The LuaTgX-ja package

The LuaTgX-ja project team

February 8, 2016

Contents

II

User’s manual

Introduction

1.1 Backgrounds
1.2 Major changes from PIEX L
1.3 Notations e
1.4 Aboutthe project
Getting Started

2.1 Installation L
22 Cautions
23 Usinginplain TEX o o o0 o
24 Using in EXIEX o0
Changing Fonts

31 plain TEX and BIEX 2, o o oo
3.2 luatexja-fontspec package e
3.3 Presetsof Japanese fonts
3.4 \CID, \UTF, and macros in japanese-otf package
3.5 Changing default Japanese fonts L L o

Changing Internal Parameters

41 RangeofJAchars e

4.2 kanjiskip and xkanjiskip e

4.3 Insertion setting of xkanjiskip oL o Lo

4.4 Shifting the baseline

4.5 kinsoku parameters and OpenType features
Reference

\catcode in LuaTgX-ja

5.1 Preliminaries: \kcatcode in pIgXand uplEX
52 Caseof LuaTEX-ja o o i i
5.3 Non-kanji charactersin a controlword L oL
Directions

6.1 Boxesindifferent direction L L L
6.2 Getting current direction L L
6.3 Overridden box primitives L

Font Metric and Japanese Font

7.1
7.2
7.3
7.4
7.5
7.6

\Jfont . . L e
NtEont . . . o e
Prefix psft
Structureof a JEM file e
Math fontfamily
Callbacks e e e e e

10
13
14

14
14
16
17
17
18

19

19
19
19
19

20
20
21
22

8 Parameters 31

8.1 \ltjsetparameter it 31
8.2 \ltjgetparameter i e 33
9 Other Commands for plain TgX and ETEX 2, 34
9.1 Commands for compatibility with pIgX 34
9.2 \inhibitglue. 35
9.3 \ltjdeclarealtfont i 35
10 Commands for KIEX 2, 35
10.1 Patchfor NFSS2 35
10.2 Detail of \fontfamily command 37
11 Addon packages 38
11.1 luatexja-fontspec o L e e e e 38
11.2 luatexja-otf e e e e e 40
11.3 luatexja-adjust e e e e 40
11.4 luatexja-ruby 41
115 11tjext.sty . . . o o e 41
III Implementations 42
12 Storing Parameters 42
12.1 Used dimensions, attributes and whatsitnodes 42
12.2 Stack system of LuaTEX-ja o o 44
12.3 Lua functions of the stack system L o oL 45
12.4 Extending Parameters e 45
13 Linebreak after a Japanese Character 46
13.1 Reference: behavior in pIEX L 46
13.2 BehaviorinLuaTEX-ja o e e e 46
14 Patch for the listings Package 48
14.1 Notes and additional keys L 48
14.2 Classof characters. 49
15 Cache Management of LuaTgX-ja 50
15.1 Useofcache e 50
152 Internal e 51
References 52

This documentation is far from complete. It may have many grammatical (and contextual)
errors. Also, several parts are written in Japanese only.

Part1

User’s manual

1 Introduction

The LuaTgX-ja package is a macro package for typesetting high-quality Japanese documents when using
LuaTgX.

1.1 Backgrounds

Traditionally, ASCII pIEX, an extension of TgX, and its derivatives are used to typeset Japanese documents
in TgX. pIEX is an engine extension of TgX: so it can produce high-quality Japanese documents without
using very complicated macros. But this point is a mixed blessing: pIX is left behind from other extensions
of TgX, especially e-TgX and pdfTgX, and from changes about Japanese processing in computers (e.g., the
UTF-8 encoding).

Recently extensions of pIEX, namely upIEX (Unicode-implementation of pIEX) and e-pIEX (merging of
PIEX and e-TgX extension), have developed to fill those gaps to some extent, but gaps still exist.

However, the appearance of LuaTEX changed the whole situation. With using Lua “callbacks”, users
can customize the internal processing of LuaTEX. So there is no need to modify sources of engines to
support Japanese typesetting: to do this, we only have to write Lua scripts for appropriate callbacks.

1.2 Major changes from pIEX

The LuaTgX-ja package is under much influence of pIEX engine. The initial target of development was to
implement features of pIEX. However, implementing all feature of pIEX is impossible, since all process of
LuaTiX-ja must be implemented only by Lua and TgX macros. Hence LuaTgX-ja is not a just porting of pIpX;
unnatural specifications/behaviors of plX were not adopted.

The followings are major changes from pIEX. For more detailed information, see Part III or other
sections of this manual.

BCommand names pIEX addes several primitives, such as \kanjiskip, \prebreakpenalty,and, \ifydir.
They can be used as follows:

\kanjiskip=10pt \dimenO=kanjiskip
\tbaselineshift=0.1zw
\dimenO=\tbaselineshift
\prebreakpenalty” &%=100

\ifydir ... \fi

However, we cannot use them under LuaTgX-ja. Instead of them, we have to write as the following.

\1ltjsetparameter{kanjiskip=10pt} \dimenO=\1ltjgetparameter{kanjiskip}
\1ltjsetparameter{talbaselineshift=0.1\zw}
\dimenO=\1tjgetparameter{talbaselineshift}
\1ltjsetparameter{prebreakpenalty={"4 ,100}}
\ifnum\ltjgetparemeter{direction}=4 ... \fi

Note that pIEX adds new two useful units, namely zw and zh. As shown above, they are changed by
\zw and \zh respectively, in LuaTgX-ja.

B Linebreak after a Japanese character In pIEX, a line break after Japanese character is ignored (and
doesn’t yield a space), since line breaks (in source files) are permitted almost everywhere in Japanese
texts. However, LuaTgX-ja doesn’t have this feature completely, because of a specification of LuaTgX. For
the detail, see Section 13.

B Spaces related to Japanese characters The insertion process of glues/kerns between two Japanese
characters and between a Japanese character and other characters (we refer glues/kerns of both kinds as
JAglue) is rewritten from scratch.

« As LuaTgX’s internal ligature handling is node-based (e.g., of {}fice doesn’t prevent ligatures), the
insertion process of JAglue is now node-based.

« Furthermore, nodes between two characters which have no effects in line break (e.g., \special
node) and kerns from italic correction are ignored in the insertion process.

« Caution: due to above two points, many methods which did for the dividing the process of the insertion
of JAglue in pIEX are not effective anymore. In concrete terms, the following two methods are not
effective anymore:

L5&{30& L&\/2&

If you want to do so, please put an empty horizontal box (hbox) between it instead:

5 & \hbox{}D &

« In the process, two Japanese fonts which only differ in their “real” fonts are identified.

MDirections From version 20150420.0, LuaTgX-ja supports vertical writing. We implement this feature
by using callbacks of LuaTgX; so it must not be confused with Q-style direction support of LuaTgX itself.
Due to implementation, the dimension returned by \wd, \ht, or \dp depends on the content of the register
only. This is major difference with pIEX.

B \discretionary Japanese characters in discretionary break (\discretionary) is not supported.

B Greek and Cyrillic letters, and ISO 8859-1 symbols By default, LuaTEX-ja uses Japanese fonts to
typeset Greek and Cyrillic letters, To change this behavior, put \1t jsetparameter{jacharrange={-2,-3}}
in the preamble. For the detailed description, see Subsection 4.1.

From this version, characters which belongs both ISO 8859-1 and JIS X 0208, such as q and §, are now
typeset in alphabetic fonts. This means that without the \fontspec (and luatexja-fontspec) package, these
characters are not typeset correctly.

1.3 Notations

In this document, the following terms and notations are used:

« Characters are classified into following two types. Note that the classification can be customized by
a user (see Subsection 4.1).

— JAchar: standing for characters which is used in Japanese typesetting, such as Hiragana, Katakana,
Kanji, and other Japanese punctuation marks.

— ALchar: standing for all other characters like latin alphabets.
We say alphabetic fonts for fonts used in ALchar, and Japanese fonts for fonts used in JAchar.

« A word in a sans-serif font with underline (like prebreakpenalty) means an internal parameter for
Japanese typesetting, and it is used as a key in \1t jsetparameter command.

« A word in a sens-serif font without underline (like fontspec) means a package or a class of KIEX.

« In this document, natural numbers start from zero. w denotes the set of all natural numbers.

1.4 About the project

BMProject Wiki Project Wiki is under construction.
« https://osdn. jp/projects/luatex-ja/wiki/FrontPage’,28en729 (English)
« https://osdn.jp/projects/luatex-ja/wiki/FrontPage (Japanese)
« https://osdn. jp/projects/luatex-ja/wiki/FrontPage’,28zh%29 (Chinese)

This project is hosted by OSDN.

BMMembers
e Hironori KITAGAWA e Kazuki MAEDA e Takayuki YATO
e Yusuke KUROKI e Noriyuki ABE e Munehiro YAMAMOTO
e Tomoaki HONDA e Shuzaburo SAITO e MA Qiyuan

https://osdn.jp/projects/luatex-ja/wiki/FrontPage%28en%29
https://osdn.jp/projects/luatex-ja/wiki/FrontPage
https://osdn.jp/projects/luatex-ja/wiki/FrontPage%28zh%29

2 Getting Started

2.1 Installation
The following packages are needed for the LuaTEX-ja package.

« LuaTgX beta-0.80.0 (or later)

luaotfload v2.5 (or later)

adobemapping (Adobe cmap and pdfmapping files)

everysel (if you want to use LuaTgX-ja with KIEX 2,)

fontspec v2.4
« IPAex fonts (http://ipafont.ipa.go.jp/)

In summary, this version of LuaTgX-ja no longer supports TgX Live 2014 (or older version).

Now LuaTgX-ja is available from CTAN (in the macros/luatex/generic/luatexja directory), and
the following distributions:

« MIKTEX (in luatexja.tar.lzma); see the next subsection
« TgX Live (in texmf-dist/tex/luatex/luatexja)

« W32TgX (in luatexja.tar.xz)

IPAex fonts are also available in these distributions.

HEManual installation

1. Download the source, by one of the following method. At the present, LuaTgX-ja has no stable
release.
+ Clone the Git repository:

$ git clone git://git.osdn.jp/gitroot/luatex-ja/luatexja.git

« Download the tar.gz archive of HEAD in the master branch from

http:
//git.osdn. jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz

Note that the master branch, and hence the archive in CTAN, are not updated frequently; the
forefront of development is not the master branch.

2. Extract the archive. You will see src/ and several other sub-directories. But only the contents in
src/ are needed to work LuaTgX-ja.

3. If you downloaded this package from CTAN, you have to run following commands to generate
classes and 1t j-kinsoku. lua (the file which stores default “kinsoku” parameters):

$ cd src

$ lualatex ltjclasses.ins

$ lualatex ltjsclasses.ins

$ lualatex ltjltxdoc.ins

$ luatex 1tj-kinsoku_make.tex

Do not forget The last line (processing 1t j-kinsoku_make. tez). * . {dtx,ins} and 1t j-kinsoku make. tex
used here are not needed in regular use.

4. Copy all the contents of src/ into one of your TEXMF tree. TEXMF/tex/luatex/luatexja/ is
an example location. If you cloned entire Git repository, making a symbolic link of src/ instead
copying is also good.

5. If mktex1sr is needed to update the file name database, make it so.

6

http://ipafont.ipa.go.jp/
http://git.osdn.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz
http://git.osdn.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz

2.2 Cautions
For changes from pIEX, see Subsection 1.2.

« The encoding of your source file must be UTF-8. Other encodings, such as EUC-JP or Shift-]JIS, are
not supported.

+ LuaTgX-ja is very slower than pIEX. Generally speaking, LuaJITTEX processes LuaTgX-ja about 30%
faster than LuaTgX, but not always.

« (Outdated) note for MiKTgX users LuaTEX-ja requires that several CMap files' must be found
from LuaTgX. Strictly speaking, those CMaps are needed only in the first run of LuaTgX-ja after
installing or updating. But it seems that MiKTgX does not satisfy this condition, so you will encounter
an error like the following:

! LuaTeX error ...iles (x86)/MiKTeX 2.9/tex/luatex/luatexja/ltj-rmlgbm.lua
bad argument #1 to 'open' (string expected, got nil)

If so, please execute a batch file which is written on the Project Wiki (English). This batch file creates
a temporary directory, copy CMaps in it, run a test file which loads LuaTgX-ja in this directory, and
finally delete the temporary directory.

2.3 Using in plain TgX

To use LuaTEX-ja in plain TgX, simply put the following at the beginning of the document:

\input luatexja.sty

This does minimal settings (like ptex. tex) for typesetting Japanese documents:

+ The following 12 Japanese fonts are preloaded:

direction classification font name “10 pt” “7pt” “5 pt”
yoko (horizontal) mincho IPAex Mincho ~ \tenmin \sevenmin \fivemin
gothic IPAex Gothic \tengt \sevengt \fivegt
tate (vertical) mincho IPAex Mincho \tentmin \seventmin \fivetmin
gothic IPAex Gothic \tentgt \seventgt \fivetgt

- With luatexja.cfg, one can use other fonts as “default” Japanese fonts (Subsection 3.5).

— A character in an alphabetic font is generally smaller than a Japanese font in the same size. So
actual size specification of these Japanese fonts is in fact smaller than that of alphabetic fonts,
namely scaled by 0.962216.

+ The amount of glue that are inserted between a JAchar and an ALchar (the parameter xkanjiskip)

is set to
+lpt _
—1pt —

+1pt

(0.25 - 0.962216 - 10 pt) i

2.40554 pt

2.4 Using in BIEX

Using in KIEX 2, is basically same. To set up the minimal environment for Japanese, you only have to load
luatexja.sty:

\usepackage{luatexja}

It also does minimal settings (counterparts in pIEX are plfonts.dtx and pldefs.1ltx):

« Font encodings for Japanese fonts is JY3 (for horizontal direction) and JT3 (for vertical direction).

« Traditionally, Japanese documents use two typeface categories: mincho ({H%H{£) and gothic (33
4 4K). mincho is used in the main text, while gothic is used in the headings or for emphasis.

'UniJIS2004-UTF32-{H,V} and Adobe-Japan1-UCS2.

https://osdn.jp/projects/luatex-ja/wiki/FrontPage%28en%29

classification family name

mincho (FE{E) \textmc{...} {\mcfamily ...} \mcdefault
gothic (A v 71F) \textgt{...} {\gtfamily ...} \gtdefault

« By default, the following fonts are used for mincho and gothic:

classification family \mdseries \bfseries scale
mincho (FHEA{E) mc IPAex Mincho IPAex Gothic 0.962216
gothic (A v 71&) gt IPAex Gothic IPAex Gothic 0.962216

Note that the bold series in both family are same as the medium series of gothic family. There is no
italic nor slanted shape for these mc and gt.

« Japanese characters in math mode are typeset by the font family mc.

« \jttdefault” specifies the Japanese font family in \verb or verbatim environment. The default
value of \jttdefault is \mcdefault, so mincho family is used.

« If you use the beamer class with the default font theme (which uses sans serif fonts) and with
LuaTgX-ja, you might want to change default Japanese fonts to gothic family. The following line
changes the default Japanese font family to gothic:

\renewcommand{\kanjifamilydefault}{\gtdefault}

However, above settings are not sufficient for Japanese-based documents. To typeset Japanese-based
documents, you are better to use class files other than article.cls, book.cls, and so on. At the present,
we have the counterparts of jclasses (standard classes in p&TEX) and jsclasses (classes by Haruhiko Okumura),
namely, Itjclasses® and Itjsclasses®.

B geometry package and classes for vertical writing It is well-known that the geometry package
produces the following error, when classes for vertical writing is used:

! Incompatible direction list can't be unboxed.
\@begindvi ->\unvbox \@begindvibox
\global \let \@begindvi \@empty

Now, LuaTgX-ja automatically applies the patch lltjp-geometry to the geometry package, when the direction
of the document is tate (vertical writing). This patch lItjp-geometry also can be used in pISTgX; for the detail,
please refer 11t jp-geometry.pdf (Japanese).

3 Changing Fonts

3.1 plain TgX and KIEX 2,

Mplain TgX To change Japanese fonts in plain TgX, you must use the command \jfont and \tfont.
So please see Subsection 7.1.

BETEX 2, (NFSS2) For BIEX 2., LuaTgX-ja adopted most of the font selection system of pEIEX 2. (in
plfonts.dtx).

« Commands \fontfamily, \fontseries, and \fontshape can be used to change attributes of
Japanese fonts.

2When ltjsclasses classes are used, or luatexja-fontspec (or luatexja-preset) is loaded with match option, \ttfamily changes the
current Japanese font amily to \ jttdefault. These classes and packages also redefine \ jttdefault to \gtdefault (gothic family).

3ltj article.cls, ltjbook.cls, ltjreport.cls, ltjtarticle.cls, ltjtbook.cls, ltjtreport.cls. The latter
1tjt*.cls are for vertically writtened Japanese documents.

