adjust_node, mark_node, whatsit_node and penalty_node—, as shown in (4).

2. This is why some tricks likeちょ{}っと for min10.tfm and other ‘old’ JFMs work.

7

By the way, around a glyph_node p there may be some nodes attached to p.
These are an accent and kerns for moving it to the right place, and a kern from
the italic correction3 for p. It is natural that these attachments should be ignored
inside the process. Hence LuaTEX-ja takes this approach, as the latest version of
pTEX (version p3.2). This explains (2) in the Table 1.

Summerizing above, one should put an empty horizontal box \hbox{} to
where he/she wants to interrupt the insertion process in LuaTEX-ja as (3) in the
Table 1.

Fonts with the same metric Recall that LuaTEX-ja separates ‘real’ fonts and metrics, as in
Subsection 2.3. Consider the following input, where all Japanese fonts use same
metric (in LuaTEX-ja), and \gt selects gothic family for the current Japanese font
family:

明朝）\gt （ゴシック

If the above input is processed by pTEX, because the insertion process is interrupt
by \gt, the result looks like

明朝）（ゴシック

However this seems to be unnatural, since two Japanese fonts in the output use
the same metric, i.e., the same typesetting rule. Hence, we decided that Japanese
fonts with the same metric are treated as one font in the insertion process of
LuaTEX-ja. Thus, the output from the above input in LuaTEX-ja looks like:

明朝）（ゴシック

One might have the situation that this default behavior is not suitable. LuaTEX-ja
offers a way to handle this situation, but we leave it to the manual [10].

Fonts with different metrics The case where two adjacent Japanese characters use differ-
ent metrics and/or different size is similar. Consider the following input where
the mincho family and the gothic family use different metrics:

漢）\gt （漢）\large （大

As the previous paragraph, this input yields the following, by pTEX:

漢）（漢）（大

We had thought that amounts of spaces between parentheses in above output
are too much. Hence we have changed the default behavior of LuaTEX-ja, so that
the amount of a glue between two Japanese characters with different metrics is
the average of a glue from the left character and that from the right character.
For example, Figure 4 shows the output from above input. The width of glue
indicated ‘(1)’ is (a/2 + a/2)/2 = 0.5a, and the width of glue indicated ‘(2)’ is
(a/2 + 1.2a/2)/2 = 0.55a. This default behavior can be changed by diffrentmet
parameter of LuaTEX-ja.

kanjiskip and xkanjiskip In pTEX, the value of xkanjiskip is controlled by a skip named
\xkanjiskip. A well-known defect of this implementation is that the value of

3. TEX82 (and LuaTEX) does not distinguish between explicit kern and a kern for italic correction. To dis-
tinguish them, an additional subtype for a kern is introduced in pTEX. On the other hand, LuaTEX-ja uses an
additional attribute and redefines \/ to set this attribute.

8 The Asian Journal of TEX

漢
a
）(1)（漢）(2)（大

1.2a

Figure 4. Fonts with different metrics.

xkanjiskip is not connected with the size of the currnt Japanese font. It seems that
EXTRASPACE, EXTRASTRETCH, EXTRASHRINK parameters in a JFM are reserved for
specifying the default value of xkanjiskip in a unit of the design size, but pTEX did
not use these parameters, actually.

Considering this situation of pTEX, LuaTEX-ja can use the value of xkanjiskip
that specified in a metric. If the value of xkanjiskip on user side (this is the value
of xkanjiskip parameter of \ltjsetparameter) is \maxdimen, then LuaTEX-ja use
the specification from the current used metric as the actual value of xkanjiskip.
This description also applies for kanjiskip.

3 Distinction of characters

Since LuaTEX can handle Unicode characters natively, it is a major problem that how
we distinguish Japanese characters and alphabetic characters. For example, the mul-
tiplication sign (U+00D7) exists both in ISO-8859-1 (hence in Latin-1 Supplement in
Unicode) and in the basic Japanese character set JIS X 0208. It is not desirable that
this character is always treated as an alphabetic character, because this symbol is often
used in the sense of ‘negative’ in Japan.

