
The LuaTEX-ja package

The LuaTEX-ja project team

February 3, 2014

Contents

I User’s manual 3

1 Introduction 3
1.1 Backgrounds . 3
1.2 Major Changes from pTEX . 3
1.3 Notations . 4
1.4 About the Project . 4

2 Getting Started 5
2.1 Installation . 5
2.2 Cautions . 6
2.3 Using in plain TEX . 6
2.4 Using in LATEX . 6

3 Changing Fonts 7
3.1 plain TEX and LATEX 2𝜀 . 7
3.2 fontspec . 8
3.3 Presets . 8
3.4 \CID, \UTF, and macros in japanese-otf package . 11

4 Changing Parameters 11
4.1 Editing the Range of JAchars . 11
4.2 kanjiskip and xkanjiskip . 13
4.3 Insertion Setting of xkanjiskip . 13
4.4 Shifting the baseline . 14

II Reference 14

5 \catcode in LuaTEX-ja 14
5.1 Preliminaries: \kcatcode in pTEX and upTEX . 14
5.2 Case of LuaTEX-ja . 14
5.3 Non-kanji Characters in a Control Word . 15

6 Font Metric and Japanese Font 15
6.1 \jfont . 15
6.2 Prefix psft . 17
6.3 Structure of a JFM File . 18
6.4 Math Font Family . 21
6.5 Callbacks . 21

7 Parameters 23
7.1 \ltjsetparameter . 23
7.2 \ltjgetparameter . 24

8 Other Commands for plain TEX and LATEX 2𝜀 25
8.1 Commands for Compatibility with pTEX . 25
8.2 \inhibitglue . 25
8.3 \ltjdeclarealtfont . 26

1

9 Commands for LATEX 2𝜀 26
9.1 Patch for NFSS2 . 26

10 Addons 28
10.1 luatexja-fontspec.sty . 28
10.2 luatexja-otf.sty . 28
10.3 luatexja-adjust.sty . 29

III Implementations 29

11 Storing Parameters 29
11.1 Used Dimensions, Attributes and Whatsit Nodes . 29
11.2 Stack System of LuaTEX-ja . 31
11.3 Lua Functions of the Stack System . 32
11.4 Extending Parameters . 32

12 Linebreak after a Japanese Character 33
12.1 Reference: Behavior in pTEX . 33
12.2 Behavior in LuaTEX-ja . 33

13 Patch for the listings Package 34
13.1 Notes . 34
13.2 Class of Characters . 35

14 Cache Management of LuaTEX-ja 36
14.1 Use of Cache . 36
14.2 Internal . 37

References 37

A Package versions used in this document 38

This documentation is far from complete. It may have many grammatical (and contextual) errors.
Also, several parts are written in Japanese only.

2

Part I

User’s manual
1 Introduction

The LuaTEX-ja package is a macro package for typesetting high-quality Japanese documents when using
LuaTEX.

1.1 Backgrounds

Traditionally, ASCII pTEX, an extension of TEX, and its derivatives are used to typeset Japanese documents
in TEX. pTEX is an engine extension of TEX: so it can produce high-quality Japanese documents without
using very complicated macros. But this point is a mixed blessing: pTEX is left behind from other extensions
of TEX, especially 𝜀-TEX and pdfTEX, and from changes about Japanese processing in computers (e.g., the
UTF-8 encoding).

Recently extensions of pTEX, namely upTEX (Unicode-implementation of pTEX) and 𝜀-pTEX (merging of
pTEX and 𝜀-TEX extension), have developed to fill those gaps to some extent, but gaps still exist.

However, the appearance of LuaTEX changed the whole situation. With using Lua “callbacks”, users can
customize the internal processing of LuaTEX. So there is no need to modify sources of engines to support
Japanese typesetting: to do this, we only have to write Lua scripts for appropriate callbacks.

1.2 Major Changes from pTEX

The LuaTEX-ja package is under much influence of pTEX engine. The initial target of development was to
implement features of pTEX. However, LuaTEX-ja is not a just porting of pTEX; unnatural specifications/be-
haviors of pTEX were not adopted.

The followings are major changes from pTEX:

• A Japanese font is a tuple of a “real” font, a Japanese font metric (JFM, for short).

• In pTEX, a line break after Japanese character is ignored (and doesn’t yield a space), since line breaks
(in source files) are permitted almost everywhere in Japanese texts. However, LuaTEX-ja doesn’t have
this function completely, because of a specification of LuaTEX.

• The insertion process of glues/kerns between two Japanese characters and between a Japanese char-
acter and other characters (we refer glues/kerns of both kinds as JAglue) is rewritten from scratch.