411:j sarticle.cls, 1tjsbook.cls, 1tjskiyou.cls.

lltjp-geometry.pdf

N

w

N

w

-

@

encoding family series shape selection

alphabetic fonts \romanencoding \romanfamily \romanseries \romanshape \useroman
Japanese fonts \kanjiencoding \kanjifamily \kanjiseries \kanjishape \usekanji
both — - \fontseries \fontshape —
auto select \fontencoding \fontfamily — — \usefont

\fontencoding{(encoding)} changes the encoding of alphabetic fonts or Japanese fonts depending
on the argument. For example, \fontencoding{JY3} changes the encoding of Japanese fonts to
JY3, and \fontencoding{T1} changes the encoding of alphabetic fonts to T1. \fontfamily also
changes the current Japanese font family, the current alphabetic font family, or both. For the detail,
see Subsection 10.1.

« For defining a Japanese font family, use \DeclareKanjiFamily instead of \DeclareFontFamily.
(In previous version of LuaTgX-ja, using \DeclareFontFamily didn’t cause any problem. But this
no longer applies the current version.)

« Defining a Japanese font shape can be done by usual \DeclareFontShape:

\DeclareFontShape{JY3}{mc}{bx}{n}{<-> s*KozMinPr6N-Bold: jfm=ujis;-kern}{}
% Kozuka Mincho PréN Bold

B Remark: Japanese characters in math mode Since pIEX supports Japanese characters in math
mode, there are sources like the following:

$f_{=R}$~ ($f_{\text{high temperature}}$). S (fhigh temperature)

\[y=(x-1)"2+2\quad &2 C\quad y>0 \]
$5\in F:=\{\,p\in\mathbb N:\text{p is a
prime}\,\}$.

y=@x=-12%+2 &o>T y>0
5e£:={peN : pisaprime }.

We (the project members of LuaTEX-ja) think that using Japanese characters in math mode are allowed if
and only if these are used as identifiers. In this point of view,

« The lines 1 and 2 above are not correct, since “/=57ii” in above is used as a textual label, and “& > T”
is used as a conjunction.

« However, the line 3 is correct, since “Z2” is used as an identifier.

Hence, in our opinion, the above input should be corrected as:

$f_{\text{=:E}I}$~%
($f_{\text{high temperature}}$).
\[y=(x-1)"2+2\quad
\mathrel{\text{& 2 C}}\quad y>0 \]

$5\in #:=\{\,p\in\mathbb N:\text{p is a . .
prime}\,\}};. P 5e£:={peN : pisaprime }.

S (fhigh temperature)'

y=x-172+2 &XoT y>0

We also believe that using Japanese characters as identifiers is rare, hence we don’t describe how to change
Japanese fonts in math mode in this chapter. For the method, please see Subsection 7.5.
3.2 luatexja-fontspec package

To use the functionality of the fontspec package to Japanese fonts, it is needed to load the luatexja-fontspec
package in the preamble, as follows:

\usepackage [(options)] {luatexja-fontspec}

This luatexja-fontspec package automatically loads luatexja and fontspec packages, if needed.

In the luatexja-fontspec package, the following seven commands are defined as counterparts of original
commands in the fontspec package:

w

Japanese fonts \jfontspec \setmainjfont \setsansjfont \setmonojfont”
alphabetic fonts \fontspec \setmainfont \setsansfont \setmonofont

Japanese fonts \newjfontfamily \newjfontface \defaultjfontfeatures \addjfontfeatures
alphabetic fonts \newfontfamily \newfontface \defaultfontfeatures \addfontfeatures

The package option of luatexja-fontspec are the followings:

match
If this option is specified, usual family-changing commands such as \rmfamily, \textrm, \sffamily,...
also change Japanese font family.

Note that \setmonojfont is defined if and only if this match option is specified.

pass=(opts)
(Obsoleted) Specify options (opts) which will be passed to the fontspec package.

scale=(float)
Override the ratio of the font size of Japanese fonts to that of alphabetic fonts. The default value is
calculated automatically (for example, about 0.924865 when the Itjsarticle class is used).

All other options listed above are simply passed to the fontspec package. This means that two lines
below are equivalent, for example.

\usepackage [no-math] {fontspec}\usepackage{luatexja-fontspec}
\usepackage [no-math] {luatexja-fontspec}

The reason that \setmonojfont is not defined by default is that it is popular for Japanese fonts that
nearly all Japanese glyphs have same widths. Also note that kerning information in a font is not used
(that is, kern feature is set off) by default in these seven (or eight) commands. This is because of the
compatibility with previous versions of LuaTgX-ja (see 7.1).

Below is an example of \ jfontspec.

\jfontspec [CIKShape=NLC]{KozMinPr6N-Regular}

JIS~X~0213:2004—3t \par JIS X 0213:2004 —3it
\jfontspec [CIJKShape=J151990] {KozMinPr6N-Regular} JIS X 0208:1990 —itk

JIS~X~0208:1990—>1t

3.3 Presets of Japanese fonts

One can load the luatexja-preset package to use several “presets” of Japanese fonts. This package provides
functions in a part of japanese-otf package and a part of PXchfon package by Takayuki Yato.

One can specified other options other than listed in this subsection. These are simply passed to the
luatexja-fontspec’. For example, the line 5 in below example is egivalent to lines 1-3.

\usepackage [no-math] {fontspec}
\usepackage [match] {luatexja-fontspec}
\usepackage [kozuka-pr6n] {luatexja-preset}

\usepackage [no-math,match,kozuka-prén] {luatexja-preset}

M General options

fontspec (enabled by default)
With this option, Japanese fonts are selected using functionality of the luatexja-fontspec package. This
means that the fontspec package is automatically loaded by this package.

If you need to pass some options to fontspec, you can load fontspec manually before luatexja-preset:

\usepackage [no-math] {fontspec}
\usepackagel...]{luatexja-preset}

Sif nfssonly option is not specified; in this case these options are simply ignored.

10

nfssonly
With this option, selecting Japanese fonts won’t be performed using the functionality of the fontspec
package, but only standard NFSS2 (hence without \addjfontfeatures etc.). This option is ignored
when luatexja-fontspec package is loaded.

When this option is specified, fontspec and luatexja-fontspec are not loaded by default. Nevertheless,
the packagefontspec can coexist with the option, as the following:

\usepackage{fontspec}
\usepackage [hiragino-pron,nfssonly] {luatexja-preset}

In this case, one can use \setmainfont etc. to select alphabetic fonts.

match
If this option is specified, usual family-changing commands such as \rmfamily, \textrm, \sffamily,...
also change Japanese font family. This option is passed to luatexja-fontspec, if fontspec option is
specifed.

nodeluxe (enabled by default)
The nagation of deluxe option. Use one-weighted mincho and gothic font families. This means that
\mcfamily\bfseries, \gtfamily\bfseries and \gtfamily\mdseries use the same font.

deluxe
Use mincho with two weights (medium and bold), gothic with three weights (medium, bold and heavy),
and rounded gothic®. The heavy weight of gothic can be used by “changing the family” \gtebfamily,
or \textgteb{...}. This is because the fontspec package can handle only medium (\mdseries) and
bold (\bfseries).

expert
Use horizontal/vertical kana alternates, and define a command \rubyfamily to use kana characters
designed for ruby.

bold
Substitute bold series of gothic for bold series of mincho. If nodeluxe option is enabled, medium
series of gothic is also changed, since we use same font for both series of gothic.

90jis
Use 90JIS glyph variants if possible.
3182004
Use JIS2004 glyph variants if possible.
jis
Use the JFM jfm-jis.1lua, instead of jfm-ujis.1lua, which is the default JFM of LuaTgX-ja.

Note that 90jis and jis2004 only affect with mincho, gothic (and possibly rounded gothic) defined by
this package. We didn’t taken account of when both 90jis and jis2004 are specified.

B Presets for multi weight Besidesmorisawa-pro and morisawa-prén presets, fonts are specified by
font name, not by file name. In following tables, starred fonts (e.g. KozGo...-Regular) are used for medium
series of gothic, if and only if deluze option is specified.

kozuka-pro Kozuka Pro (Adobe-Japan1-4) fonts.
kozuka-pr6 Kozuka Pr6 (Adobe-Japan1-6) fonts.
kozuka-prén Kozuka PréN (Adobe-Japan1-6, JIS04-savvy) fonts.

Kozuka Pro/PréN fonts are bundled with Adobe’s software, such as Adobe InDesign. There is not
rounded gothic family in Kozuka fonts.

®Provided by \mgfamily and \textmg, because rounded gothic is called maru gothic (JL=T3 v 77) in Japanese.

11

kozuka-pro

kozuka-pr6

kozuka-prén

KozMinPro-Regular
KozMinPro-Bold

KozMinProVI-Regular
KozMinProVI-Bold

KozMinPréN-Regular
KozMinPréN-Bold

KozGoPro-Regular*
KozGoPro-Medium

KozGoProVI-Regular”
KozGoProVI-Medium

KozGoPr6N-Regular®
KozGoPr6N-Medium

KozGoPro-Bold
KozGoPro-Heavy

KozGoProVI-Bold
KozGoProVI-Heavy

KozGoPré6N-Bold
KozGoPr6N-Heavy

family series

mincho medium
bold
medium

othic

£ bold

heavy
rounded gothic

KozGoPro-Heavy

KozGoProVI-Heavy

KozGoPr6N-Heavy

hiragino-pro Hiragino Pro (Adobe-Japani-5) fonts.

hiragino-pron Hiragino ProN (Adobe-Japani-5, JIS04-savvy) fonts.

Hiragino fonts are bundled with Mac OS X 10.5 or later. Some editions of a Japanese word-processor
“—KHB2012” includes Hiragino ProN fonts. Note that the heavy weight of gothic family only supports
Adobe-Japan1-3 character collection (Std/StdN).

family series hiragino-pro hiragino-pron

mincho medium Hiragino Mincho Pro W3 Hiragino Mincho ProN W3
bold Hiragino Mincho Pro W6 Hiragino Mincho ProN W6
medium Hiragino Kaku Gothic Pro W3* Hiragino Kaku Gothic ProN W3*

Hiragino Kaku Gothic Pro W6 Hiragino Kaku Gothic ProN W6
othic

& bold Hiragino Kaku Gothic Pro W6 Hiragino Kaku Gothic ProN W6

heavy Hiragino Kaku Gothic Std W8 Hiragino Kaku Gothic StdN W8

rounded gothic

Hiragino Maru Gothic Pro W4

Hiragino Maru Gothic ProN W4

morisawa-pro Morisawa Pro (Adobe-Japan1-4) fonts.

morisawa-prén Morisawa Pr6N (Adobe-Japan1-6, JIS04-savvy) fonts.

family series morisawa-pro morisawa-prén
mincho medium A-OTF-RyuminPro-Light.otf A-OTF-RyuminPr6N-Light.otf
bold A-0OTF-FutoMinA101Pro-Bold.otf A-OTF-FutoMinA101Pr6N-Bold.otf
medium A-OTF-GothicBBBPro-Medium.otf A-OTF-GothicBBBPr6N-Medium.otf
gothic bold A-0TF-FutoGoB101Pro-Bold.otf A-0TF-FutoGoB101Pr6N-Bold.otf
heavy A-0TF-MidashiGoPro-MB31.otf A-0TF-MidashiGoPr6N-MB31.otf
rounded gothic A-O0TF-Jun101Pro-Light.otf A-OTF-ShinMGoPr6N-Light.otf

yu-win Yu fonts bundled with Windows 8.1.
yu-osx Yu fonts bundled with OSX Mavericks.

family series yu-win yu-osx
mincho medium YuMincho-Regular YuMincho Medium
bold YuMincho-Demibold ~ YuMincho Demibold
medium YuGothic-Regular® YuGothic Medium*
YuGothic-Bold YuGothic Bold
gothic bold YuGothic-Bold YuGothic Bold
heavy YuGothic-Bold YuGothic Bold
rounded gothic YuGothic-Bold YuGothic Bold

12

moga-mobo MogaMincho, MogaGothic, and MoboGothic. These fonts can be downloaded from
http://yozvox.web.fc2.com/.

family series default, 90jis option jis2004 option
mincho medium Moga90Mincho MogaMincho
bold Moga90Mincho Bold MogaMincho Bold
medium Moga90Gothic* MogaGothic*
Moga90Gothic Bold MogaGothic Bold
gothic bold Moga90Gothic Bold MogaGothic Bold
heavy Moga90Gothic Bold MogaGothic Bold
rounded gothic Mobo90Gothic MoboGothic

M Presets for single weight Next, we describe settings for using only single weight.

noembed ipa ipaex ms

mincho Ryumin-Light (non-embedded) IPA Mincho IPAex Mincho MS Mincho
gothic GothicBBB-Medium (non-embedded) IPA Gothic = IPAex Gothic =~ MS Gothic

B Using HG fonts We can use HG fonts bundled with Microsoft Office for realizing multiple weights.

ipa-hg ipaex-hg ms-hg

mincho medium IPA Mincho IPAex Mincho MS Mincho

mincho bold HG Mincho E

Gothic medium
without deluxe IPA Gothic IPAex Gothic MS Gothic
with jis2004 IPA Gothic ~ IPAex Gothic ~ MS Gothic

otherwise HG Gothic M
gothic bold HG Gothic E
gothic heavy HG Soei Kaku Gothic UB
rounded gothic HG Maru Gothic PRO

Note that HG Mincho E, HG Gothic E, HG Soei Kaku Gothic UB, and HG Maru Gothic PRO are
internally specified by:

default by font name (HGMinchok, etc.).
90jis by file name (hgrme.ttc, hgrge.ttc, hgrsgu.ttc, hgrsmp. ttf).

jis2004 by file name (hgrmeO4.ttc, hgrge04.ttc, hgrsguO4. ttc, hgrsmp04.ttf).

3.4 \CID, \UTF, and macros in japanese-otf package

Under pKTgX, japanese-otf package (developed by Shuzaburo Saito) is used for typesetting characters which
is in Adobe-Japan1-6 CID but not in JIS X 0208. Since this package is widely used, LuaTEX-ja supports some
of functions in the japanese-otf package, as an external package luatexja-otf.

\jfontspec{KozMinPr6N-Regular.otf}
2 FR\UTF{9DD7} & WHR B \UTF{9592} & HN\UTF{9AD9

YERITIT L,
HEEAENHEM & EERICITL
\CID{7652}&fi[X D\CID{13706}FF 5, HEIXKOEER, B, EPEER, EiEE Ei
\CID{1481} 1, BEFEER, RADSAAAT

S& & \CID{8705}\UTF{FA11}

\aj¥B{IAD AR ATF?
13

http://yozvox.web.fc2.com/

3.5 Changing default Japanese fonts

If luatexja.cfgcanbe seen from LuaTEX, LuaTEX-ja automatically reads it. The main use of luatexja.cfg
is for changing default Japanese fonts, when IPAex fonts cannot be installed in TgX system. One should
not overuse this luatexja.cfg; fonts which will be used in a document should be specified in its source.

For example,
\def\1tj@stdmcfont{IPAMincho}
\def\1tj@stdgtfont{IPAGothic}
makes that IPA Mincho and IPA Gothic will be used as default Japanese fonts, instead of IPAex Mincho
and IPAex Gothic.

For another example, the following two lines makes that non-embedded fonts Ryumin-Light and GothicBBB-
Medium as default Japanese fonts (as the earlier version of LuaTgX-ja):

\def\1tj@stdmcfont{psft:Ryumin-Light}
\def\1ltj@stdgtfont{psft:GothicBBB-Medium}

4 Changing Internal Parameters

There are many internal parameters in LuaTgX-ja. And due to the behavior of LuaTgX, most of them are
not stored as internal register of TgX, but as an original storage system in LuaTgX-ja. Hence, to assign or
acquire those parameters, you have to use commands \1tjsetparameter and \1tjgetparameter.

4.1 Range of JAchars

LuaTigX-ja divides the Unicode codespace U+0080-U+10FFFF into character ranges, numbered 1 to 217.
The grouping can be (globally) customized by \1tjdefcharrange. The next line adds whole characters
in Supplementary Ideographic Plane and the character “{%” to the character range 100.

\1tjdefcharrange{100}{"20000-"2FFFF, ~ E}

A character can belong to only one character range. For example, whole SIP belong to the range 4 in
the default setting of LuaTgX-ja, and if you execute the above line, then SIP will belong to the range 100
and be removed from the range 4.

The distinction between ALchar and JAchar is performed by character ranges. This can be edited by
setting the jacharrange parameter. For example, the code below is just the default setting of LuaTgX-ja, and
it sets

« a character which belongs character ranges 1, 4, 5, and 8 is ALchar,

« a character which belongs character ranges 2, 3, 6, and 7 is JAchar.