3.1 Character ranges

Before we describe the approach taken is LuaTEX-ja, we review the approach taken by
upTEX. upTEX extends the \kcatcode primitive in pTEX, to use this primitive for setting
how a character is treated among alphabetic characters (15), kanji (16), kana (17), kanji,
Hangul (17), or other CJK characters (18). The assignment to \kcatcode can be done by
a Unicode block.4

LuaTEX-ja adopted a different approach. There are many Unicode blocks in Basic
Multilingual Plane which are not included in Japanese fonts, therefore it is inconve-
nient if we process by a Unicode block. Furthermore, JIS X 0208 are not just union of
Unicode blocks; for example, the intersection of JIS X 0208 and Latin-1 Supplement is
shown in Table 2. Considering these two points, to customize the range of Japanese
characters in LuaTEX-ja, one has to define ranges of character codes in his/her source
in advance.

We note that LuaTEX-ja offers two additional control sequences, \ltjjachar and
\ltjalchar. They are similar to \char primitive, however \ltjjachar always yields
a Japanese character, provided that the argument is more than or equal to 128, and
\ltjalchar always yields an alphabetic character, regardless of the argument.

4. There are some exceptions. For example, U+FF00–FFEF (Halfwidth and Fullwidth Forms) are divided
into three blocks in recent upTEX.

9

Table 2. Intersection of JIS X 0208 and Latin-1 Supplement.

§ (U+00A7), ¨ (U+00A8), ° (U+00B0), ± (U+00B1),
´ (U+00B4), ¶ (U+00B6), × (U+00D7), ÷ (U+00F7)

Table 3. Predefined ranges in LuaTEX-ja.

1 (Additional) Latin characters which are not belonged in the range 8.
2 Greek and Cyrillic letters.
3 Punctuations and miscellaneous symbols.
4 Unicode blocks which does not intersect with Adobe-Japan1-6.
5 Surrogates and supplementary private use Areas.
6 Characters used in Japanese typesetting.
7 Characters possibly used in CJK typesetting, but not in Japanese.
8 Characters in Table 2.

3.2 Default setting of ranges

Patches for plain TEX and LATEX 2ε of LuaTEX-ja predefine eight character ranges, as
shown in Table 3. Almost of these ranges are just the union of Unicode blocks, and
determined from the Adobe-Japan1-6 character collection [1], and JIS X 0208. Among
these eight ranges, the ranges 2, 3, 6, 7, and 8 are considered ranges of Japanese charac-
ters, and others are considered ranges of alphabetic characters.5 We remark on ranges
2 and 8:

The range 2 JIS X 0208 includes Greek letters and Cyrillic letters, however, these letters
cannot be used for typesetting Greek or Russian, of course. Hence it is reasonable
that Greek letters and Cyrillic consist another character range.

The range 8 If one want to use 8-bit TFMs, such as T1 or TS1 encodings, he should mark
this range 8 as a range of alphabetic characters by

\ltjsetparameter{jacharrange={-8}}

This is because some 8-bit TFMs have a glyph in this range; for example, the
character ‘Œ’ is located at "D7 in the T1 encoding.

3.3 Control sequences producing Unicode characters

The fontspec package6 offers various control sequences that produce Unicode charac-
ters. However, these control sequences as it stands cannot work correctly with the
default range setting of LuaTEX-ja. For example, \textquotedblleft is just an abbrevi-
ation of \char"201C\relax, and the character U+201C (LEFT DOUBLE QUOTATION
MARK) is treated as an Japanese character, because it belongs to the range 3. This
problem is resolved by using \ltjalchar instead of the \char primitive. It is included

5. Note that ranges 3 and 8 are considered ranges of alphabetic characters in this paper.
6. Preciously saying, it is the xunicode package, originally a package for X ETEXand automatically loaded by
the fontspec package.

10 The Asian Journal of TEX

×, ×, ×,×, ×

1 ×, \char`×, % depend on range setting
2 \ltjalchar`×, % alphabetic char
3 \ltjjachar`×, % Japanese char
4 \texttimes % alph. char (by fontspec)

Figure 5. Control sequences producing a Unicode character.

in an optional package named luatexja-fontspec.sty. Figure 5 shows several ways
to typeset a character, both as a Japanese character and as as an alphabetic characters.