– As LuaTEX’s internal ligature handling is “node-based” (e.g., of{}fice doesn’t prevent liga-
tures), the insertion process of JAglue is now “node-based”.

– Furthermore, nodes between two characters which have no effects in line break (e.g., \special
node) and kerns from italic correction are ignored in the insertion process.

– Caution: due to above two points, many methods which did for the dividing the process of the in-
sertion of JAglue in pTEX are not effective anymore. In concrete terms, the following two methods
are not effective anymore:

ちょ{}っと ちょ\/っと
If you want to do so, please put an empty horizontal box (hbox) between it instead:

ちょ\hbox{}っと
– In the process, two Japanese fonts which only differ in their “real” fonts are identified.

• At the present, vertical typesetting (tategaki), is not supported in LuaTEX-ja.

For detailed information, see Part III.

3

1.3 Notations

In this document, the following terms and notations are used:

• Characters are classified into following two types. Note that the classification can be customized by a
user (see Subsection 4.1).

– JAchar: standing for characters which used in Japanese typesetting, such as Hiragana, Katakana,
Kanji, and other Japanese punctuation marks.

– ALchar: standing for all other characters like latin alphabets.

We say alphabetic fonts for fonts used in ALchar, and Japanese fonts for fonts used in JAchar.

• A word in a sans-serif font (like prebreakpenalty) means an internal parameter for Japanese typeset-
ting, and it is used as a key in \ltjsetparameter command.

• A word in typewriter font with underline (like fontspec) means a package or a class of LATEX.

• In this document, natural numbers start from zero. 𝜔 denotes the set of all natural numbers.

1.4 About the Project

■Project Wiki Project Wiki is under construction.

• http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28en%29 (English)

• http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage (Japanese)

• http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28zh%29 (Chinese)

This project is hosted by SourceForge.JP.

■Members

• Hironori KITAGAWA • Kazuki MAEDA • Takayuki YATO

• Yusuke KUROKI • Noriyuki ABE • Munehiro YAMAMOTO

• Tomoaki HONDA • Shuzaburo SAITO • MA Qiyuan

4

http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28en%29
http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage
http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28zh%29

2 Getting Started

2.1 Installation

To install the LuaTEX-ja package, you will need:

• LuaTEX beta-0.74.0 (or later)

• luaotfload v2.2 (or later)

• luatexbase v0.6

• xunicode v0.981 (2011/09/09)

• adobemapping (Adobe cmap and pdfmapping files)

This version of LuaTEX-ja no longer supports TEX Live 2012 (or older version), since LuaTEX binary and
luaotfload is updated in TEX Live 2013.

Now LuaTEX-ja is available from the following archive and distributions:

• CTAN (in the macros/luatex/generic/luatexja directory)

• MiKTEX (in luatexja.tar.lzma); see the next subsection

• TEX Live (in texmf-dist/tex/luatex/luatexja)

• W32TEX (in luatexja.tar.xz)

If you are using TEX Live 2013, you can install LuaTEX-ja from TEX Live manager (tlmgr):

$ tlmgr install luatexja

■Manual installation

1. Download the source archive, by one of the following method. At the present, LuaTEX-ja has no stable
release.

• Copy the Git repository:

$ git clone git://git.sourceforge.jp/gitroot/luatex-ja/luatexja.git

• Download the tar.gz archive of HEAD in the master branch from

http://git.sourceforge.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=
HEAD;sf=tgz.

Note that the master branch, and hence the archive in CTAN, are not updated frequently; the forefront
of development is not the master branch.

2. Extract the archive. You will see src/ and several other sub-directories. But only the contents in src/
are needed to work LuaTEX-ja.

3. If you downloaded this package from CTAN, you have to run following commands to generate classes
and ltj-kinsoku.lua (the file which stores default “kinsoku” parameters):

$ cd src
$ lualatex ltjclasses.ins
$ lualatex ltjsclasses.ins
$ lualatex ltjltxdoc.ins
$ luatex ltj-kinsoku_make.tex

Note that *.{dtx,ins} and ltj-kinsoku make.tex are not needed in regular use.

4. Copy all the contents of src/ into one of your TEXMF tree. TEXMF/tex/luatex/luatexja/ is an
example location. If you cloned entire Git repository, making a symbolic link of src/ instead copying
is also good.

5. If mktexlsr is needed to update the file name database, make it so.

5

http://git.sourceforge.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz
http://git.sourceforge.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz

2.2 Cautions

• The encoding of your source file must be UTF-8. No other encodings, such as EUC-JP or Shift-JIS,
are not supported.