\ltjsetparameter{jacharrange={-1, +2, +3, -4, -5, +6, +7, -8}}

The argument to jacharrange parameter is a list of non-zero integer. Negative integer —n in the list means
that “each character in the range n is an ALchar”, and positive integer +n means that “... is a JAchar”.

Note that characters U+0000-U+007F are always treated as an ALchar (this cannot be customized).

B Default character ranges LuaTEX-ja predefines eight character ranges for convenience. They are
determined from the following data:

« Blocks in Unicode 6.0.
« The Adobe-Japan1-UCS2 mapping between a CID Adobe-Japan1-6 and Unicode.

« The PXbase bundle for upliX by Takayuki Yato.

14

U+2000-U+206F
U+20A0-U+20CF
U+2100-U+214F
U+2190-U+21FF
U+2300-U+23FF
U+2500-U+257F
U+25A0-U+25FF
U+2700-U+27BF
U+2980-U+29FF

Table 1. Unicode blocks in predefined character range 3.

General Punctuation

Currency Symbols

Letterlike Symbols
Arrows
Miscellaneous Technical

Box Drawing
Geometric Shapes
Dingbats

Misc. Mathematical Symbols-B

U+2070-U+209F
U+20D0-U+20FF
U+2150-U+218F
U+2200-U+22FF
U+2400-U+243F
U+2580-U+259F
U+2600-U+26FF
U+2900-U+297F
U+2B00-U+2BFF

Superscripts and Subscripts

Comb. Diacritical Marks for Symbols
Number Forms

Mathematical Operators

Control Pictures

Block Elements

Miscellaneous Symbols
Supplemental Arrows-B
Miscellaneous Symbols and Arrows

Now we describe these eight ranges. The superscript “J” or “A” after the number shows whether each
character in the range is treated as JAchars or not by default. These settings are similar to the prefercjk
settings defined in PXbase bundle. Any characters equal to or above U+0080 which does not belong to
these eight ranges belongs to the character range 217.

Range 8* The intersection of the upper half of ISO 8859-1 (Latin-1 Supplement) and JIS X 0208 (a basic
character set for Japanese). This character range consists of the following characters:

« § (U+00A7, Section Sign)
« " (U+00A8, Diaeresis)
« ° (U+00BO, Degree sign)

« * (U+00B1, Plus-minus sign)

+ " (U+00B4, Spacing acute)

« 9 (U+00BS6, Paragraph sign)

« x (U+00D7, Multiplication sign)
« + (U+00F7, Division Sign)

Range 1% Latin characters that some of them are included in Adobe-Japan1-6. This range consists of the
following Unicode ranges, except characters in the range 8 above:

« U+0080-U+00FF: Latin-1 Supplement
« U+0100-U+017F: Latin Extended-A

o U+0180-U+024F: Latin Extended-B

« U+0250-U+02AF: IPA Extensions

e U+0300-U+036F:

Combining Diacritical Marks

» U+1EOO0-U+1EFF:

« U+02BO-U+02FF: Spacing Modifier Letters

Latin Extended Additional

Range 2) Greek and Cyrillic letters. JIS X 0208 (hence most of Japanese fonts) has some of these characters.

« U+0370-U+03FF: Greek and Coptic

« U+0400-U+04FF: Cyrillic

e U+1F00-U+1FFF: Greek Extended

Range 3! Punctuations and Miscellaneous symbols. The block list is indicated in Table 1.

Range 4* Characters usually not in Japanese fonts. This range consists of almost all Unicode blocks
which are not in other predefined ranges. Hence, instead of showing the block list, we put the
definition of this range itself:

\1tjdefcharrange{4}{%
"500-"10FF, "1200-"1DFF, "2440-"245F, "27C0-"28FF, "2A00-"2AFF,
"2C00-"2E7F, "4DCO-"4DFF, "A4DO-"A82F, "A840-"ABFF, "FBOO-"FEOF,
"FE20-"FE2F, "FE70-"FEFF, "10000-"1FFFF, "EOOO-"F8FF} 7 non-Japanese

Range 54 Surrogates and Supplementary Private Use Areas.

Range 6 Characters used in Japanese. The block list is indicated in Table 2.

Range 77 Characters used in CJK languages, but not included in Adobe-Japan1-6. The block list is indicated

in Table 3.

15

o

w

U+2460-U+24FF
U+3000-U+303F
U+30A0-U+30FF
U+31F0-U+31FF
U+3300-U+33FF
U+4E00-U+9FFF
U+FE10-U+FE1F

Table 2. Unicode blocks in predefined character range 6.

Enclosed Alphanumerics
CJK Symbols and Punctuation

Katakana

Katakana Phonetic Extensions

CJK Compatibility

CJK Unified Ideographs

Vertical Forms

U+2E80-U+2EFF
U+3040-U+309F
U+3190-U+319F
U+3200-U+32FF
U+3400-U+4DBF
U+F900-U+FAFF
U+FE30-U+FE4F

CJK Radicals Supplement

Hiragana

Kanbun

Enclosed CJK Letters and Months
CJK Unified Ideographs Extension A
CJK Compatibility Ideographs

CJK Compatibility Forms

Small Form Variants U+20000-U+2FFFF

Variation Selectors Supplement

U+FE50-U+FE6F
U+E0100-U+EO1EF

(Supplementary Ideographic Plane)

U+1100-U+11FF
U+2FFO0-U+2FFF
U+3130-U+318F
U+31C0-U+31EF
U+A490-U+A4CF
U+ACO0-U+D7AF

Table 3. Unicode blocks in predefined character range 7.

Hangul Jamo

Ideographic Description Characters
Hangul Compatibility Jamo

CJK Strokes

Yi Radicals

Hangul Syllables

U+2F00-U+2FDF
U+3100-U+312F
U+31A0-U+31BF
U+A000-U+A48F
U+A830-U+A83F
U+D7BO-U+D7FF

Kangxi Radicals

Bopomofo

Bopomofo Extended

Yi Syllables

Common Indic Number Forms
Hangul Jamo Extended-B

B Notes on U+0080-U+00FF You should treat characters in
textttU+0080-U+0OFF as ALchar, when you use traditional 8-bit fonts, such as the textcomp package or
the marvosym package.

For example, the codepoint \textparagraph which is provided by the textcomp package is 182. This
codepoint corresponds § (U+00B6) in Unicode. Similarly, \Frowny which is provided by the marvosym
package has the same codepoint as § (U+00A7). Hence, as previous versions of LuaTgX-ja, if these characters
are treated as JAchars, then \textparagraph produces “ltjjachar'q]” (in a Japanese font), and \Frowny
produces “ § ” (in a Japanese font).

To avoid such situations, the default setting of LuaTEX-ja is changed in this release so that all characters
U+0080-U+OOQFF are treated as ALchar.

If you want to output a character as ALchar and JAchar regardless the range setting, you can use
\1tjalchar and \1tjjachar respectively, as the following example.

\gtfamily\large % default, ALchar, JAchar 1[q

€, \ltjalchar'q, \ltjjachar'\\ % default: ALchar
a, \ltjalchar a, \ltjjachar a ¥ default: JAchar a,a, a

4.2 kanjiskip and xkanjiskip

JAglue is divided into the following three categories:

« Glues/kerns specified in JFM. If \inhibitglue is issued around a JAchar, this glue will not be
inserted at the place.

« The default glue which inserted between two JAchars (kanjiskip).
« The default glue which inserted between a JAchar and an ALchar (xkanjiskip).

The value (a skip) of kanjiskip or xkanjiskip can be changed as the following. Note that only their values at
the end of a paragraph or a hbox are adopted in the whole paragraph or the whole hbox.

\1tjsetparameter{kanjiskip={Opt plus 0.4pt minus 0.4pt},
xkanjiskip={0.25\zw plus 1pt minus 1pt}}

Here \zw is a internal dimension which stores fullwidth of the current Japanese font. This \zw can be used
as the unit zw in pIEX.

The value of these parameter can be get by \1t jgetparameter. Note that the result by \1t jgetparameter
is not the internal quantities, but a string (hence \the cannot be prefixed).

16

1

2

2

2

3

4

8

kanjiskip: \ltjgetparameter{kanjiskip},\\ kanjiskip: 0.0pt plus 0.4pt minus 0.4pt,
xkanjiskip: \1tjgetparameter{xkanjiskip’} xkanjiskip: 2.40555pt plus 1.0pt minus 1.0pt

It may occur that JEM contains the data of “ideal width of kanjiskip” and/or “ideal width of xkanjiskip”.
To use these data from JFM, set the value of kanjiskip or xkanjiskip to \maxdimen (these “ideal width”
cannot be retrived by \1tjgetparameter).

4.3 Insertion setting of xkanjiskip

It is not desirable that xkanjiskip is inserted into every boundary between JAchars and ALchars. For
example, xkanjiskip should not be inserted after opening parenthesis (e.g., compare “(&” and “(&7).
LuaTgX-ja can control whether xkanjiskip can be inserted before/after a character, by changing jaxspmode
for JAchars and alxspmode parameters ALchars respectively.

\1tjsetparameter{jaxspmode={"d ,preonly},
alxspmode={"~\!,postonly}} P 35q W9
pdg LMD

The second argument preonly means that the insertion of xkanjiskip is allowed before this character,
but not after. the other possible values are postonly, allow, and inhibit.

jaxspmode and alxspmode use a same table to store the parameters on the current version. Therefore,

line 1 in the code above can be rewritten as follows:

\1tjsetparameter{alxspmode={"d5,preonly}, jaxspmode={ \!,postonly}}

One can use also numbers to specify these two parameters (see Subsection 8.1).

If you want to enable/disable all insertions of kanjiskip and xkanjiskip, set autospacing and autoxspacing

parameters to true/false, respectively.

4.4 Shifting the baseline

To make a match between a Japanese font and an alphabetic font, sometimes shifting of the baseline of one
of the pair is needed. In pIEX, this is achieved by setting \ybaselineshift (or \tbaselineshift) to a
non-zero length (the baseline of ALchar is shifted below). However, for documents whose main language
is not Japanese, it is good to shift the baseline of Japanese fonts, but not that of alphabetic fonts. Because
of this, LuaTgX-ja can independently set the shifting amount of the baseline of alphabetic fonts and that
of Japanese fonts.

Horizontal writing (yoko direction) etc. Vertical writing(tate direction)

Alphabetic fonts yalbaselineshift parameter talbaselineshift parameter
Japanese fonts yjabaselineshift parameter tjabaselineshift parameter

Here the horizontal line in the below example is the baseline of a line.

\vrule width 150pt height 0.2pt depth 0.2pt \
hskip-120pt
\1ltjsetparameter{yjabaselineshift=0pt, = -
yalbaselineshift=Opt}abcdd L D MW
\1ltjsetparameter{yjabaselineshift=5pt,
yalbaselineshift=2pt}abcd (D

There is an interesting side-effect: characters in different size can be vertically aligned center in a line,
by setting two parameters appropriately. The following is an example (beware the value is not well tuned):

\vrule width 150pt height4.417pt depth-4.217pt%
\kern-150pt
\large xyz:#EF

{\scriptsize B e, - =
\1ltjsetparameter{yjabaselineshift=-1.757pt, xXyz 7 ! Dir-S-abe

yalbaselineshift=-1.757pt}
B FxyzdH N D
YL Dabe

17

Note that setting positive yalbaselineshift or talbaselineshift parameters does not increase the depth of
one-letter syllable p of Alchar, if its left-protrusion (\1pcode) and right-protrusion (\rpcode) are both
non-zero. This is because

« These two parameters are implemented by setting yoffset field of a glyph node, and this does not
increase the depth of the glyph.

« To cope with the above situation, LuaTgX-ja automatically supplies a rule in every syllable.

- However, we cannot use this “supplying a rule” method if a syllable comprises just one letter whose
\1lpcode and \rpcode are both non-zero.

This problem does not apply for yjabaselineshift nor tjabaselineshift, becuse a JAchar is encapsulated
by a horizontal box if needed.

4.5 kinsoku parameters and OpenType features

Among parameters which related to Japanese word-wrapping process (kinsoku shori),

jaxspmode, alxspmode, prebreakpenalty, postbreakpenalty and kcatcode

are stored by each character codes.

«57 %
J

OpenType font features are ignored in these parameters. For example, a fullwidth katakana on
line 10 in the below input is replaced to its halfwidth variant “7”, by hwid feature. However, the penalty
inserted after it is 10 which is the postbreakpenalty of “77”, not 20.

\1tjsetparameter{postbreakpenalty={"7’, 10}}
\1tjsetparameter{postbreakpenalty={"7, 20}}

\newcommand\showpostpena[1]{/,
\leavevmode\setbox0=\hbox{#1\hbox{}}%
\unhboxO\setbox0=\lastbox\the\lastpenalty}

\showpostpena{7’},

\showpostpena{/},
{\addjfontfeatures{CharacterWidth=Half}\showpostpena{/’}}

18

Part 11
Reference

5 \catcode in LuaTgX-ja

5.1 Preliminaries: \kcatcode in pIEX and upIgX

In PIEX and uplgX, the value of \kcatcode determines whether a Japanese character can be used in a
control word. For the detail, see Table 4.

\kcatcode can be set by a row of JIS X 0208 in pI§X, and generally by a Unicode block’ in upTEX. So
characters which can be used in a control word slightly differ between pIEX and upIEX.

5.2 Case of LuaTgX-ja

The role of \kcatcode in pIEX and uplEX can be divided into the following four kinds, and LuaTgX-ja can
control these four kinds separately:

« Distinction between JAchar or ALchar is controlled by the character range, see Subsection 4.1.

« Whether the character can be used in a control word is controlled by setting \catcode to 11 (enabled)
or 12 (disabled), as usual.

o Whether jcharwidowpenalty can be inserted before the character is controlled by the lowermost bit of
the kcatcode parameter.

« Linebreak after a JAchar does not produce a space.

Default setting of \catcode of Unicode characters are located in
plain LuaTgX luatex-unicode-letters.tex, which is based on unicode-letters. tex (for XqIEX).
LuaKTgEX now included in BTgX kernel as unicode-letters.def.
However, the default setting of \catcode differs between XHIEX and LuaTgX, by the following reasons:

« (plain format) luatex-unicode-letters.tex is based on old unicode-letters. tex.

« The latter half of unicode-letters.tex and unicode-letters.def sets\catcode of several
characters to 11, via setting \XeTeXcharclass. However, this latter half does not exist (plain case),
or not executed (BIEX case) in LuaTgX.

In other words,

plain LuaTgX Kanji nor kana characters cannot be used in a control word, in the default setting of plain
LuaTgX.

LuaATEX Inrecent (2015-10-01 or later) Lual&TgEX, Kanji and kana characters in a control word is supported
(these catcode are 11), but not fullwidth alphanumerics and several other characters.

This would be inconvenient for pIiEX users to shifting to LuaTgX-ja, since several control words containing
Kanji or other fullwidth characters, such as \F&/& or \ 1 FEBFE& are used in pIgX. Hence, LuaTgX-ja have
a counterpart of unicode-letters.tex for LuaTgX, to match the \catcode setting with that of XqlEX.

5.3 Non-kanji characters in a control word

Because the engine differ, so non-kanji JIS X 0208 characters which can be used in a control word differ

» o«

in PIEX, in uplEX, and in LuaTgX-ja. Table 5 shows the difference. Except for four characters “ * 7, ;

, “ =7, LuaTgX-ja admits more characters in a control word than upIgX.

Difference becomes larger, if we consider non-kanji JIS X 0213 characters. For the detail, see https:
//github.com/h-kitagawa/kct.

TuplgX divides U+FFO0-U+FFEF (Halfwidth and Fullwidth Forms) into three subblocks, and \kcatcode can be set by a subblock.

19

https://github.com/h-kitagawa/kct
https://github.com/h-kitagawa/kct

Table 4. \kcatcode in upIEX

\kcatcode meaning control word widow penalty linebreak

15 non-cjk (treated as usual KIEX)

16 kanji Y Y ignored
17 kana Y Y ignored
18 other N N ignored
19 hangul Y Y space

Table 5. Difference of the set of non-kanji JIS X 0208 characters which can be used in a control word

row col. pIEX uplgX LuaTgX-ja row col. pIEX uplgX LuaTgX-ja

* (U+30FB) 1 6 N Y N | W+FFSC) 1 35 N N Y

(U+309B) 1 11 N Y N + (U+FFOB) 1 60 N N Y

(U+309C) 1 12 N Y N = (U+FF1D) 1 65 N N Y
 (U+FF40) 1 14 N N Y <(U+FF1IC) 1 67 N N Y
" (U+FF3E) 1 16 N N Y > (U+FF1E) 1 68 N N Y
. (U+FFE3) 1 17 N N Y # (U+FF03) 1 84 N N Y
_ (U+FF3F) 1 18 N N Y & (U+FFOB) 1 85 N N Y
/1 (U+3003) 1 23 N N Y Xk (U+FFOA) 1 86 N N Y
/> (U+4EDD) 1 24 N Y Y @ (U+FF20) 1 87 N N Y
R (U+3005) 1 25 N N Y T U+3012) 2 9 N N Y
X (u+3006) 1 26 N N Y == (U+3013) 2 14 N N Y
O @+3007) 1 27 N N Y — (U+FFE2) 2 44 N N Y
— (U+30FC) 1 28 N Y Y A (U+212B) 2 82 N N Y
/ (U+FFOF) 1 31 N N Y Greek letters (row 6) Y N Y
\ (U+FF3C) 1 32 N N Y Cyrillic letters (row 7) N N Y

6 Directions

LuaTiX supports four Q-style directions: TLT, TRT, RTT and LTL. However, neither directions are not well-
suited for typesetting Japanese vertically, hence we implemented vertical writing by rotating TLT-box by
90 degrees.