The situation looks similar in math formulas, but in fact it differs. Each control
sequence that represents an ordinary symbol defined by the unicode-math package is
just synonym of a character. For example, the meaning of \otimes is just the character
U+2297 (CIRCLED TIMES), which is included in the range 3. However, it is difficult to
define a control sequence like \ltjalUmathchar as a counterpart of \Umathchar, since
an input like ‘\sum^\ltjalUmathchar ...’ has to be permitted.

However, we couldn’t develop a satisfactory solution to this problem in time for
this paper, due to a lack of time. We are just testing a solution below:

– LuaTEX-ja has a list of character codes which will be always treated as alphabetic
characters in math mode. Considering 8-bit TFMs for math symbols, this list
includes natural numbers between "80 and "FF by default.

– Redefine internal commands defined in the unicode-math package so that codes
of characters which are mentioned in the unicode-math package will be included
in the list.

We would like to extend treatments described in this subsection to 8-bit font en-
codings, but we leave it to further development too.

4 Current status of development

At the moment, LuaTEX-ja can be used under plain TEX, and under LATEX 2ε. Generally
speaking, one only has to read luatexja.sty, by \input command or \usepackage
(in LATEX 2ε), if you merely want to typeset Japanese characters. We look more details
by parts.

4.1 ‘Engine extension’

The lowest part of LuaTEX-ja corresponds to the pTEX extension as an engine extension
of TEX. We, the project members, think that this part is almost done. There is one more
feature of LuaTEX-ja which we are going to explain:

Shifting baseline In order to make a match between Japanese fonts and alphabetic fonts,
sometimes shifting the baseline of alphabetic characters may be needed. pTEX
has a dimension \ybaselineshift, which corresponds to the amount of shift-
ing down the baseline of alphabetic characters. This is useful for Japanese-based
documents, but not for documents mainly in languages with alphabetic charac-
ters.

11

漢字 ph 漢字 ph
Figure 6. First example of shifting baseline.

ab本文（注釈 comment）本文
Figure 7. Second example of shifting baseline.

Hence, LuaTEX-ja extends pTEX’s \ybaselineshift to Japanese characters.
Namely, LuaTEX-ja offers two parameters, yjabaselineshift and yalbaselineshift, for
the amount of shifting the baseline of Japanese characters and that of alphabetic
characters, respectively.

An example output is shown in Figure 6. The left half is the output when
yjabaselineshift is positive, hence the baseline of Japanese characters is shifted
down. On the other hand, the right half is the output when yalbaselineshift is
positive, hence the baseline of alphabetic characters is shifted down. Figure 7
shows an intresting use of these parameters.

Note that LuaTEX-ja doesn’t support vertical typesetting, tategaki, for now.

4.2 Patches for plain TEX and LATEX 2ε

pTEX has a patch for plain TEX, namely ptex.tex, that for LATEX 2ε macro (this patch
and LATEX 2ε consist pLATEX 2ε), and kinsoku.tex which includes the default setting of
kinsoku shori, the Japanese hyphenation. We ported them to LuaTEX-ja, except the codes
related to vertical typesetting, because LuaTEX-ja doesn’t support vertical typesetting
yet. We remark one point related to the porting:

Behavior of \fontfamily The control sequence \fontfamily in pLATEX 2ε changes the
current alphabetic font family and/or the current Japanese font family, depend-
ing the argument. More concretely, \fontfamily{〈arg〉} changes the current al-
phabetic font family to 〈arg〉, if and only if one of the following conditions are
satisfied:

– An alphabetic font family named 〈arg〉 in some alphabetic encoding is al-
ready defined in the document.

– There exists an alphabetic encoding 〈enc〉 already defined in the document
such that a font definition file 〈enc〉〈arg〉.fd (all lowercase) exists.

The same criterion is used for changing Japanese font family.
To work this behavior well, it is required that a list of all (alphabetic) encod-

ings defined already in the document. However, since LuaTEX-ja is loaded as a

12 The Asian Journal of TEX

package, LuaTEX-ja cannot have this list. Hence LuaTEX-ja adopted a different ap-
proach, namely \fontfamily{〈arg〉} changes the current alphabetic font family
to 〈arg〉, if and only if:

– An alphabetic font family named 〈arg〉 in the current alphabetic encoding
〈enc〉 is already defined in the document.