• LuaTEX-ja is very slower than pTEX. Generally speaking, LuaJITTEX processes LuaTEX-ja about 30%
faster than LuaTEX, but not always.

• Note for MiKTEX users LuaTEX-ja requires that several CMap files1 must be found from LuaTEX.
Strictly speaking, those CMaps are needed only in the first run of LuaTEX-ja after installing or updat-
ing. But it seems that MiKTEX does not satisfy this condition, so you will encounter an error like the
following:

! LuaTeX error ...iles (x86)/MiKTeX 2.9/tex/luatex/luatexja/ltj-rmlgbm.lua
bad argument #1 to 'open' (string expected, got nil)

If so, please execute a batch file which is written on the Project Wiki (English). This batch file creates a
temporaly directory, copy CMaps in it, run LuaTEX-ja in this directory, and finally delete the temporaly
directory.

2.3 Using in plain TEX

To use LuaTEX-ja in plain TEX, simply put the following at the beginning of the document:

\input luatexja.sty

This does minimal settings (like ptex.tex) for typesetting Japanese documents:

• The following 6 Japanese fonts are preloaded:

classification font name ‘10 pt’ ‘7 pt’ ‘5 pt’

mincho Ryumin-Light \tenmin \sevenmin \fivemin
gothic GothicBBB-Medium \tengt \sevengt \fivegt

– It is widely accepted that fonts “Ryumin-Light” and “GothicBBB-Medium” aren’t embedded
into PDF files, and a PDF reader substitute them by some external Japanese fonts (e.g., Ryumin-
Light is substituted with Kozuka Mincho in Adobe Reader). We adopt this custom to the default
setting.

– A character in an alphabetic font is generally smaller than a Japanese font in the same size. So
actual size specification of these Japanese fonts is in fact smaller than that of alphabetic fonts,
namely scaled by 0.962216.

• The amount of glue that are inserted between a JAchar and an ALchar (the parameter xkanjiskip) is
set to

(0.25 ⋅ 0.962216 ⋅ 10 pt)+1 pt
−1 pt = 2.40554 pt+1 pt

−1 pt.

2.4 Using in LATEX

■LATEX 2𝜀 Using in LATEX 2𝜀 is basically same. To set up the minimal environment for Japanese, you only
have to load luatexja.sty:

\usepackage{luatexja}

It also does minimal settings (counterparts in pLATEX are plfonts.dtx and pldefs.ltx):

• JY3 is the font encoding for Japanese fonts (in horizontal direction).
When vertical typesetting is supported by LuaTEX-ja in the future, JT3 will be used for vertical fonts.

1UniJIS2004-UTF32-H and Adobe-Japan1-UCS2.

6

http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28en%29

• Traditionally, Japanese documents use two typeface category: mincho (明朝体) and gothic (ゴシッ
ク体). mincho is used in the main text, while gothic is used in the headings or for emphasis.

classification family name

mincho (明朝体) \textmc{...} {\mcfamily ...} \mcdefault
gothic (ゴシック体) \textgt{...} {\gtfamily ...} \gtdefault

• By default, the following fonts are used for mincho and gothic:

classification family name \mdseries \bfseries scale

mincho (明朝体) mc Ryumin-Light GothicBBB-Medium 0.962216
gothic (ゴシック体) gt GothicBBB-Medium GothicBBB-Medium 0.962216

Note that the bold series in both family are same as the medium series of gothic family. This is a con-
vention in pLATEX. This is trace that there were only 2 fonts (these are Ryumin-Light and GothicBBB-
Medium) in early years of DTP. There is no italic nor slanted shape for these mc and gt.

• Japanese characters in math mode are typeset by the font family mc.

However, above settings are not sufficient for Japanese-based documents. To typeset Japanese-based
documents, you are better to use class files other than article.cls, book.cls, and so on. At the present,
we have the counterparts of jclasses (standard classes in pLATEX) and jsclasses (classes by Haruhiko
Okumura), namely, ltjclasses and ltjsclasses.

3 Changing Fonts

3.1 plain TEX and LATEX 2𝜀
■plain TEX To change Japanese fonts in plain TEX, you must use the command \jfont. So please see
Subsection 6.1.

■LATEX 2𝜀 (NFSS2) For LATEX 2𝜀, LuaTEX-ja adopted most of the font selection system of pLATEX 2𝜀 (in
plfonts.dtx).