LuaTiX-ja supports four directions, as shown in Table 6. The second column (yoko direction) is just
horizontal writing, and the third column (tate direction) is vertical writing. The fourth column (dtou
direction) is actually a hidden feature of pIEX. We implemented this for debugging purpose. The fifth
column (utod direction) corresponds the “tate (math) direction” of pIEX.

Directions can be changed by \yoko, \tate, \dtou, \utod, only when the current list is null. Also,
the direction of a math formula is changed to utod, when the direction outside the math formula is tate
(vertical writing).

6.1 Boxes in different direction

As in pIEX, one can use boxes of different direction in one document. The below is an example.
b

v T T RERY yoko

» \hbox{\tate % tate

s \hbox{fft#B}% tate

4) EF' [t
s \hbox{\yoko HEHDHWAE}} yoko
s EHEWATS

#H
D
v
BHHO N
%
i
} A
s RTHEBICRE 5% yoko El
)

T T3 HEH
20

FTRHHICIR B

1

2

3

4

Table 6. Directions supported by LuaTgX-ja

horizontal (yoko direction) vertical (tate direction)

dtou direction

utod direction

Commands \yoko
Beginning of the page Top
Beginning of the line Left

Used Japanese font

Example

horizontal (\jfont)

(Notation used in Q) TLT

\tate
Right
Top

vertical (\tfont)

i
b

A

RTR,RTT

\dtou

Left

Bottom
horizontal (90° rotated)

LBL

\utod
Right
Top

RTR

Table 7 shows how a box is arranged when the direction inside the box and that outside the box differ.

HM\vd and direction In pIEX, \wd, \ht, \dp means the dimensions of a box register with respact to the
current direction. This means that the value of \wd0 etc. might differ when the current direction is different,
even if \boxO stores the same box. However, this no longer applies in LuaTgX-ja.

\setbox0=\hbox to 20pt{fool}
\the\wd0, ~\hbox{\tate\vrule\the\wd0}

\wd0=100pt
\the\wdO, ~\hbox{\tate \the\wdO}

To access box dimensions with respect to current direction, one have to use the following commands
instead of \wd wtc.

\1tjgetwd(num), \1tjgetht(num), \1t jgetdp(num)

N

w

IS

@

N

<

o

©

>

12

These commands return an internal dimension of \box(num) with respect to the current direction.
One can use these in \dimexpr primitive, as the followings.

\dimexpr 2\1ltjgetwd42-3pt\relax, \the\ltjgetwd1701

The following is an example.

\parindentOpt

\setbox32767=\hbox{\yoko &K <}

\fboxsep=Omm\fbox{\copy32767}

\vbox{\hsize=20mm

\yoko YOKO \the\ltjgetwd32767, \\
\the\ltjgetht32767, \\ \the\ltjgetdp32767.}

\vbox{\hsize=20mm\raggedleft

\tate TATE \the\ltjgetwd32767, \\
\the\ltjgetht32767, \\ \the\ltjgetdp32767.}

\vbox{\hsize=20mm\raggedleft

\dtou DTOU \the\ltjgetwd32767, \\
\the\1ltjgetht32767, \\ \the\ltjgetdp32767.}

tax

ry

1dgevve 61

3dgeHrz 61
4dzz29'6

dIVL

2
&

\1tjsetwd(num)=(dimen), \1tjsetht(num)=(dimen), \1t jsetdp(num)=(dimen)
These commands set the dimension of \box(numy). One does not need to group the argument (num);
four calls of \1t jsetwd below have the same meaning.

6.2

\ltjsetwd42 20pt, \ltjsetwd42=20pt, \ltjsetwd=42 20pt,

Getting current direction

DTOU
9.6222pt,
38.48877pt

\1t jsetwd=42=20pt

YOKO
38.48877pt,
8.46753pt,
1.15466pt.

o
o

<

S

The direction parameter returns the current direction, and the boxdir parameter (with the argument (numy))
returns the direction of a box register \box(num). The returned value of these parameters are a string:

21

3

4

6

Table 7. Boxes in different direction

typeset in yoko direction

typeset in tate or utod direction

typeset in dtou direction

W, Dy Hy } Hy, Dy,
- :dT hy > T J\
s hy yoko hy yoko
Hy wr § W Wy
§_ wy . Wy .
Y & l de l de
DY
Wy = hy +dy, Wy = hy +dy, W, = hy +dy,
Hy = wrq, Hy = wy/2, Hpy = wy,
Dy =0pt Dy =wy/2 Dy =0pt
Dy Hy Hy Dy
-~ WY — }‘—><—> <—><—+
A T A T ‘dT hy >
3 3 g
S S g
Hy < Wo Wr < Wo Wy Wr g
<
g
hp dp. oy dy Y
Dy
W, = hy +dp, Wy = hy + dp, W = wy,
Hy = w,, Hy =dp, Hy = d,
Dy =0pt Dy = hy, Dy, = hy
Direction yoko tate dtou utod (empty)
Returned value 4 3 1 11 0
\leavevmode\def\DIR{\1t jgetparameter{direction}} g
\hbox{\yoko \DIR}, \hbox{\tate\DIR}, ;
\hbox{\dtou\DIR}, \hbox{\utod\DIR}, S
\hbox{\tate$\hbox{tate math: \DIR}$} =
4w, o
\setbox2=\hbox{\tate}\1tjgetparameter{boxdir}{2} 3

6.3 Overridden box primitives

To cope with multiple directions, the following primitives are overridden by LuaTgX-ja, using \protected\def.

\unhbox({num), \unvbox{num), \unhcopy(numy), \unvcopy(num)

\vadjust{(material)}

\insert{number){(material)}

\lastbox

\raise(dimen)({box), \lower({dimen){box) etc., \vcenter

\vcenter

22

N

@

Table 8. Differences between horizontal JFMs shipped with LuaTgX-ja

006006060
HBHHEEL®
ADBHFN TR
TR > CHLE

006006060
HHHEEL S
ADIBEN TR
R A S NG ITA-1

006006060
HHHEELD
ADNEEN Tk
T TR O THLE

F L. F L7

Bxok] B xod I B k& 1 {afa]
EANS! EARS! >

(Blue: jfm-ujis.lua, Black: jfm-jis.lua, Red: jfm-min.lua)

F L.

7 Font Metric and Japanese Font

7.1 \jfont

To load a font as a Japanese font (for horizontal direction), you must use the \jfont instead of \font,
while \ jfont admits the same syntax used in \font. LuaTgX-ja automatically loads luaotfload package,
so TrueType/OpenType fonts with features can be used for Japanese fonts:

(=94 V4 Vg™

Note that the defined control sequence (\tradgt in the example above) using \ jfont is not a font_def
token, but a macro. Hence the input like \fontname\tradgt causes a error. We denote control sequences
which are defined in \ jfont by (jfont_cs).

\jfont\tradgt={file:KozMinPr6N-Regular.otf:script=latn;%
+trad;-kern;jfm=ujis} at 14pt

\tradgt & & & X

HMJFM a]JFM has measurements of characters and glues/kerns that are automatically inserted for Japanese
typesetting. The structure of JFM will be described in the next subsection. At the calling of \ jfont, you
must specify which JFM will be used for this font by the following keys:

jfm=(name)
Specify the name of (horizontal) JEM. If specified JEM has not been loaded, LuaTgX-ja search and load
a file named jfm-(name).lua.

The following JFMs are shipped with LuaTgX-ja:

jfm-ujis.lua A standard JFM in LuaTEX-ja. This JFM is based on upnmlminr-h.tfm, a metric for
UTF/OTF package that is used in upIEX. When you use the luatexja-otf package, you should use
this JEM.

jfm-jis.lua A counterpart for jis.t£fm, “JIS font metric” which is widely used in pIEX. A major
difference between jfm-ujis.lua and this jfm-jis.lua is that most characters under jfm—
ujis.lua are square-shaped, while that under jfm-jis.lua are horizontal rectangles.

jfm-min.lua A counterpartforminl0.tfm, which isone of the default Japanese font metric shipped
with pIEX.

The difference among these three JFMs is shown in Table 8.

jfmvar=(string)
Sometimes there is a need that

B Using kerning information in a font Some fonts have information for inter-glyph spacing. This
version of LuaTgX-ja treats kerning spaces like an italic correction; any glue and/or kern from the JFM
and a kerning space can coexist. See Figure 2 for detail.

Note that in \setmainjfont etc. which are provided by luatexja-fontspec package, kerning option is
set off (Kerning=0£ff) by default, because of the compatibility with previous versions of LuaTgX-ja.

23

1 \1tjsetparameter{differentjfm=both}

> \jfont\F=file:KozMinPr6N-Regular.otf: jfm=ujis

3 \jfont\G=file:KozGoPr6N-Medium.otf:jfm=ujis

4 \jfont\H=file:KozGoPr6N-Medium.otf: jfm=ujis; jfmvar=hoge

s \F) {\¢ [] } (% halfwidth space Y[O Iy (

6

EF, 0\¢ TEF} (E) \par

9

10

11

) {\H 1 3} (% fullwidth space ZFUF, TEWF A3
EF, TEFL A3

EF, (\H TIEF] > (&) % pTeX-like

\1ltjsetparameter{differentjfm=paverage}

Figure 1. Example of jfmvar key

\5{4’ SvIRALI< BAFIvIEATT
AAF I I HEA T AL F Iy I AL
BAFIv AL RAFIvrEAD
EAFIvIEAT| EAFIv IR <

1 \newcommand\test{\vrule #Z4 + I v ¥ 41 7 J\vrule\\}
2 \jfont\KMFW = KozMinPr6N-Regular: jfm=prop;-kern at 17pt

3 \jfont\KMFK
+ \jfont\KMPW
5 \jfont\KMPK
s \begin{multicols}{2}

7 \ltjsetparameter{kanjiskip=Opt}

s {\KMFW\test \KMFK\test \KMPW\test \KMPK\test}

KozMinPr6N-Regular: jfm=prop at 17pt % kern is activated
KozMinPréN-Regular: jfm=prop;script=dflt;+pwid;-kern at 17pt
KozMinPr6N-Regular: jfm=prop;script=dflt;+pwid;+kern at 17pt

10 \ltjsetparameter{kanjiskip=3pt}
u {\KMFW\test \KMFK\test \KMPW\test \KMPK\test}
12 \end{multicols}

Figure 2. Kerning information and kanjiskip

24

Table 9. Differences between vertical JFMs shipped with LuaTgX-ja

TXADH® b
REhie ko et e
¢ O l{\ % ’ ! VD

TLEe

BT » @ 1

BMextend and slant The following setting can be specified as OpenType font features:
extend=(extend) expand the font horizontally by (extend).
slant=(slant) slant the font.

Note that LuaTgX-ja doesn’t adjust JFMs by these extend and slant settings; you have to write new
JFMs on purpose. For example, the following example uses the standard JEM jfm-ujis. lua, hence letter-
spacing and the width of italic correction are not correct:

1 \jfont\E=KozMinPr6N-Regular:extend=1.5;jfm=ujis;-kern
: \E BV ZAH

3

4 \jfont\S=KozMinPr6N-Regular:slant=1;jfm=ujis;-kern

5 \S &L 5 \/ABC

B HZIF5
577 7ABC

7.2 \tfont

7.3 Prefix psft

Besides “file:” and “name:” prefixes which are introduced in the luaotfload package, LuaTgX-ja adds
“psft:” prefixin \jfont (and \font), to specify a “name-only” Japanese font which will not be embedded
to PDF. Note that these non-embedded fonts under current LuaTgX has Identity-H encoding, and this
violates the standard 1SO32000-1:2008 ([10]).

OpenType font features, such as “+jp90”, have no meaning in name-only fonts using ‘psft:” prefix,
because we can’t expect what fonts are actually used by the PDF reader. Note that extend and slant settings
(see above) are supported with psft prefix, because they are only simple linear transformations.

BMcid key The default font defined by using psft: prefix is for Japanese typesetting; it is Adobe-
Japan1-6 CID-keyed font. One can specify cid key to use other CID-keyed non-embedded fonts for
Chinese or Korean typesetting.

1 \jfont\testJ={psft:Ryumin-Light:cid=Adobe-Japanl-6;jfm=jis} % Japanese

2 \jfont\testD={psft:Ryumin-Light:jfm=jis} % default value is Adobe-Japanl
-6

3 \jfont\testC={psft:AdobeMingStd-Light:cid=Adobe-CNS1-6;jfm=jis} % Traditional Chinese

4 \jfont\testG={psft:SimSun:cid=Adobe-GB1-5; jfm=jis} % Simplified Chinese

s \jfont\testK={psft:Batang:cid=Adobe-Koreal-2;jfm=jis} % Korean

Note that the code above specifies jfm-jis.lua, which is for Japanese fonts, as JFM for Chinese and
Korean fonts.

Atpresent, LuaTgX-ja supports only 4 values written in the sample code above. Specifying other values,
eg.,
\jfont\test={psft:Ryumin-Light:cid=Adobe-Japan2;jfm=jis}

produces the following error:

25

1 ! Package luatexja Error: bad cid key “Adobe-Japan2'.

2

s See the luatexja package documentation for explanation.
1 Type H <return> for immediate help.

s <to be read again>

6 \par

71.78

8

97 h

10 I couldn't find any non-embedded font information for the CID
1 ~Adobe-Japan2'. For now, I'll use “Adobe-Japani-6'.

12 Please contact the LuaTeX-ja project team.

137

7.4 Structure of a JFM file

A JFM file is a Lua script which has only one function call:

luatexja.jfont.define_jfm { ... }

Real data are stored in the table which indicated above by { ... }. So, the rest of this subsection are
devoted to describe the structure of this table. Note that all lengths in a JFM file are floating-point numbers
in design-size unit.

dir=(direction) (required)

The direction of JEM. 'yoko' (horizontal) or 'tate' (vertical) are supported.

zw=(length) (required)
The amount of the length of the “full-width”.

zh=(length) (required)
The amount of the “full-height” (height + depth).

kanjiskip={(natural), (stretch), (shrink)} (optional)
This field specifies the “ideal” amount of kanjiskip. As noted in Subsection 4.2, if the parameter
kanjiskip is \maxdimen, the value specified in this field is actually used (if this field is not specified
in JEM, it is regarded as 0 pt). Note that (stretch) and (shrink) fields are in design-size unit too.
xkanjiskip={(natural), (stretch), (shrink)} (optional)
Like the kanjiskip field, this field specifies the “ideal” amount of xkanjiskip.

B Character classes Besides from above fields, a JFM file have several sub-tables those indices are
natural numbers. The table indexed by i € w stores information of character class i. At least, the character
class 0 is always present, so each JFM file must have a sub-table whose index is [0]. Each sub-table (its
numerical index is denoted by i) has the following fields:

chars={(character), ...} (required except character class 0)

This field is a list of characters which are in this character type i. This field is optional if i = 0, since all
JAchar which do not belong any character classes other than 0 are in the character class 0 (hence, the
character class 0 contains most of JAchars). In the list, character(s) can be specified in the following
form:

« a Unicode code point

« the character itself (as a Lua string, like '& ')

« astring like '@*"' (the character followed by an asterisk)

- several “imaginary” characters (We will describe these later.)