– A font definition file 〈enc〉〈arg〉.fd (all lowercase) exists.

4.3 Classes for Japanese documents

To produce ‘high-quality’ Japanese documents, we need not only that Japanese char-
acters are correctly placed, but also class files for Japanese documents. Two major fam-
ilies of classes are widely used in Japan: jclasses which is distributed with the official
pLATEX 2ε macros, and jsclasses. At the present, LuaTEX-ja simply contains their coun-
terparts: ltjclasses and ltjsclasses. However, the policy on classes is not determined now,
and we hope to have another family of classes which are useful for commercial print-
ing. In the author’s opinion, ltjclasses is better to stay as an example of porting of class
files for pTEX to LuaTEX-ja.

4.4 Patches for packages

Apart from patches for the LATEX 2ε kernel and classes for Japanese documents, we
need to make patches for several packages. At the present, we considered the following
packages, and made patches or porting for the former two packages.

The fontspec package The fontspec package is built on NFSS2, hence control sequences
offered by the fontspec package, such as \setmainfont, are only effective for al-
phabetic fonts if LuaTEX-ja is loaded. luatexja-fontspec.sty (not automati-
cally loaded) offers these counterparts for Japanese fonts, with additional ‘j’ in
the name of control sequences, such as \setmainjfont. As described in Subsec-
tion 3.3, it also includes a patch for control sequences producing Unicode char-
acters.

The otf package This package is widely used in pTEX for typesetting characters which
is not in JIS X 0208, and for using more than one weight in mincho and gothic font
families. Therefore LuaTEX-ja supports features in the otf package, by loading
luatexja-otf.sty manually. Note that characters by \UTF{} and \CID{} are
not appended to the current list as a glyph_node, to avoid from callbacks by the
luaotfload package. We have another remark; \CID does not work with TrueType
fonts, since \CID use the conversion table between CID and the glyph order of
the current Japanese font.

The listings package It is known for users of pTEX that there is a patch jlisting.sty for
the listings package, to use Japanese characters in the lstlisting environment.
Generally speaking, it also can be used in LuaTEX-ja. However, it seems to be
that a Japanese character after a space does not recieve any process of the listings
package; this is inconvinient when we use the showexpl package.

There is another way to use characters above 256 with the listings package
(described in [3]). However, this method is not suitable for Japanese, since the

13

number of Japanese characters is very large. We hope that the listings package
will be able to handle all characters above 256 without any patch, in the future.

5 Implementation

5.1 Handling of Japanese fonts

In pTEX, there are three slots for maintaining current fonts, namely \font for alphabetic
fonts, \jfont for Japanese fonts (in horizontal direction) and \tfont for Japanese fonts
(in vertical direction). With these slots, we can manage the current font for alphabetic
characters and that for Japanese characters separately in pTEX. However, LuaTEX has
only one slot for maintaining the current font, as TEX82. This situation leads a problem:
how can we maintain the ‘current Japanese font’?

There are three approaches for this problem. One approach is to make a mapping
table from alphabetic fonts to corresponding Japanese fonts (here we don’t assume
that NFSS2 is available). Another approach is that we always use composite fonts
with alphabetic fonts and Japanese fonts. The third approach is that the information
of the current Japanese font is stored in an attribute. We adopted the third approach,
since LuaTEX-ja is much affected by pTEX as we noted in Subsection 1.2.

As in Figure 2, LuaTEX-ja uses \jfont for defining Japanese fonts, as pTEX. How-
ever, because the information of the current Japanese font is stored into an attribute,
control sequences defined by \jfont (e.g., \foo and \bar in Figure 2) is not repre-
senting a font by the means of TEX82. In other words, each of these control sequences
is just an assignment to an attribute, therefore they cannot be an argument of \the,
\fontname, nor \textfont.

Callbacks by the luaotfload package, e.g., replacement of glyphs according to Open-
Type font features, are performed just after ‘Examination of stack level’ (see Subsec-
tions 1.3 and 5.2). Also note that calculation of character classes for each Japanese
character is done after the these callbacks for now.