• Commands \fontfamily, \fontseries, \fontshape, and \selectfont can be used to change
attributes of Japanese fonts.

encoding family series shape selection

alphabetic fonts \romanencoding \romanfamily \romanseries \romanshape \useroman
Japanese fonts \kanjiencoding \kanjifamily \kanjiseries \kanjishape \usekanji

both — – \fontseries \fontshape —
auto select \fontencoding \fontfamily — — \usefont

\fontencoding{⟨encoding⟩} changes the encoding of alphabetic fonts or Japanese fonts depending
on the argument. For example, \fontencoding{JY3} changes the encoding of Japanese fonts to
JY3,and \fontencoding{T1} changes the encoding of alphabetic fonts to T1. \fontfamily also
changes the current Japanese font family, the current alphabetic font family, or both. For the detail,
see Subsection 9.1.

• For defining a Japanese font family, use \DeclareKanjiFamily instead of \DeclareFontFamily.
However, in the present implementation, using \DeclareFontFamily doesn’t cause any problem.

• Defining a Japanese font shape can be done by usual \DeclareFontShape:

\DeclareFontShape{JY3}{mc}{bx}{n}{<-> s*KozMinPr6N-Bold:jfm=ujis}{}
% Kozuka Mincho Pr6N Bold

7

■Remark: Japanese characters in math mode Since pTEX supports Japanese characters in math mode,
there are sources like the following:

1 $f_{高温}$~($f_{\text{high temperature}}$).
2 \[y=(x-1)^2+2\quad よって\quad y>0 \]
3 $5\in 素:=\{\,p\in\mathbb N:\text{p is a

prime}\,\}$.

𝑓高温 (𝑓high temperature).

𝑦 = (𝑥 − 1)2 + 2 よって 𝑦 > 0

5 ∈素 ∶= { 𝑝 ∈ ℕ ∶ 𝑝 is a prime }.

We (the project members of LuaTEX-ja) think that using Japanese characters in math mode are allowed if
and only if these are used as identifiers. In this point of view,

• The lines 1 and 2 above are not correct, since “高温” in above is used as a textual label, and “よって”
is used as a conjunction.

• However, the line 3 is correct, since “素” is used as an identifier.

Hence, in our opinion, the above input should be corrected as:

1 $f_{\text{高温}}$~%
2 ($f_{\text{high temperature}}$).
3 \[y=(x-1)^2+2\quad
4 \mathrel{\text{よって}}\quad y>0 \]
5 $5\in 素:=\{\,p\in\mathbb N:\text{p is a

prime}\,\}$.

𝑓高温 (𝑓high temperature).

𝑦 = (𝑥 − 1)2 + 2 よって 𝑦 > 0

5 ∈素 ∶= { 𝑝 ∈ ℕ ∶ 𝑝 is a prime }.

We also believe that using Japanese characters as identifiers is rare, hence we don’t describe how to change
Japanese fonts in math mode in this chapter. For the method, please see Subsection 6.4.

3.2 fontspec

To coexist with the fontspec package, it is needed to load luatexja-fontspec package in the preamble.
This additional package automatically loads luatexja and fontspec package, if needed.

In luatexja-fontspec package, the following seven commands are defined as counterparts of original
commands in the fontspec package:

Japanese fonts \jfontspec \setmainjfont \setsansjfont \newjfontfamily
alphabetic fonts \fontspec \setmainfont \setsansfont \newfontfamily

Japanese fonts \newjfontface \defaultjfontfeatures \addjfontfeatures
alphabetic fonts \newfontface \defaultfontfeatures \addfontfeatures

1 \fontspec[Numbers=OldStyle]{LMSans10-Regular}
2 \jfontspec[CJKShape=NLC]{KozMinPr6N-Regular}
3 JIS~X~0213:2004→辻
4

5 \jfontspec[CJKShape=JIS1990]{KozMinPr6N-Regular}
6 JIS~X~0208:1990→辻

JIS X 0213:2004→󱈫
JIS X 0208:1990→辻

Note that there is no command named \setmonojfont, since it is popular for Japanese fonts that nearly
all Japanese glyphs have same widths. Also note that the kerning feature is set off by default in these seven
commands, since this feature and JAglue will clash (see 6.1).

3.3 Presets

To use standard Japanese font settings easily, one can load luatexja-preset package with several options.
This package provides functions in a part of japanese-otf package and a part of PXchfon package by
Takayuki Yato, and loads luatexja-fontspec, hence fontspec internally.