26

Direction of JFM 'yoko' (horizontal) 'tate' (vertical)

width field the width of the “real” glyph 1.0 (full-width)
height field the height of the “real” glyph 0.5 (half-width)
depth field the depth of the “real” glyph 0.5 (half-width)
italic field 0.0

Table 10. Default values of width field and other fields

I Consider a Japanese character node which belongs to a
I character class whose the align field is 'middle’.
1) « The black rectangle is the imaginary body of the node. Its
height width, height, and depth are specified by JFM.
« Since the align field is 'middle’, the “real” glyph is
width | centered horizontally (the green rectangle) first.
down
“ott :: depth « Furthermore, the glyph is shifted according to values of
] y fields left and down. The ultimate position of the real
S glyph is indicated by the red rectangle.
Figure 3. The position of the real glyph (horizontal Japanese fonts)
A = >
depth height
A
down“ width (...)
left
Y >
Y Y

Figure 4. The position of the real glyph (vertical Japanese fonts)

width=(length), height=(length), depth=(length), italic=(length) (required)
Specify the width of characters in character class i, the height, the depth and the amount of italic
correction. All characters in character class i are regarded that its width, height, and depth are as
values of these fields. The default values are shown in Table 10.

left=(length), down=(length), align=(align)

These fields are for adjusting the position of the “real” glyph. Legal values of align field are 'left',
'middle', and 'right'. If one of these 3 fields are omitted, 1left and down are treated as 0, and
align field is treated as 'left'. The effects of these 3 fields are indicated in Figures 3 and 4.

In most cases, left and down fields are 0, while it is not uncommon that the align field is 'middle’
or 'right'. For example, setting the align field to 'right' is practically needed when the current
character class is the class for opening delimiters’.

kern={[jl=(kern), [j'1={(kern), [ratio=(ratio)]}, ...}

glue={ [j1={(width), (stretch), (shrink), [ratio=(ratio), ...1}, ...}

Specifies the amount of kern or glue which will be inserted between characters in character class i
and those in character class j.

(ratio) specifies how much the glue is originated in the “right” character. It is a real number between
0 and 1, and treated as 0.5 if omitted. For example, The width of a glue between an ideographic

27

full stop “; ” and a fullwidth middle dot “ « ” is three-fourth of fullwidth, namely halfwidth from
the ideographic full stop, and quarter-width from the fullwidth middle dot. In this case, we specify
(ratio) to 0.25/(0.5 + 0.25) = 1/3.

In case of glue, one can specify following additional keys in each [j] subtable:

priority=(priority) An integer in [-2,2] (treated as 0 if omitted), and this is used only in line
adjustment with priority by luatexja-adjust (see Subsection 11.3). Higher value means the glue
is easy to stretch, and is also easy to shrink.

kanjiskip_natural=(num), kanjiskip_stretch=(num), kanjiskip_shrink=(num)
These keys specifies the amount of the natural width of kanjiskip (the stretch/shrink part, respectively)
which will be inserted in addition to the original JFM glue. Default values of them are all 0.
As an example, in jfm-ujis.lua, the standard JFM in horizontal writing, we have

« Between an ordinal letter “d%” and an ideographic opening bracket, we have a glue whose
natural part and shrink part are both half-width, while its stretch part is zero. However,
this glue also can be stretched as much as the stretch part of kanjiskip times the value of
kanjiskip_stretch key (1 in this case).

+ Between an ideographic closeing brackets (the ideographic comma “, ” is included) and an
ordinal letter, we have the same glue. Again, this glue also can be stretched as much as the
stretch part of kanjiskip times the value of kanjiskip_stretch key (1 in this case).

Hence we have the following result:

1 \leavevmode
: \ltjsetparameter{kanjiskip=Opt plus 3\zw} %) A 5,
s \vrule\hbox to 15\zw{d® L] 5, ZFHBF\vrule

N
oF

end_stretch=(kern), end_shrink=(kern)

B Character to character classes We explain how the character class of a character is determined,
using jfm-test.lua which contains the following:

o] ={

chars = { &' },

align = 'left', left = 0.0, down = 0.0,

width = 1.0, height = 0.88, depth = 0.12, italic=0.0,
},
[2000] = {

chars = { 'c ', 't' },

align = 'left', left = 0.0, down = 0.0,

width = 0.5, height = 0.88, depth = 0.12, italic=0.0,
},

Now consider the following input/output:

1 \jfont\a=file:KozMinPréN-Regular.otf: jfm=test;+hwid
» \setboxO\hbox{\a t ZE} 15.0pt
s \the\wdO

Now we look why the above source outputs 15 pt.

1. The character “&” is converted to its half width form “t” by hwid feature.
2. According to the JFM, the character class of “t” is 2000, hence its width is halfwidth.
3. The character class of “J8” is zero, hence its width is fullwidth.

4. Hence the width of \hbox equals to 15 pt.

This example shows that the character class of a character is generally determined after applying font
features by luaotfload.

However, if the class determined by the glyph after application of features is zero, LuaTEX-ja adopts
the class determined by the glyph before application of features. The following input is an example.

28

Table 11. Commands for Japanese math fonts

Japanese fonts alphabetic fonts

\jfam € [0,256) \fam

jatextfont ={(jfam), (jfont_cs)} \textfont(fam)=(font_cs)
jascriptfont ={(jfamy), (jfont_cs)} \scriptfont(fam)=(font_cs)

jascriptscriptfont ={(jfam), (jfont_cs)} \scriptscriptfont(fam)=_font_cs)

1 \jfont\a=file:KozMinPr6N-Regular.otf: jfm=test;+vert W
2 \a . \inhibitglue & i

Here, the character class of the ideographic full stop 5 7 (U+3002) is determined as follows:

1.

. The character class of

. However, LuaTgX-ja remembers that this

. Hence the ideographic full stop “

As the case of “t.”, the ideographic full stop “s ” is converted to its vertical form “ " (U+FE12) by
vert feature.

« Oxn

, according to the JFM is zero.

« Oxn 3

is obtained from “, ” by font features. The character

>

class of “5 ” is non-zero value, namely, 2000.

>

" in above belongs the character class 2000.

BMImaginary characters As described before, you can specify several imaginary characters in chars
field. The most of these characters are regarded as the characters of class 0 in pIEX. As a result, LuaTgX-ja
can control typesetting finer than pIEX. The following is the list of imaginary characters:

'boxbdd’

The beginning/ending of a hbox, and the beginning of a noindented (i.e., began by \noindent)
paragraph.

'parbdd’

The beginning of an (indented) paragraph.

' jcharbdd'

-1

A boundary between JAchar and anything else (such as ALchar, kern, glue, ...).

The left/right boundary of an inline math formula.

BMPorting JFM from pIEX See Japanese version of this manual.

7.5 Math font family

TeX handles fonts in math formulas by 16 font families®, and each family has three fonts: \textfont,
\scriptfont and \scriptscriptfont.

font.

LuaTgX-ja’s handling of Japanese fonts in math formulas is similar; Table 11 shows counterparts to
TgX’s primitives for math font families. There is no relation between the value of \fam and that of \ jfam;
with appropriate settings, you can set both \fam and \jfam to the same value. Here (jfont_cs) in the
argument of jatextfont etc. is a control sequence which is defined by \jfont, i.e., a horizontal Japanese

80mega, Aleph, LuaTgX and e{u)pIEX can handles 256 families, but an external package is needed to support this in plain TgX

and BTgEX.

29

7.6 Callbacks

LuaTgX-ja also has several callbacks. These callbacks can be accessed via luatexbase.add_to_callback
function and so on, as other callbacks.

luatexja.load_jfm callback
With this callback you can overwrite JEMs. This callback is called when a new JFM is loaded.

i1 function (<table> jfm_info, <string> jfm_name)
: return <table> new_jfm_info
3 end

The argument jfm_info contains a table similar to the table in a JEM file, except this argument has
chars field which contains character codes whose character class is not 0.

An example of this callback is the 1t jarticle class, with forcefully assigning character class 0 to
'parbdd' in the JFM jfm-min.lua.

luatexja.define_jfont callback
This callback and the next callback form a pair, and you can assign characters which do not have
fixed code points in Unicode to non-zero character classes. This luatexja.define_font callback
is called just when new Japanese font is loaded.

1 function (<table> jfont_info, <number> font_number)
: return <table> new_jfont_info
s end

jfont_info has the following fields, which may not overwritten by a user:

size The font size specified at \ jfont in scaled points (1 sp = 2716 py).

zw, zh, kanjiskip, xkanjiskip These are scaled value of those specified by the JEM, by the font
size.

jfm The internal number of the JFM.

var The value of jfmvar key, which is specified at \jfont. The default value is the empty string.

chars The mapping table from character codes to its character classes.
The specification [i].chars={(character), ...} in the JFM will be stored in this field as
chars={[{character)]=i, ...}

char_type For i € w, char_typel[i] is information of characters whose class is i, and has the
following fields:
« width, height, depth, italic, down, left are just scaled value of those specified by the
JFM, by the font size.
« align is a number which is determined from align field in the JFM:

0 'left' (default)
0.5 'middle'
1 'right'

« For j € w, [j] stores a kern or a glue which will be inserted between character class i and
class j.
If a kern will be inserted, the value of this field is [j1={false, (kern_node), (ratio)},
where (kern_node) is anode’. If a glue will be inserted, we have [j]={false, (spec_node),
(ratio), (icflag)}, where (spec_node) is also a node, and (icflag) = from_jfm + (priority).

The returned table new_jfont_info also should include these fields, but you are free to add more
fields (to use them in the luatexja.find_char_class callback). The font_number is a font number.

A good example of this and the next callbacks is the luatexja-otf package, supporting "AJ1-xxx"
form for Adobe-Japan1 CID characters in a JFM. This callback doesn’t replace any code of LuaTgX-ja.

“This version of LuaTgX-ja uses “direct access model” for accessing nodes, if possible.

30

luatexja.find char_class callback

This callback is called just when LuaTgX-ja is trying to determine which character class a character
chr_code belongs. A function used in this callback should be in the following form:

function (<number> char_class, <table> jfont_info, <number> chr_code)
if char_class~=0 then return char_class
else

1
2
3
4 c e e
5 return (<number> new_char_class or 0)

6 end

7 end

The argument char_class is the result of LuaTgX-ja’s default routine or previous function calls in
this callback, hence this argument may not be 0. Moreover, the returned new_char_class should
be as same as char_class when char_class is not 0, otherwise you will overwrite the LuaTgX-ja’s
default routine.

luatexja.set_width callback

8

This callback is called when LuaTgX-ja is trying to encapsule a JAchar glyph_node, to adjust its
dimension and position.
1 function (<table> shift_info, <table> jfont_info, <table> char_type)

2 return <table> new_shift_info
3 end

The argument shift_info and the returned new_shift_info have down and left fields, which
are the amount of shifting down/left the character in a scaled point.

A good example is test/valign.lua. After loading this file, the vertical position of glyphs is automatically
adjusted; the ratio (height : depth) of glyphs is adjusted to be that of letters in the character class 0.
For example, suppose that

« The setting of the JFM: (height) = 88x, (depth) = 12x (the standard values of Japanese
OpenType fonts);
+ The value of the real font: (height) = 28y, (depth) = Sy (the standard values of Japanese
TrueType fonts).
Then, the position of glyphs is shifted up by

88 26
OO 98y 4+ 5y) — 28y = 22y = 1.04y.
88x 1 12x S0V T¥) = 28y =55y Y

Parameters

8.1 \ltjsetparameter

As described before, \1tjsetparameter and \1ltjgetparameter are commands for accessing most
parameters of LuaTgX-ja. One of the main reason that LuaTgX-ja didn’t adopted the syntax similar to
that of pIEX (e.g., \prebreakpenalty) =10000) is the position of hpack_filter callback in the source
of LuaTgX, see Section 12.

\1tjsetparameter and \1tjglobalsetparameter are commands for assigning parameters. These

take one argument which is a (key)=(value) list. The difference between these two commands is the scope
of assignment; \1t jsetparameter does alocal assignment and \1t jglobalsetparameter does a global
one. They also obey the value of \globaldefs, like other assignments.

The following is the list of parameters which can be specified by the \1tjsetparameter command.

[\cs] indicates the counterpart in pIX, and symbols beside each parameter has the following meaning:

)

« “x” : values at the end of a paragraph or a hbox are adopted in the whole paragraph or the whole

hbox.

« “1”: assignments are always global.

31

jcharwidowpenalty =(penalty)* [\jcharwidowpenalty]

Penalty value for suppressing orphans. This penalty is inserted just after the last JAchar which is
not regarded as a (Japanese) punctuation mark.

kcatcode ={(chr_code) , (natural number)}*

An additional attributes which each character whose character code is (chr_code) has. At the present
version, the lowermost bit of {(natural number) indicates whether the character is considered as a
punctuation mark (see the description of jcharwidowpenalty above).

prebreakpenalty ={(chr_code) , (penalty)}* [\prebreakpenalty]

Set a penalty which is inserted automatically before the character (chr_code), to prevent a line starts
from this character. For example, a line cannot started with one of closing brackets “J ”, so LuaTgX-ja
sets

\1tjsetparameter{prebreakpenalty={"J] ,10000}}

by default.

PIEX has following restrictions on \prebreakpenalty and \postbreakpenalty, but they don’t
exist in LuaTgX-ja:

+ Both \prebreakpenalty and \postbreakpenalty cannot be set for the same character.

« We can set \prebreakpenalty and \postbreakpenalty up to 256 characters.

postbreakpenalty ={{chr_code) , (penalty)}* [\postbreakpenalty]

Set a penalty which is inserted automatically after the character (chr_code), to prevent a line ends
with this character.

jatextfont ={(jfamy), (jfont_cs)}* [\textfont in TgX]

jascriptfont ={(jfam) , (jfont_cs)}* [\scriptfont in TiX]
jascriptscriptfont ={(jfam), (jfont_cs)}* [\scriptscriptfont in TiX]
yjabaselineshift =(dimen)

yalbaselineshift =(dimen) [\ybaselineshift]

tjabaselineshift =(dimen)

talbaselineshift =(dimen) [\tbaselineshift]

jaxspmode ={{chr_code) ,(mode)}*
Set whether inserting xkanjiskip is allowed before/after a JAchar whose character code is (chr_code).
The followings are allowed for (mode):
0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
1, preonly Insertion of xkanjiskip is allowed before the character, but not after.
2, postonly Insertion of xkanjiskip is allowed after the character, but not before.
3, allow Insertion of xkanjiskip is allowed both before the character and after the character. This is
the default value.

This parameter is similar to the \inhibitxspcode primitive of pIX, but not compatible with \inhibitxspcode.

alxspmode ={(chr_code) , (mode)}* [\xspcode]
Set whether inserting xkanjiskip is allowed before/after a ALchar whose character code is (chr_code).
The followings are allowed for (mode):
0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
1, preonly Insertion of xkanjiskip is allowed before the character, but not after.
2, postonly Insertion of xkanjiskip is allowed after the character, but not before.

32

W oo e

3, allow Insertion of xkanjiskip is allowed before the character and after the character. This is the
default value.

Note that parameters jaxspmode and alxspmode share a common table, hence these two parameters
are synonyms of each other.

autospacing =(bool) [\autospacing]
autoxspacing =(bool) [\autoxspacing]

kanjiskip =(skip)* [\kanjiskip]
The default glue which inserted between two JAchars. Changing current Japanese font does not alter
this parameter, as pIEX.

If the natural width of this parameter is \maxdimen, LuaTgX-ja uses the value which is specified in
the JFM for current Japanese font (See Subsection 7.4).
xkanjiskip =(skip)* [\xkanjiskip]

The default glue which inserted between a JAchar and an ALchar. Changing current font does not
alter this parameter, as pIEX.

As kanjiskip, if the natural width of this parameter is \maxdimen, LuaTgX-ja uses the value which is
specified in the JFM for current Japanese font (See Subsection 7.4).

differentjfm =(mode)’
Specify how glues/kerns between two JAchars whose JFM (or size) are different. The allowed arguments
are the followings:

average, both, large, small, pleft, pright, paverage

The default value is paverage. ...

jacharrange =(ranges)
kansujichar ={(digit), (chr_code)}* [\kansujichar]

direction =(dir) (always local)

Assigning to this parameter has the same effect as \yoko (if (dir) = 4), \tate (if (dir) = 3), \dtou (if
(diry = 1) or \utod (if (diry = 11). If the argument (dir) is not one of 4, 3, 1 nor 11, the behavior of
this assignment is undefined.

8.2 \ltjgetparameter

\1ltjgetparameter is a control sequence for acquiring parameters. It always takes a parameter name as
first argument.

\1tjgetparameter{differentjfm},
\1ltjgetparameter{autospacing},
\1tjgetparameter{kanjiskip},
\1tjgetparameter{prebreakpenalty}{) }.

paverage, 1, 0.0pt plus 0.4pt minus 0.4pt, 10000.

The return value of \1tjgetparameter is always a string, which is outputted by tex.write (). Hence
any character other than space “ ” (U+0020) has the category code 12 (other), while the space has 10 (space).

« If first argument is one of the following, no additional argument is needed.

jcharwidowpenalty, yjabaselineshift, yalbaselineshift, autospacing, autoxspacing,
kanjiskip, xkanjiskip, differentjfm, direction

Note that \1tjgetparameter{autospacing} and \1tjgetparameter{autoxspacing} returns
1 or 0, not true nor false.