5.2 Stack management

As we noted in Subsection 2.1, parameters that the values at the end of a horizontal box
or that of a paragraph are valid in whole box or paragraph, such as kanjiskip, cannot
be implemented by internal integers or registers of other types in TEX. We explain it in
this subsection.

Figure 8 is an extract of a CWEB-source tex/packaging.w of LuaTEX (SVN revi-
sion 4358). This function is called just when an explicit \hbox{...} or \vbox{...} is
ended, and the function filtered_hpack() is where the hpack_filter and then the
actual ‘hpack’ process are performed. Notice that the unsave() function is called be-
fore filtered_hpack(). This is the problem; because of unsave(), we can retrive only
the values of registers outside the box, even in the hpack_filter callback.

To cope with this problem, LuaTEX-ja has its own stack system, based on Lua codes
in [17]. Furthermore, whatsit nodes whose user_id is 30112 (stack_node, for short) will be
appended to the current horizontal list each time the current stack level is incremented,
and their values are the values of \currentgrouplevel at that time. In the beginning

14 The Asian Journal of TEX

void package(int c)
{

...
d = box_max_depth;
unsave();
save_ptr -= 4;
if (cur_list.mode_field == -hmode) {

cur_box = filtered_hpack(cur_list.head_field,
cur_list.tail_field, saved_value(1),
saved_level(1), grp, saved_level(2));

subtype(cur_box) = HLIST_SUBTYPE_HBOX;
} else {

Figure 8. An extract of a CWEB-source tex/packaging.w of LuaTEX.

of the hpack_filter callback, the list in question is traversed to determine whether
the stack level at the end of the list and that outside the box coincides.

Let x be the value of \currentgrouplevel, and y be the current stack level, both
inside the hpack_filter callback, i.e., outside a horizontal box. Consider a list which
represents the content of the box, then we have:

– A stack_node whose value is x+1 (because all materials in the box are included in
a group \hbox{...}, the value of \currentgrouplevel inside the box is at least
x+ 1) in the list corresponds to an assignment related to the stack system in just
top-level of the list, like

\hbox{...(assignment)...}

In this case, the current stack level is incremented to y + 1 after the assignment.
– A stack_node whose value is more than x + 1 in the list corresponds to an as-

signment inside another group contained in the box. For example, the following
input creates a stack_node whose value is x+ 3 = (x+ 1) + 2:

\hbox{...{...{...(assignment)}...}...}

Thus, we can conclude that the stack level at the end of the list is y + 1, if and only if
there is a stack_node whose value is x+ 1. Otherwise, the stack level is just y.

5.3 Adjustment of the position of Japanese characters

The size of a glyph specified in a metric and that of a real font usually differ. For ex-
ample, the letter ‘【’ is half-width in jfm-ujis.lua or jis.tfm, while this letter is full-
width like ‘【’ in most TrueType fonts used in Japanese typesetting, such as IPA Mincho.
Hence the adjustment of position of such glyphs is needed. In the context of pTEX, this
process was performed using virtual fonts.

On the other hand, LuaTEX-ja does the adjustment by encapsuling a glyph into a
horizontal box. There are two main reasons why we adopted this method; one is that
we feared Lua codes for coexisting with callbacks by the luaotfload package would
be large if we use virtual fonts, and the other is to cope with shifting of the baseline of
characters at the same time.

15

R

6

-

M

?

height

depth

width

�
left

?down

Figure 9. The position of the ‘real’ glyph.

Figure 9 shows the adjustment process. A large square M is the imaginary body
specified in the metric, and a vertical rectangle is the imaginary body of a real glyph.
First, the real glyph is aligned with respect to the width of M . In the figure, the real
glyph is aligned ‘middle’; this setting is useful for the full-width middle dot ‘・’. We
have other settings, ‘left’ and ‘right’. Furthermore, it is shifted according to the value
of left and down, which are specified in the metric, for fine adjustment. The final
position of the real glyph is shown by the gray rectangle R. If the amount of shifting
the baseline is not zero, M (and hence the real glyph) is shifted by that amount.

We would like to remark briefly on the vertical position of a real glyph. A JFM
(or a metric used in LuaTEX-ja) and a real font used for it may have different height or
depth. In that case, it may look better if the real glyph is shifted vertically to match
the height-depth ratio specified in the metric, while any vertical adjustment except the
adjustment by the down value does not performed in the present implementation of
LuaTEX-ja . This situation is carefully studied by Otobe [15]. Here the policy on this
problem is not determined now, however we would like to offer several solutions in
future development.