« If first argument is one of the following, an additional argument—a character code, for example—is
needed.

33

aoe W e =

[

kcatcode, prebreakpenalty, postbreakpenalty, jaxspmode, alxspmode

\1ltjgetparameter{jaxspmode}{...}and \1tjgetparameter{alxspmode}{. ..} returns0,1,
2, or 3, instead of preonly etc.

« \1tjgetparameter{jacharrange}{(range)} returns O if “characters which belong to the character
range (range) are JAchar”, 1if “... are ALchar”. Although there is no character range —1, specifying
—1 to (range) does not cause an error (returns 1).

« For an integer (digit) between 0 and 9, \1t jgetparameter{kansujichar}{(digit)} returns the
character code of the result of \kansuji(digit).

+ \ltjgetparameter{adjustdir} returns ainteger which represents the direction of the surrounding
vertical list. As direction, the return value 1 means down-to-up direction, 3 means tate direction
(vertical typesetting), and 4 means yoko direction (horizontal typesetting).

« For an integer (reg_num) between 0 and 65535, \1t jgetparameter{boxdim}{(reg_num)?} returns
the direction of \box(reg_num). If this box register is void, the returned value is zero.

« The following parameter names cannot be specified in \1t jgetparameter.
jatextfont, jascriptfont, jascriptscriptfont, jacharrange

+ \1tjgetparameter{chartorange}{(chr_code)} returns the range number which (chr_code) belongs
to (although there is no parameter named “chartorange”).

If (chr_code) is between 0 and 127, this (chr_code) does not belong to any character range. In this
case, \1tjgetparameter{chartorange}{({chr_code)} returns —1.

Hence, one can know whether (chr_code) is JAchar or not by the following:

\1ltjgetparameter{jacharrange}{\1tjgetparameter{chartorange}{{chr_code)}}
% 0 if JAchar, 1 if ALchar

« Because the returned value is string, the following conditionals do not work if kanjiskip (or xkanjiskip)
has the stretch part or the shrink part.

\ifdim\ltjgetparameter{kanjiskip}>\z@ ... \fi
\ifdim\ltjgetparameter{xkanjiskip}>\z@ ... \fi

The correct way is using a temporary register.

\@tempskipa=\1tjgetparameter{kanjiskip} \ifdim\@tempskipa>\z@ ... \fi
\@tempskipa=\1tjgetparameter{xkanjiskip}\ifdim\@tempskipa>\z@ ... \fi

9 Other Commands for plain TgX and ETEX 2,

9.1 Commands for compatibility with pIEX

The following commands are implemented for compatibility with pIiX. Note that the former five commands
don’t support JIS X 0213, but only JIS X 0208. The last \kansuji converts an integer into its Chinese
numerals.

\kuten, \jis, \euc, \sjis, \jis, \kansuji

These six commands takes an internal integer, and returns a string.

\newcount\hoge

\hoge="2423 %" 9251, L _H—
\the\hoge, \kansuji\hoge\\ 12355, \»
\jis\hoge, \char\jis\hoge\\ —+0O—
\kansujil701

To change characters of Chinese numerals for each digit, set kansujichar parameter:

\1tjsetparameter{kansujichar={1, &}}
\ltjsetparameter{kansujichar={7, "&}}
\1tjsetparameter{kansujichar={0," =1}
\kansuji1701

Al

SR

34

L N CH

9.2 \inhibitglue

\inhibitglue suppresses the insertion of JAglue. The following is an example, using a special JFM that
there will be a glue between the beginning of a box and “d%”, and also between “&%” and “7/”.

\jfont\g=file:KozMinPr6N-Regular.otf:jfm=test \g 5 Y
\fbox{\hbox{d 7 5 \inhibitglue }}

\inhibitglue\par\noindent @1 H 1
\par\inhibitglue\noindent @52 »H 2
\par\noindent\inhibitglue 43 H» 3
\par\hrule\noindent dHoff\inhibitglue ice & office

With the help of this example, we remark the specification of \inhibitglue:

« The call of \inhibitglue in the (internal) vertical mode is simply ignored.

« The call of \inhibitglue in the (restricted) horizontal mode is only effective on the spot; does
not get over boundary of paragraphs. Moreover, \inhibitglue cancels ligatures and kernings, as
shown in the last line of above example.

« The call of \inhibitglue in math mode is just ignored.

9.3 \ltjdeclarealtfont

Using \1tjdeclarealtfont, one can “compose” more than one Japanese fonts. This \1t jdeclarealtfont
uses in the following form:

\1tjdeclarealtfont(base_font_cs){alt_font_cs){(range)}
where (base_font_cs) and (alt_font_cs) are defined by \ jfont. Its meaning is

If the current Japanese font is (base_font_cs), characters which belong to (range) is typeset by
another Japanese font (alt_font_cs), instead of (base_font_cs).

Here (range) is a comma-separated list of character codes, but also accepts negative integers: —n (n > 1)
means that all characters of character classes n, with respect to JFM used by (base_font_cs). Note that
characters which do not exist in {alt_font_cs) are ignored.

For example, if \hoge uses jfm-ujis.lua, the standard JFM of LuaTgX-ja, then
\1tjdeclarealtfont\hoge\piyo{"3000-"30FF, {-1}-{-1}}

does

If the current Japanese font is \hoge, U+3000-U+30FF and characters in class 1 (ideographic
opening brackets) are typeset by \piyo.

10 Commands for KTEX 2,

10.1 Patch for NFSS2

Japanese patch for NFSS2 in LuaTgX-ja is based on plfonts.dtx which plays the same role in pKIEX 2,.
We will describe commands which are not described in Subsection 3.1.

additonal dimensions
Like pEIEX 2., LuaTgX-ja defines the following dimensions for information of current Japanese font:

\cht (height), \cdp (depth), \cHT (sum of former two),
\cwd (width), \cvs (lineskip), \chs (equals to \cwd)

and its \normalsize version:

35

\Cht (height), \Cdp (depth), \Cwd (width),
\Cvs (equals to \baselineskip), \Chs (equals to \cwd).

Note that \cwd and \cHT may differ from \zw and \zh respectively. On the one hand the former
dimensions are determined from the character “d”, but on the other hand \zw and \zh are specified
by JEM.

\DeclareYokoKanjiEncoding{(encoding)}{(text-settings)}{(math-settings)}
\DeclareTateKanjiEncoding{(encoding)}{(text-settings)}{(math-settings)}
In NFSS2 under LuaTEX-ja, distinction between alphabetic fonts and Japanese fonts are only made by
their encodings. For example, encodings OT1 and T1 are encodings for alphabetic fonts, and Japanese
fonts cannot have these encodings. These command define a new encoding scheme for Japanese font
families.

\DeclareKanjiEncodingDefaults{(text-settings)}{(math-settings)}
\DeclareKanjiSubstitution{(encoding)}{(family)}{(series)}{(shape)}

\DeclareErrorKanjiFont{({encoding)}{(family)}{(series)}{(shape)}{(size)}
The above 3 commands are just the counterparts for \DeclareFontEncodingDefaults and others.

\reDeclareMathAlphabet{(unified-cmd)}{(al-cmd)}{(ja-cmd)}

\DeclareRelationFont{(ja-encoding)}{(ja-family)}{(ja-series)}{(ja-shape)}
{(al-encoding)}{al-family)}{{al-series) }{{ al-shape)}
This command sets the “accompanied” alphabetic font (given by the latter 4 arguments) with respect
to a Japanese font given by the former 4 arguments.

\SetRelationFont
This command is almost same as \DeclareRelationFont, except that this command does a local
assignment, where \DeclareRelationFont does a global assignment.

\userelfont
Change current alphabetic font encoding/family/... to the ‘accompanied’ alphabetic font family with
respect to current Japanese font family, which was set by \DeclareRelationFont or \SetRelationFont.
Like \fontfamily, \selectfont is required to take an effect.

\adjustbaseline
In pETEX 2., \adjustbaseline sets \tbaselineshift to match the vertical center of “M” and that
of “8” in vertical typesetting:

(hy +dy) — (hg +dy)
2

\tbaselineshift «

+tdy —dy,

where h, and d, denote the height of “a” and the depth, respectively. In LuaTgX-ja, this \adjustbaseline
does similar task, namely setting the talbaselineshift parameter. If the KIEX is 2015/10/01 release or
later, LuaTgX-ja use a Japanese character whose character class is zero, instead of ‘&’.

\fontfamily{(family)}
As in KIEX 2, this command changes current font family (alphabetic, Japanese, or both) to (family).
See Subsection 10.2 for detail.

\DeclareAlternateKanjiFont{({base-encoding)}{(base-family)}{(base-series)}{(base-shape)}
{(alt-encoding)}{{alt-family)}{(alt-series)}{(alt-shape) }{ (range) >
As \1tjdeclarealtfont (Subsection 9.3), characters in (range) of the Japanese font (we say the
base font) which specified by first 4 arguments are typeset by the Japanese font which specified by
fifth to eighth arguments (we say the alternate font). An example is shown in Figure 5.

« In\1tjdeclarealtfont, the base font and the alternate font must be already defined. But this
\DeclareAlternateKanjiFont is not so. In other words, \DeclareAlternateKanjiFont is
effective only after current Japanese font is changed, or only after \selectfont is executed.

36

L L T S TR SR,

S N

\DeclareKanjiFamily{JY3}{edm}{}

\DeclareFontShape{JY3}{edm}{m}{n} {<-> s*KozMinPr6N-Regular: jfm=ujis;}{}
\DeclareFontShape{JY3}{edm}{m}{green}{<-> s*KozMinPr6N-Regular:jfm=ujis;color=007F00}{}
\DeclareFontShape{JY3}{edm}{m}{blue} {<-> s*KozMinPr6N-Regular:jfm=ujis;color=0000FF}{}
\DeclareAlternateKanjiFont{JY3}{edm}{m}{n}{JY3}{edm}{m}{green}{"4E00-"67FF,{-2}-{-2}}
\DeclareAlternateKanjiFont{JY3}{edm}{m}{n}{J¥Y3}{edm}{m}{blue}{ "6800-"9FFF}
{\kanjifamily{edm}\selectfont

BAERIE. EHICEEINERICBREXEZBCTITEIL, }

AAERE, EYCGEEENEZICB) 52EEZ@CTITEL,
Figure 5. An example of \DeclareAlternateKanjiFont

As closing this subsection, we shall introduce an example of \SetRelationFont and \userelfont:

\makeatletter

\SetRelationFont{JY3}{\k@family}{m}{n}{0T1}{pagt{m}{n}
% \k@family: current Japanese font family

\userelfont\selectfont &HL>Dabc

H9H abe

10.2 Detail of \fontfamily command

In this subsection, we describe when \fontfamily(family) changes current Japanese/alphabetic font
family. Basically, current Japanese fotn family is changed to (family) if it is recognized as a Japanese font
family, and similar with alphabetic font family. There is a case that current Japanese/alphabetic font family
are both changed to (family), and another case that (family) isn’t recognized as a Japanese/alphabetic font
family either.

B Recognition as Japanese font family First, Whether Japanese font family will be changed is determined
in following order. This order is very similar to \fontfamily in pIEX 2., but we re-implemented in Lua.
We use an auxiliary list Nj.

1. Ifthe family (family) has been defined already by \DeclareKanjiFamily, (family) is recognized as
a Japanese font family. Note that (family) need not be defined under current Japanese font encoding.

2. If the family (family) has been listed in a list Ny, this means that (family) is not a Japanese font
family.

3. If the luatexja-fontspec package is loaded, we stop here, and (family) is not recognized as a Japanese
font family.

If the luatexja-fontspec package is not loaded, now LuaTEX-ja looks whether there exists a Japanese
font encoding (enc) such that a font definition named (enc)(family) . £d (the file name is all lowercase)
exists. If so, (family) is recognized as a Japanese font family (the font definition file won’t be loaded
here). If not, (family) is not a Japanese font family, and (family) is appended to the list Nj.

B Recognition as alphabetic font family Next, whether alphabetic font family will be changed is
determined in following order. We use auxiliary lists F, and N,,

1. If the family (family) has been listed in a list F,, (family) is recognized as an alphabetic font family.

2. If the family (family) has been listed in a list N, this means that (family) is not an alphabetic font
family.

3. If there exists an alphabetic font encoding such that the family (family) has been defined under it,
(family) is recognized as an alphabetic font family, and to memorize this, (family) is appended to
the list F,.

37

T ", IS T CE N

\jfontspec[i
YokoFeatures={Color=007F00}, TateFeatures={Color=00007F}, #H
TateFont=KozGoPr6N-Regular D

J]{KozMinPr6N-Regular}

\hbox{\yoko HERHD 7 X kF\hbox{\tate HEHDT X ;3
\addjfontfeatures{Color=FF0000} R
\hbox{\yoko 1##fH}\hbox{\tate #tiH}

Figure 6. An example of TateFeatures etc.

4. Now LuaTgX-jalooks whether there exists an alphabetic font encoding (enc) such that a font definition
named (enc)(family).£d (the file name is all lowercase) exists. If so, current alphabetic font family
will be changed to (family) (the font definition file won’t be loaded here). If not, current alphabetic
font family won’t be changed, and (family) is appended to the list N,.

Also, each call of \DeclareFontFamily after loading of LuaTEX-ja makes the second argument (family)
is appended to the list F,.
The above order is very similar to \fontfamily in p&IEX 2., but more complicated (clause 3.). This is

because pIEX 2, is a format however LuaTgX-ja is not, hence LuaTEX-ja does not know calls of \DeclareFontFamily
before itself is loaded.

BRemarks Of course, there is a case that (family) is not recognized as a Japanese font family, nor an
alphabetic font family. In this case, LuaTiX-ja treats “the argument (family) is wrong”, so set both current
alphabetic and Japanese font family to (family), to use the default family for font substitution.

11 Addon packages

LuaTgX-ja has several addon packages. These addons are written as KXIEX packages, but luatexja-otf and luatexja-
adjust can be loaded in plain LuaTgX by \input.

11.1 luatexja-fontspec

As described in Subsection 3.2, this optional package provides the counterparts for several commands
defined in the fontspec package (requires fontspec v2.4). In addition to OpenType font features in the
original fontspec, the following “font features” specifications are allowed for the commands of Japanese
version:

CID=(name), JFM=(name), JFM-var=_name)
These 3 keys correspond to cid, jfm and jfmvar keys for \jfont and \tfont respectively. See
Subsections 7.1 and 7.3 for details of cid, jfm and jfmvar keys.

The CID key is effective only when with NoEmbed described below. The same JFM cannot be used in
both horizontal Japanese fonts and vertical Japanese fonts, hence the JFM key will be actually used
in YokoFeatures and TateFeatures keys.

NoEmbed
By specifying this key, one can use “name-only” Japanese font which will not be embedded in the
output PDF file. See Subsection 7.3.

Kanjiskip=(bool)
TateFeatures={(features)}, TateFont=(font)

The TateFeatures key specifies font features which are only turned on in vertical writing, such as

38

\jfontspec[
AltFont={
{Range="4E00-"67FF, Color=007F00},
{Range="6800-"9EFF, Color=0000FF},
{Range="3040-"306F, Font=KozGoPr6N-Regular},
}
J]{KozMinPr6N-Regular}
BAERIE. ESIGEFEEINCERICBITZ2RAREZRBLCTITEIL. DS LDONSDFROHIC,
HEREOBHICEZ2BRE. DHAELTICHEDTEHOE S TREIREREL,

HAERE, EYCEEENEZICEF S UEEZBCTUTHIL, DS EDNSDFHRDD
1T, FEEIREDHBIIC K B E. DAEE LSO DTHHDGE e 5 Rz R L, -

Figure 7. An example of A1tFont

Style=VerticalKana (vkna feature). Similarly, the TateFont key specifies the Japanese font which
will be used only in vertical writing. A demonstrarion is shown in Figure 6.

YokoFeatures={(features)}
The YokoFeatures key specifies font features which are only turned on in horizontal writing,. A
demonstrarion is shown in Figure 6.

AltFont
As \1tjdeclarealtfont (Subsection 9.3) and \DeclareAlternateKanjiFont (Subsection 10.1),
with this key, one can typeset some Japanese characters by a different font and/or using different
features. The A1tFont feature takes a comma-separated list of comma-separated lists, as the following:

AltFont = {

{ Range=(range) , (features) },
{ Range=(range) , Font=(font name) , (features) },
{ Range=(range) , Font=(font name) },

}

Each sublist should have the Range key (sublist which does not contain Range key is simply ignored).
A demonstrarion is shown in Figure 7.