5.4 Further notes on metrics for LuaTEX-ja

Proportional typesetting Some fonts are proportional, that is, each glyphs in those fonts
have its own width. An example of proportional fonts is IPA P Mincho. Using
these fonts in pTEX is very hard, since one needs to make a dedicated JFM for a
real font.

LuaTEX-ja supports these proportional fonts; specifying the width of a char-
acter class in a metric to "prop" makes the width of each character in this class
that of a glyph in a real font. If no JFM glue is needed, one simply has to use
jfm-prop.lua. The following is an example:

あいうえお

あいうえお

1 \jfont\pr=file:ipamp.ttf:jfm=prop at 3.25mm
2あいうえお\\\pr{}あいうえお

Scaling by metrics Because of virtual fonts, even if one specifies to use min10.tfm or
jis.tfm at 10 pt in pTEX, the actual size of real fonts used in dviwares for these
JFMs are 9.62216 pt. Hence, for example, if one wants to use 3.25 mm Japanese

16 The Asian Journal of TEX

fonts and 10 pt alphabetic fonts in pTEX, he/she needs to scale a Japanese font by

3.25mm
10pt · 0.962216 ' 0.961

in declarations of Japanese fonts.
LuaTEX-ja didn’t support such scaling of glyphs by metrics, so one has to

adjust the size argument for \jfont manually. Continuing the previous example,
for using 3.25 mm Japanese fonts and 10 pt alphabetic fonts in LuaTEX-ja, he/she
needs to scale a Japanese font by 3.25 mm/10 pt ' 0.92487.

6 Conclusion

We have discussed about our LuaTEX-ja package, which is much affected by pTEX. For
now, it can be used for experimental use, however there are much refinements which
are needed for regular use. The author hopes that this paper and LuaTEX-ja project con-
tribute the typesetting Japanese, and possibly other Asian languages, under LuaTEX.

Acknowledgements

The author would like to thank Ken Nakano and Hideaki Togashi for their devel-
opment and management of ASCII pTEX. The author is very grateful to Haruhiko
Okumura for his leadership in the Japanese TEX community. The author is also very
grateful to members of LuaTEX-ja project team for their valuable cooperation in devel-
opment.

References

1. Adobe Systems Incorporated, Adobe-Japan1-6 Character Collection for CID-Keyed Fonts, Tech-
nical Note #5078, 2004. http://partners.adobe.com/public/developer/en/font/5078.
Adobe-Japan1-6.pdf

2. ASCII MEDIA WORKS,アスキー日本語 TEX (pTEX). http://ascii.asciimw.jp/pb/ptex/

3. John Baker, Typesetting UTF8 APL code with the LATEX lstlisting package. http://bakerjd99.
wordpress.com/2011/08/15/

4. Jin-Hwan Cho and Haruhiko Okumura, Typesetting CJK Languages with Omega, TEX, XML,
and Digital Typography, Lecture Notes in Computer Science, vol. 3130, Springer, 2004,
139–148.

5. Yannis Haralambous. The Joy of LuaTEX. http://luatex.bluwiki.com/

6. Japanese Industrial Standards Committee. JIS X 4051: Formatting rules for Japanese docu-
ments, 1993, 1995, 2004.

7. 北川弘典, ε-pTEX についての wiki. http://sourceforge.jp/projects/eptex/wiki/
FrontPage

8. 北川弘典, LuaTEXで日本語. http://oku.edu.mie-u.ac.jp/tex/mod/forum/discuss.php?
d=378

9. LuaTEX development team, The LuaTEX reference. http://www.luatex.org/svn/trunk/
manual/luatexref-t.pdf (snapshot of SVN trunk)

http://partners.adobe.com/public/developer/en/font/5078.Adobe-Japan1-6.pdf
http://partners.adobe.com/public/developer/en/font/5078.Adobe-Japan1-6.pdf
http://ascii.asciimw.jp/pb/ptex/
http://bakerjd99.wordpress.com/2011/08/15/
http://bakerjd99.wordpress.com/2011/08/15/
http://luatex.bluwiki.com/
http://sourceforge.jp/projects/eptex/wiki/FrontPage
http://sourceforge.jp/projects/eptex/wiki/FrontPage
http://oku.edu.mie-u.ac.jp/tex/mod/forum/discuss.php?d=378
http://oku.edu.mie-u.ac.jp/tex/mod/forum/discuss.php?d=378
http://www.luatex.org/svn/trunk/manual/luatexref-t.pdf
http://www.luatex.org/svn/trunk/manual/luatexref-t.pdf

17

10. LuaTEX-ja project team, The LuaTEX-ja package. Not completed for now. Available at
doc/man-en.pdf (in English) or doc/man-ja.pdf (in Japanese) in the Git repository.

11. 香田温人, LuaTEX と日本語. http://www1.pm.tokushima-u.ac.jp/~kohda/tex/
luatex-old.html

12. 前田一貴, luajalayout パッケージ—LuaLATEX による日本語組版—. http://www-is.amp.i.
kyoto-u.ac.jp/lab/kmaeda/lualatex/luajalayout/

13. 奥村晴彦, pLATEX 2ε新ドキュメントクラス. http://oku.edu.mie-u.ac.jp/~okumura/
jsclasses/

14. Haruhiko Okumura, pTEX and Japanese Typesetting, The Asian Journal of TEX 2 (2008), 43–51.

15. 乙部厳己, min10フォントについて. http://argent.shinshu-u.ac.jp/~otobe/tex/files/
min10.pdf

16. 齋藤修三郎, Open Type Font用 VF. http://psitau.kitunebi.com/otf.html

17. Jonathan Sauer, [Dev-luatex] tex.currentgrouplevel. http://www.ntg.nl/pipermail/
dev-luatex/2008-August/001765.html

18. Takuji Tanaka, upTEX, upLATEX—unicode version of pTEX, pLATEX. http://homepage3.nifty.
com/ttk/comp/tex/uptex_en.html

19. Nobuyuki Tsuchimura and Yusuke Kuroki, Development of Japanese TEX Environment, The
Asian Journal of TEX 2 (2008), 53–62.

20. W3C Working Group, Requirements for Japanese Text Layout. http://www.w3.org/TR/jlreq/

http://www1.pm.tokushima-u.ac.jp/~kohda/tex/luatex-old.html
http://www1.pm.tokushima-u.ac.jp/~kohda/tex/luatex-old.html
http://www-is.amp.i.kyoto-u.ac.jp/lab/kmaeda/lualatex/luajalayout/
http://www-is.amp.i.kyoto-u.ac.jp/lab/kmaeda/lualatex/luajalayout/
http://oku.edu.mie-u.ac.jp/~okumura/jsclasses/
http://oku.edu.mie-u.ac.jp/~okumura/jsclasses/
http://argent.shinshu-u.ac.jp/~otobe/tex/files/min10.pdf
http://argent.shinshu-u.ac.jp/~otobe/tex/files/min10.pdf
http://psitau.kitunebi.com/otf.html
http://www.ntg.nl/pipermail/dev-luatex/2008-August/001765.html
http://www.ntg.nl/pipermail/dev-luatex/2008-August/001765.html
http://homepage3.nifty.com/ttk/comp/tex/uptex_en.html
http://homepage3.nifty.com/ttk/comp/tex/uptex_en.html
http://www.w3.org/TR/jlreq/

	Introduction
	History
	Development policy of LuaTeX-ja
	Overview of the processes
	Contents of this paper
	General information of the project

	Major differences with pTeX
	Names of control sequences
	Line-break after a Japanese character
	Separation between `real' fonts and metrics
	Insertion of glues/kerns for Japanese typesetting: timing
	Insertion of glues/kerns for Japanese typesetting: specification

	Distinction of characters
	Character ranges
	Default setting of ranges
	Control sequences producing Unicode characters

	Current status of development
	`Engine extension'
	Patches for plain TeX and LaTeX2ε
	Classes for Japanese documents
	Patches for packages

	Implementation
	Handling of Japanese fonts
	Stack management
	Adjustment of the position of Japanese characters
	Further notes on metrics for LuaTeX-ja

	Conclusion