BRemark on A1tFont, YokoFeatures, TateFeatures keys In AltFont, YokoFeatures, TateFeatures
keys, one cannot specify per-shape settings such as BoldFeatures. For example,

AltFont = {
{ Font=HogeraMin-Light, BoldFont=HogeraMin-Bold,
Range="3000-"30FF, BoldFeatures={Color=007F00} }
}

does not work. Instead, one have to write

UprightFeatures = {
AltFont = { { Font=HogeraMin-Light, Range="3000-"30FF, } },
},
BoldFeatures = {
AltFont = { { Font=HogeraMin-Bold, Range="3000-"30FF, Color=007F00 } },
}

On the other hand, YokoFeatures, TateFeatures and TateFont keys can be specified in each list
in the A1tFont key. Also, one can specify ALltFont inside YokoFeatures, TateFeatures.

Note that features which are specified in YokoFeatures and TateFeatures are always interpreted
after other “direction-independent” features. This explains why \addjfontfeatures at line 6 in Figure 6
has no effect, because a color specification is already done in YokoFeatures and TateFeatures keys.

39

L L R S TR SR,

Lo N CHN

11.2 luatexja-otf

This optional package supports typesetting characters in Adobe-Japan1 character collection (or other CID
character collection, if the font is supported). The package luatexja-otf offers the following 2 low-level
commands:

\CID{(number)}
Typeset a character whose CID number is (number).

\UTF{{hex_number)}
Typeset a character whose character code is (hex_number) (in hexadecimal). This command is similar
to \char"(hex_number), but please remind remarks below.

This package automatically loads luatexja-ajmacros.sty, which is slightly modified version of
ajmacros.sty'’. Hence one can use macros which sre defined in ajmacros.sty, such as \aj¥£f.

BMRemarks Characters by \CID and \UTF commands are different from ordinary characters in the
following points:

« Always treated as JAchars.

« Processing codes for supporting OpenType features (e.g., glyph replacement and kerning) by the
luaotfload package is not performed to these characters.

B Additional syntax of JEM The package luatexja-otf extends the syntax of JFM; the entries of chars
table in JEM now allows a string in the form ' AJ1-xxx', which stands for the character whose CID number
in Adobe-Japanl is xxx.

This extended notation is used in the standard JFM jfm-ujis.lua to typeset halfwidth Hiragana
glyphs (CID 516-598) in halfwidth.

MIVS support Recent fonts support Ideographic Variation Selector (IVS). It seems that luaotfload and
fontspec packages do not support IVS, so we implemented IVS support in luatexja-otf. IVS support by the
luatexja-otf package is experimental. If you want to enable IVS support, load luatexja-otf and execute the
following:

\directlua{luatexja.otf.enable_ivs()}

After executing the command above, you can use IVS like the following:

\Large
\jfontspec{KozMinPr6N-Regular}

SRESEHHL, ERBBEMK. \ ﬁﬁ,@%ﬂjﬁﬁig AR A X
asaaane PIC B, TSR

SR S
OEEE.LEJE. éé BESEIES é /1/.
Th.

Specifying glyph variants by IVS precedes glyph replacement by font features. For example, only “&5”
in “E575” is changed by font features jp78 or jp90, which does not followed by any variation selector.

\def\TEST#1{%
{\jfontspec[#1]{KozMinPréN-Regular}’% fBEkxl B, BffiX, B
BB, BIEMHX, BFEN\} jp78 L Bk, WX, =
87 L o \TEST{} jpoo : Bk, BIARX, &Y

\texttt{jp78} : \TEST{CJKShape=JIS1978}
\texttt{jp90} : \TEST{CJKShape=JIS1990}

11.3 luatexja-adjust

(see Japanese version of this manual)

19Useful macros by iNOUE Koich!, for the japanese-otf package.
40

no adjustment —[;LJ:@}EEECi, r@ﬁ%ﬁiﬁj (1.)_ c]; < Ci‘h%fi‘

N

without priority AN NI

N

with priority

Note: the value of kanjiskip is 0 ptf}g o 10 this figure, for making the difference obvious.

Figure 8. Line adjustment

11.4 luatexja-ruby

This addon package provides functionality of “ruby” (furigana) annotations using callbacks of LuaTEX-ja.
There is no detailed manual of luatexja-ruby.sty in English. (Japanese manual is another PDF file, luatexja-ruby.
pdf.)

Group-ruby By default, ruby characters (the second argument of \ruby) are attached to base characters
(the first argument), as one object. This type of ruby is called group-ruby.

HEITh
\ BRPER\ruby (DB} (3 £ 5 TAMERKE -\ AR I BURE-- -
2 IREGRD\ruby {(#PH#HIr & 5 TAMBRIF -\ GO LD TLER L
s REEHED\ruby (B EHH & 5 TATEWSER-++\\ BESTA e
« FER\ruby (B & VRIS ATROM 205
ST PR

As the above example, ruby hangover is allowed on the Hiragana before/after its base characters.

Mono-ruby To attach ruby characters to each base characters (mono-ruby), one should use \ruby multiple

times:
¢ REHRO\ruby (W HF & 5 Nruby (B TA BRI BRI BRI -

Jukugo-ruby Vertical bar | denotes a boundary of groups.
1 \ruby{# | HMHFH KD I TARN .
> \ruby {8 | FHD T LR Wbt £ ey
[\ruby (K RHD < 5 1 EH) . -

If there are multiple groups in one \ruby call, A linebreak between two groups is allowed.

1 \vbox{\hsize=6\zw\noindent Uﬁfi?%

2 \hbox to 2.5\zw{N\ruby{R |2 & IHMHITWIER S IH KD Efa vuEgs

. \hbox to 2.5\zw{F\ruby{E| 2 5EIAMHIF LI EDS |HF |} . 5‘\;;;

+ \hbox to Azw{N\ruby{ZEIRIFIEMHITWIERDS INF I T ot
I MER

s ¥ Ui

If the width of ruby characters are longer than that of base characters, \ruby automatically selects the
appropriate form among the line-head form, the line-middle form, and the line-end form.

1 \vbox{\hsize=8\zw\noindent =~ é‘ﬁ:ib
2 \null\kern3\zw - Z\ruby{EAH D 1T E D15 SUTEb

3 \kerni\zw - Z\ruby{FEMH DT E D12\ B e KB
+ \null\kern5\zw - E\ruby{EH D T £Hr5 T 7
"} K%

11.5 1lltjext.sty

PEIEX supplies additional macros for vertical writing in the plext package. The lltjext package which we
want to describe here is the LuaTgX-ja counterpart of the plext package.

41

luatexja-ruby.pdf
luatexja-ruby.pdf

tabular, array, minipage environments
These environments are extended by <dir>, which specifies the direction, as follows:

\begin{tabular}<dir>[pos]{table spec} ... \end{tabular}
\begin{array}<dir>[pos]{table spec} ... \end{array}
\begin{minipage}<dir> [pos]{width} ... \end{minipage}

This option permits one of the following five values. If none of them is specified, the direction inside
the environment is same as that outside the enviromnent.

y yoko direction (horizontal writing)

t tate direction (vertical writing)

z utod direction if direction outside the env. is tate.
d dtou direction

u utod direction

\parbox<(dir)>[{pos)] {{width)}{{contents)}
\parbox command is also extended by <dir>.

\pbox<(dir)>[{width)] [{pos)]{(contents)}
This commands typeset (contents) in LR-mode, in (dir) direction. If (width) is positive, the width of
the box becomes this (width). In this case, (contents) will be aligned ...

picture environment

\rensuji [(pos)]{{contents)}, \rensujiskip

\Kanji{(counter_name)}

\kasen{{contents)}, \bou{(contents)}, \boutenchar

%

BES

Part II1
Implementations

12 Storing Parameters

12.1 Used dimensions, attributes and whatsit nodes

Here the following is the list of dimensions and attributes which are used in LuaTgX-ja.

\jQ (dimension) \jQis equal to 1 Q = 0.25 mm, where “Q” (also called “#%”) is a unit used in Japanese
phototypesetting. So one should not change the value of this dimension.

« LBy

\jH (dimension) There is also a unit called “I%” which equals to 0.25 mm and used in Japanese phototypesetting.
This \ jH is the same \dimen register as \ jQ.

\1tj@zw (dimension) A temporal register for the “full-width” of current Japanese font. The command
\zw sets this register to the correct value, and “return” this register itself.

\1tj@zh (dimension) A temporal register for the “full-height” (usually the sum of height of imaginary
body and its depth) of current Japanese font. The command \zh sets this register to the correct
value, and “return” this register itself.

42

\jfam (attribute) Current number of Japanese font family for math formulas.
\1tj@curjfnt (attribute) The font index of current Japanese font for horizontal direction.
\1tj@curtfnt (attribute) The font index of current Japanese font for vertical direction.

\1ltj@charclass (attribute) The character class of a JAchar. This attribute is only set on a glyph_node
which contains a JAchar.

\1tj@yablshift (attribute) The amount of shifting the baseline of alphabetic fonts in scaled point
(27'pv).

\1tj@ykblshift (attribute) The amount of shifting the baseline of Japanese fonts in scaled point
2710 pt).

\1tj@tablshift (attribute)

\1tj@tkblshift (attribute)

\1ltj@autospc (attribute) Whether the auto insertion of kanjiskip is allowed at the node.

\1tj@autoxspc (attribute) Whether the auto insertion of xkanjiskip is allowed at the node.

\1tj@icflag (attribute) An attribute for distinguishing “kinds” of a node. One of the following value
is assigned to this attribute:

italic (1) Kerns from italic correction (\/), or from kerning information of a Japanese font. These
kerns are “ignored” in the insertion process of JAglue, unlike explicit \kern.

packed (2)

kinsoku (3) Penalties inserted for the word-wrapping process (kinsoku shori) of Japanese characters.

(from_jfm — 2)—(from_jfm + 2) (4-8) Glues/kerns from JFM.

kanji_skip (9), kanji_skip_jfm (10) Glues from kanjiskip.

xkanji_skip (11), xkanji_skip_jfm (12) Glues from xkanjiskip.

processed (13) Nodes which is already processed by

ic_processed (14) Glues from an italic correction, but already processed in the insertion process
of JAglues.

boxbdd (15) Glues/kerns that inserted just the beginning or the ending of an hbox or a paragraph.
\1tj@kcati (attribute) Where i is a natural number which is less than 7. These 7 attributes store
bit vectors indicating which character block is regarded as a block of JAchars.
\1tj@dir (attribute) dir_node_auto (128)

dir_node_manual (256)

Furthermore, LuaTgX-ja uses several user-defined whatsit nodes for internal processing. All those
nodes except direction whatsits store a natural number (hence its type is 100). direction whatsits store
anode list, hence its type is 110. Their user_id (used for distinguish user-defined whatsits) are allocated
by luatexbase.newuserwhatsitid.

inhibitglue Nodes for indicating that \inhibitglue is specified. The value field of these nodes doesn’t
matter.

stack_marker Nodes for LuaTgX-ja’s stack system (see the next subsection). The value field of these
nodes is current group level.

char_by_cid Nodes for JAchar which the callback process of luaotfload won’t be applied, and the character
code is stored in the value field. Each node of this type are converted to a glyph_node after the
callback process of luaotfload. Nodes of this type is used in \CID, \UTF and IVS support.

replace_vs Similar to char_by_cid whatsits above. These nodes are for ALchar which the callback process
of luaotfload won’t be applied.

43

1

2

3

4

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

begin_par Nodes for indicating beginning of a paragraph. A paragraph which is started by \item in
list-like environments has a horizontal box for its label before the actual contents. So ...

direction

These whatsits will be removed during the process of inserting JAglues.

12.2 Stack system of LuaTgX-ja

BMBackground LuaTgX-ja has its own stack system, and most parameters of LuaTEX-ja are stored in
it. To clarify the reason, imagine the parameter kanjiskip is stored by a skip, and consider the following
source:

\1tjsetparameter{kanjiskip=0pt} XDV SH. %
\setbox0=\hbox{/,

\1tjsetparameter{kanjiskip=5ptHE|FIZ|F}
\box0. * &K U &K \par

SHEMAZ T 1 . CXUT&K

As described in Subsection 8.1, the only effective value of kanjiskip in an hbox is the latest value, so
the value of kanjiskip which applied in the entire hbox should be 5 pt. However, by the implementation
method of LuaTgX, this “5 pt” cannot be known from any callbacks. In the tex/packaging.w, which is a
file in the source of LuaTgX, there are the following codes:

void package(int c)

{
scaled h; /* height of box */
halfword p; /* first node in a box */
scaled d; /* max depth */
int grp;

grp = cur_group;
d = box_max_depth;
unsave() ;
save_ptr -= 4;
if (cur_list.mode_field == -hmode) {
cur_box = filtered_hpack(cur_list.head_field,
cur_list.tail_field, saved_value(1),
saved_level(1l), grp, saved_level(2));
subtype (cur_box) = HLIST_SUBTYPE_HBOX;

Notice that unsave () is executed before filtered_hpack(), where hpack_filter callback is executed)
here. So “5 pt” in the above source is orphaned at unsave (), and hence it can’t be accessed from hpack_filter
callback.

BImplementation The code of stack system is based on that in a post of Dev-luatex mailing list'".

These are two TgX count registers for maintaining information: \1t j@@stack for the stack level, and
\1tj@egroup@level for the TgX’s group level when the last assignment was done. Parameters are stored
in one big table named charprop_stack_table, where charprop_stack_table[i] stores data of stack
level i. If a new stack level is created by \1t jsetparameter, all data of the previous level is copied.

To resolve the problem mentioned in above paragraph “Background”, LuaTgX-ja uses another trick.
When the stack level is about to be increased, a whatsit node whose type, subtype and value are 44 (user_defined),
stack_marker and the current group level respectively is appended to the current list (we refer this node
by stack_flag). This enables us to know whether assignment is done just inside a hbox. Suppose that the
stack level is s and the TgX’s group level is ¢ just after the hbox group, then:

« Ifthere is no stack_flag node in the list of the contents of the hbox, then no assignment was occurred
inside the hbox. Hence values of parameters at the end of the hbox are stored in the stack level s.

« If there is a stack_flag node whose value is ¢ + 1, then an assignment was occurred just inside the
hbox group. Hence values of parameters at the end of the hbox are stored in the stack level s + 1.

1 [Dev-luatex] tex.currentgrouplevel, a post at 2008/8/19 by Jonathan Sauer.

44

s0 \protected\def\1t j@setpar@global{’
s1 \relax\ifnum\globaldefs>O\directlua{luatexja.isglobal='global'}},
382 \else\directlua{luatexja.isglobal=""'}\fi

383 F

381 \protected\def\ltjsetparameter#1{J,

35 \ltj@setpar@global\setkeys[1tj]{japaram}{#1}\ignorespaces}
sss \protected\def\1tjglobalsetparameter#1{/

s7 - \relax\ifnum\globaldefs<O\directlua{luatexja.isglobal="'"'}},
388 \else\directlua{luatexja.isglobal="'global'}\fi%

9 \setkeys[1tj]{japaram}{#1}\ignorespaces}

Figure 9. Definiton of parameter setting commands

« If there are stack_flag nodes but all of their values are more than ¢ + 1, then an assignment was
occurred in the box, but it is done in more internal group. Hence values of parameters at the end of
the hbox are stored in the stack level s.

Note that to work this trick correctly, assignments to \1tj@@stack and \1tj@@group@level have
to be local always, regardless the value of \globaldefs. To solve this problem, we use another trick: the
assignment \directlua{tex.globaldefs=0} is always local.

12.3 Lua functions of the stack system

In this subsection, we will see how a user use LuaTgX-ja’s stack system to store some data which obeys
the grouping of TgX.
The following function can be used to store data into a stack:

luatexja.stack.set_stack_table(index, <any> data)

Any values which except nil and NaN are usable as index. However, a user should use only negative
integers or strings as index, since natural numbers are used by LuaTgX-ja itself. Also, whether data is stored
locally or globally is determined by luatexja. isglobal (stored globally if and only if luatexja.isglobal
== 'global').

Stored data can be obtained as the return value of

luatexja.stack.get_stack_table(index, <any> default, <number> level)

where level is the stack level, which is usually the value of \1t j@@stack, and default is the default value
which will be returned if no values are stored in the stack table whose level is level.

12.4 Extending Parameters

Keys for \1t jsetparameter and \1tjgetparameter can be extended, as in luatexja-adjust.

M Setting parameters Figure 9 shows the most outer definition of two commands, \1t jsetparameter
and \1tjglobalsetparameter. Most important part is the last \setkeys, which is offered by the xkeyval
package.

Hence, to add akey in \1t jsetparameter, one only have to add a key whose prefix is 1t j and whose
family is japaram, as the following.
\define@key[1tj]{japaram}{...}{...}

\1ltjsetparameter and \1tjglobalsetparameter automatically sets luatexja.isglobal.Its meaning
is the following,.

'global' global
" local

luatexja.isglobal = { (1)

This is determined not only by command name (\1tjsetparameter or \1tjglobalsetparameter), but
also by the value of \globaldefs.

45

o

o

B Getting parameters \ltjgetparameter is implemented by a Lua script.

For parameters that do not need additional arguments, one only have to define a function in the table
luatexja.unary_pars. For example, with the following function, \1tjgetparameter{hoge} returns
a string 42.

function luatexja.unary_pars.hoge (t)
return 42
end

Here the argument of luatexja.unary_pars.hoge is the stack level of LuaTgX-ja’s stack system (see
Subsection 12.2).

On the other hand, for parameters that need an additional argument (this must be an integer), one
have to define a function in luatexja.binary_pars first. For example,

function luatexja.binary_pars.fuga (c, t)
return tostring(c) .. ', ' .. tostring(42)
end

Here the first argument ¢ is the stack level, as before. The second argument c is just the second argument
of \1tjgetparameter.

For parameters that need an additional argument, one also have to execute the TgX code like

\1tj@@decl@array@param{fuga}

to indicate that “the parameter fuga needs an additional argument”.

13 Linebreak after a Japanese Character

13.1 Reference: behavior in pIEX

In pIEX, a line break after a Japanese character doesn’t emit a space, since words are not separated by spaces
in Japanese writings. However, this feature isn’t fully implemented in LuaTgX-ja due to the specification of
callbacks in LuaTgX. To clarify the difference between pIEX and LuaTgX, We briefly describe the handling
of a line break in pIEX, in this subsection.

pIEX’s input processor can be described in terms of a finite state automaton, as that of TeX in Section 2.5
of [1]. The internal states are as follows:

« State N: new line
« State S: skipping spaces
« State M: middle of line

« State K: after a Japanese character

The first three states—N, S, and M—are as same as TgX’s input processor. State K is similar to state M,
and is entered after Japanese characters. The diagram of state transitions are indicated in Figure 10. Note
that pIEX doesn’t leave state K after “beginning/ending of a group” characters.

13.2 Behavior in LuaTgX-ja

States in the input processor of LuaTgX is the same as that of TgX, and they can’t be customized by any
callbacks. Hence, we can only use process_input_buffer and token_filter callbacks for to suppress
a space by a line break which is after Japanese characters.

However, token_filter callback cannot be used either, since a character in category code 5 (end-

of-line) is converted into an space token in the input processor. So we can use only the process_input_buffer

callback. This means that suppressing a space must be done just before an input line is read.

Considering these situations, handling of an end-of-line in LuaTgX-ja are as follows:

46

1

2

3

G Beginning of group (usually {)
and ending of group (usually }).

J Japanese characters.
5 end-of-line (usually ~~J).
10 space (usually).

O other characters, whose category code is in
{3,4,6,7,8,11,12,13}.

[.], [\par] emits a space, or \par.

« We omitted about category codes 9 (ignored), 14 (comment), and 15 (invalid) from the above diagram. We also
ignored the input like “~~A” or “~~df”.

« When a character whose category code is 0 (escape character) is seen by TgX, the input processor scans a control
sequence (scan a c.s.). These paths are not shown in the above diagram.

After that, the state is changed to State .S (skipping blanks) in most cases, but to State M (middle of line)
sometimes.

Figure 10. State transitions of pIEX’s input processor

A character U+FFFFF (its category code is set to 14 (comment) by LuaTgX-ja) is appended to
an input line, before LuaTEX actually process it, if and only if the following three conditions
are satisfied:

1. The category code of \endlinechar'? is 5 (end-of-line).
2. The category code of U+FFFFF itself is 14 (comment).

3. The input line matches the following “regular expression”

(any char)*(JAchar)({catcode = 1} U {catcode = 2})*

BMRemark The following example shows the major difference from the behavior of pIEX.

\fontspec[Ligatures=TeX]{Linux Libertine O}
\1tjsetparameter{autoxspacing=false}

\1tjsetparameter{jacharrange={-63}}x&% xyzl> u
y\1ltjsetparameter{jacharrange={+6}}z\>
u

It is not strange that “” does not printed in the above output. This is because TgX Gyre Termes does not
contain “®”, and because “®” in line 3 is considered as an ALchar.

«_ %

Note that there is no space before “y” in the output, but there is a space before “u”. This follows from
following reasons:

« When line 3 is processed by process_input_buffer callback, “” is considered as an JAchar.
Since line 3 ends with an JAchar, the comment character U+FFFFF is appended to this line, and
hence the linebreak immediately after this line is ignored.

« When line 4 is processed by process_input_buffer callback, “U»” is considered as an ALchar.
Since line 4 ends with an ALchar, the linebreak immediately after this line emits a space.

2Usually, it is (return) (whose character code is 13).

47

14 Patch for the listings Package

It is well-known that the listings package outputs weird results for Japanese input. The listings package
makes most of letters active and assigns output command for each letter ([2]). But Japanese characters are
not included in these activated letters. For pIgX series, there is no method to make Japanese characters
active; a patch jlisting.sty ([4]) resolves the problem forcibly.

In LuaTgX-ja, the problem is resolved by using the process_input_buffer callback. The callback
function inserts the output command (active character U+FFFFF) before each letter above U+0080. This
method can omits the process to make all Japanese characters active (most of the activated characters are
not used in many cases).

If the listings package and LuaTgX-ja were loaded, then the patch lltjp-listings is loaded automatically
at \begin{document}.

14.1 Notes and additional keys

M Variation selectors lltjp-listings add two keys, namely vsraw and vscmd, which specify how variation
selectors are treated in 1stlisting or other enviroments. Note that these additional keys are not usable
in the preamble, since lltjp-listings is loaded at \begin{document}.

vsraw is a key which takes a boolean value, and its default value is false.
« If the vsraw key is true, then variation selectors are “combined” with the previous character.

\begin{lstlisting} [vsraw=true]

. BT, BEEX, B BT, BHX, BF
5 \end{lstlisting}

« If the vsraw key is false, then variation selectors are typeset by an appropriate command, which is
specified by the vscmd key. The default setting of the vscmd key produces the following.

1 \begin{lstlisting}[vsraw=false,
2 vscmd=\1tjlistingsvsstdcmd] SN .

B BR. B | BEES, BEHX, B
+ \end{lstlisting}

For example, the following code is the setting of the vscmd key in this document.

1 \def \IVSA#1#2#3#4#5{),

> \textcolor{blue}{\raisebox{3.5pt}{\tt%

3 \fboxsep=0.5pt\fbox{\tiny \oalign{O#1#2\crcr#3#4#5\crcr}}}}%
« 3}

s {\catcode™\%=11

s \gdef\IVSB#1{\expandafter\IVSA\directlua{

7 local cat_str = luatexbase.catcodetables['string']
5 tex.sprint(cat_str, string.format('%X', OxEOOEF+#1))
933}

10 \1stset{vscmd=\IVSB}

The default output command of variation selectors is stored in \1tjlistingsvsstdcmd.

B The doubleletterspace key Even the column format is [c]fixed, sometimes characters are not
vertically aligned. The following example is typeset with basewidth=2em, and you’ll see the leftmost “H”
are not vertically aligned.

H
H H H H

[ltjp-listing adds the doubleletterspace key (not activated by default, for compatibility) to improve
the situation, namely doubles inter-character space in each output unit. With this key, the above input
now produces better output.

48

14.2 Class of characters
Roughly speaking, the listings package processes input as follows:
1. Collects letters and digits, which can be used for the name of identifiers.
2. When reading an other, outputs the collected character string (with modification, if needed).
3. Collects others.
4. When reading a letter or a digit, outputs the collected character string,.
5. Turns back to 1.

By the above process, line breaks inside of an identifier are blocked. A flag \1st@ifletter indicates
whether the previous character can be used for the name of identifiers or not.
For Japanese characters, line breaks are permitted on both sides except for brackets, dashes, etc.

Hence the patch lltjp-listings introduces a new flag \1st@ifkanji, which indicates whether the previous
character is a Japanese character or not. For illustration, we introduce following classes of characters:

Letter Other Kanji Open Close
\1lst@ifletter T F T F T
\1lst@ifkanji F F T T F
Meaning char in an identifier ~ other alphabet most of Japanese char opening brackets closing brackets

Note that digits in the listings package can be Letter or Other according to circumstances.

For example, let us consider the case an Open comes after a Letter. Since an Open represents Japanese
open brackets, it is preferred to be permitted to insert line break after the Letter. Therefore, the collected
character string is output in this case.

The following table summarizes 5 X 5 = 25 cases:

Next
Letter Other Kanji Open Close
Letter collects __ outputs__ collects
Other outputs collects outputs __ collects
Prev Kanji outputs collects
Open collects
Close outputs collects

In the above table,
« “outputs” means to output the collected character string (i.e., line breaking is permitted there).

« “collects” means to append the next character to the collected character string (i.e., line breaking is
prohibited there).

Characters above or equal to U+0080 except Variation Selectors are classified into above 5 classes by
the following rules:

« ALchars above or equal to U+0080 are classified as Letter.
« JAchars are classified in the order as follows:

1. Characters whose prebreakpenalty is greater than or equal to 0 are classified as Open.
2. Characters whose postbreakpenalty is greater than or equal to 0 are classified as Close.

3. Characters that don’t satisfy the above two conditions are classified as Kanji.

The width of halfwidth kana (U+FF61-U+FF9F) is same as the width of ALchar; the width of the other
JAchars is double the width of ALchar.

This classification process is executed every time a character appears in the 1stlisting environment
or other environments/commands.

49

Table 12. cid key and corresponding files

cid key name of the cache used CMaps
Adobe-Japanl-* 1ltj-cid-auto-adobe-japanl.lua UniJIS2004-UTF32-* Adobe-Japan1-UCS2
Adobe-Koreal-* 1ltj-cid-auto-adobe-koreal.lua UniKS-UTF32-* Adobe-Koreal-UCS2
Adobe-GB1-* 1ltj-cid-auto-adobe-gbl.lua UniGB-UTF32-* Adobe-GB1-UCS2
Adobe-CNS1-x* 1tj-cid-auto-adobe-cnsl.lua UniCNS-UTF32-* Adobe-CNS1-UCS2

15 Cache Management of LuaTgX-ja

LuaTiX-ja creates some cache files to reduce the loading time. in a similar way to the luaotfload package:

« Cache files are usually stored in (and loaded from) $TEXMFVAR/luatexja/.

« In addition to caches of the text form (the extension is “.1ua”), caches of the binary, precompiled
form are supported.

— We cannot share same binary cache for LuaTgX and LuaJITTgX. Hence we distinguish them
by their extension, “.1uc” for LuaTgX and “. lub” for LuaJITTgX.
— In loading a cache, the binary cache precedes the text form.

— When LuaTgX-ja updates a cache hoge . 1ua, its binary version is also updated.

15.1 Use of cache

LuaTiX-ja uses the following cache:

1tj-cid-auto-adobe-japanl.lua
The font table of a CID-keyed non-embedded Japanese font. This is loaded in every run. It is created
from three CMaps, UniJIS2004-UTF32-{H, V} and Adobe-Japan1-UCS2, and this is why these two
CMaps are needed in the first run of LuaTgX-ja.

Similar caches are created as Table 12, if you specified cid key in \jfont to use other CID-keyed
non-embedded fonts for Chinese or Korean, as in Page 25.

extra_x*x*,lua
This file stores the table which stores the following.
« unicode variants in a font “sx*x*”

« vertical width of glyphs, if it is not equal to the sum of the height of ascender and the depth of
descender

« vertical variants

The following is the structure of the that table.

return {
{
[10955]={ -- U+2ACB "Subset 0f Above Not Equal To"
[65024]=983879, —-- <2ACB FE00>
["vwidth"]=0.98, -- vertical width
},
[37001]1={ -- U+9089 ":&"
[0]=37001, -- <9089 E0100>
991049, - <9089 E0101>
["vert"]=995025, -- vertical variant
},
},
["Chksum"]="l‘t‘H.‘t't‘t't't‘bl‘bt’l‘bkl‘t‘t‘bt‘kt‘bl‘t‘b}:t’kt‘b", —— checksum of the fontfile
["version"]=2, -- version of the cache
}

50

1tj-jisx0208.{luc|lub}
The binary version of 1tj-jisx0208.1lua. This is the conversion table between JIS X 0208 and
Unicode which is used in Kanji-code conversion commands for compatibility with pTEX.

15.2 Internal

Cache management system of LuaTgX-ja is stored in luatexja.base (1tj-base.lua). There are three
public functions for cache management in luatexja.base, where (filename) stands for the file name
without suffix:

save_cache ({filename), (data))
Save a non-nil table (data) into a cache (filename). Both the text form (filename) . lua and its binary
version are created or updated.

save_cache_luc ({filename), (data)[, (serialized_data)])
Same as save_cache, except that only the binary cache is updated. The third argument (serialized_data)
is not usually given. But if this is given, it is treated as a string representation of (data).

load_cache ({filename), (outdate))
Load the cache (filename). (outdate) is a function which takes one argument (the contents of the
cache), and its return value is whether the cache is outdated.

load_cache first tries to read the binary cache (filename).{luc|lub}. If its contents is up-to-date,
load_cache returns the contents. If the binary cache is not found or its contents is outdated, load_cache
tries to read the text form (filename) . lua. Hence, the return value of load_cache is non-nil, if and
only if the updated cache is found.

51

References

[1] Victor Eijkhout. TgX by Topic, A TgXnician’s Reference, Addison-Wesley, 1992.
[2] C.Heinz, B. Moses. The Listings Package.

[3] Takuji Tanaka. upTeX—Unicode version of pTeX with CJK extensions, TUG 2013, October 2013.
http://tug.org/tug2013/slides/TUG2013_upTeX.pdf

[4] Thor Watanabe. Listings - MyTeXpert. http://mytexpert.osdn. jp/index.php?Listings

[5] W3C Japanese Layout Task Force (ed). Requirements for Japanese Text Layout (W3C Working Group
Note), 2011, 2012. http://www.w3.org/TR/jlreq/

[6] ZEBEEC. minl0 7 % > M DWW T.
http://argent.shinshu-u.ac.jp/~otobe/tex/files/minl0.pdf

[7] HATZEHIE (Japanese Industrial Standard). JIS X 4051, HAGE CE DR /714 (Formatting rules
for Japanese documents), 1993, 1995, 2004.

(8] FEEFA, HAHN, BIRE—. TEX OHRANDIGH—HEH A BERE D AIA S —.
.../texmf-dist/doc/ptex/base/ptexdoc.pdf

[9] Hisato Hamano. Vertical Typesetting with TzX, TUGBoat 11(3), 346352, 1990.

[10] International Organization for Standardization. ISO 32000-1:2008, Document management — Portable
document format — Part 1: PDF 1.7, 2008.
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?
csnumber=51502

52

http://tug.org/tug2013/slides/TUG2013_upTeX.pdf
http://mytexpert.osdn.jp/index.php?Listings
http://www.w3.org/TR/jlreq/
http://argent.shinshu-u.ac.jp/~otobe/tex/files/min10.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51502
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51502

	I User's manual
	Introduction
	Backgrounds
	Major changes from pTeX
	Notations
	About the project

	Getting Started
	Installation
	Cautions
	Using in plain TeX
	Using in LaTeX

	Changing Fonts
	plain TeX and LaTeX2ε
	luatexja-fontspec package
	Presets of Japanese fonts
	\CID, \UTF, and macros in japanese-otf package
	Changing default Japanese fonts

	Changing Internal Parameters
	Range of JAchars
	kanjiskip and xkanjiskip
	Insertion setting of xkanjiskip
	Shifting the baseline
	kinsoku parameters and OpenType features

	II Reference
	\catcode in LuaTeX-ja
	Preliminaries: \kcatcode in pTeX and upTeX
	Case of LuaTeX-ja
	Non-kanji characters in a control word

	Directions
	Boxes in different direction
	Getting current direction
	Overridden box primitives

	Font Metric and Japanese Font
	\jfont
	\tfont
	Prefix psft
	Structure of a JFM file
	Math font family
	Callbacks

	Parameters
	\ltjsetparameter
	\ltjgetparameter

	Other Commands for plain TeX and LaTeX2ε
	Commands for compatibility with pTeX
	\inhibitglue
	\ltjdeclarealtfont

	Commands for LaTeX2ε
	Patch for NFSS2
	Detail of \fontfamily command

	Addon packages
	luatexja-fontspec
	luatexja-otf
	luatexja-adjust
	luatexja-ruby
	lltjext.sty

	III Implementations
	Storing Parameters
	Used dimensions, attributes and whatsit nodes
	Stack system of LuaTeX-ja
	Lua functions of the stack system
	Extending Parameters

	Linebreak after a Japanese Character
	Reference: behavior in pTeX
	Behavior in LuaTeX-ja

	Patch for the listings Package
	Notes and additional keys
	Class of characters

	Cache Management of LuaTeX-ja
	Use of cache
	Internal

	References