If you need to pass some options to fontspec, load fontspec manually before luatexja-preset:

\usepackage[no-math]{fontspec}
\usepackage[...]{luatexja-preset}

8

■General options

nodeluxe Use one-weighted mincho and gothic font families. This means that \mcfamily\bfseries,
\gtfamily\bfseries and \gtfamily\mdseries use the same font. This option is enabled by
default.

deluxe Use mincho with two weights (medium and bold), gothic with three weights (medium, bold and heavy),
and rounded gothic2. The heavy weight of gothic can be used by “changing the family” \gtebfamily,
or \textgteb{...}. This is because fontspec package can handle only medium (\mdseries)
and bold (\bfseries).

expert Use horizontal kana alternates, and define a command \rubyfamily to use kana characters
designed for ruby.

bold Substitute bold series of gothic for bold series of mincho.

90jis Use 90JIS glyph variants if possible.

jis2004 Use JIS2004 glyph variants if possible.

jis Use the JFM jfm-jis.lua, instead of jfm-ujis.lua, which is the default JFM of LuaTEX-ja.

Note that 90jis and jis2004 only affect with mincho, gothic (and possibly rounded gothic) defined by this
package. We didn’t taken account of when both 90jis and jis2004 are specified.

■Presets for multi weight Besides morisawa-pro and morisawa-pr6n presets, fonts are specified by
fontname, not by filename.

kozuka-pro Kozuka Pro (Adobe-Japan1-4) fonts.
kozuka-pr6 Kozuka Pr6 (Adobe-Japan1-6) fonts.
kozuka-pr6n Kozuka Pr6N (Adobe-Japan1-6, JIS04-savvy) fonts.

Kozuka Pro/Pr6N fonts are bundled with Adobe’s software, such as Adobe InDesign. There is not
rounded gothic family in Kozuka fonts.

family series kozuka-pro kozuka-pr6 kozuka-pr6n

medium KozMinPro-Regular KozMinProVI-Regular KozMinPr6N-Regularmincho
bold KozMinPro-Bold KozMinProVI-Bold KozMinPr6N-Bold

KozGoPro-Regular* KozGoProVI-Regular* KozGoPr6N-Regular*medium
KozGoPro-Medium KozGoProVI-Medium KozGoPr6N-Medium

gothic
bold KozGoPro-Bold KozGoProVI-Bold KozGoPr6N-Bold
heavy KozGoPro-Heavy KozGoProVI-Heavy KozGoPr6N-Heavy

rounded gothic KozGoPro-Heavy KozGoProVI-Heavy KozGoPr6N-Heavy

In above table, starred fonts (KozGo…-Regular) are used for medium series of gothic, if and only
if deluxe option is specified.

hiragino-pro Hiragino Pro (Adobe-Japan1-5) fonts.
hiragino-pron Hiragino ProN (Adobe-Japan1-5, JIS04-savvy) fonts.

Hiragino fonts are bundled with Mac OS X 10.5 or later. Some editions of a Japanese word-processor
“一太郎 2012” includes Hiragino ProN fonts. Note that the heavy weight of gothic family only
supports Adobe-Japan1-3 character collection (Std/StdN).

2Provided by \mgfamily and \textmg{...}, because rounded gothic is called maru gothic (丸ゴシック) in Japanese.

9

family series hiragino-pro hiragino-pron

medium Hiragino Mincho Pro W3 Hiragino Mincho ProN W3mincho
bold Hiragino Mincho Pro W6 Hiragino Mincho ProN W6

Hiragino Kaku Gothic Pro W3* Hiragino Kaku Gothic ProN W3*medium
Hiragino Kaku Gothic Pro W6 Hiragino Kaku Gothic ProN W6

gothic
bold Hiragino Kaku Gothic Pro W6 Hiragino Kaku Gothic ProN W6
heavy Hiragino Kaku Gothic Std W8 Hiragino Kaku Gothic StdN W8

rounded gothic Hiragino Maru Gothic ProN W4 Hiragino Maru Gothic ProN W4

morisawa-pro Morisawa Pro (Adobe-Japan1-4) fonts.
morisawa-pr6n Morisawa Pr6N (Adobe-Japan1-6, JIS04-savvy) fonts.

family series morisawa-pro morisawa-pr6n

medium A-OTF-RyuminPro-Light.otf A-OTF-RyuminPr6N-Light.otfmincho
bold A-OTF-FutoMinA101Pro-Bold.otf A-OTF-FutoMinA101Pr6N-Bold.otf

medium A-OTF-GothicBBBPro-Medium.otf A-OTF-GothicBBBPr6N-Medium.otf
gothic bold A-OTF-FutoGoB101Pro-Bold.otf A-OTF-FutoGoB101Pr6N-Bold.otf

heavy A-OTF-MidashiGoPro-MB31.otf A-OTF-MidashiGoPr6N-MB31.otf

rounded gothic A-OTF-Jun101Pro-Light.otf A-OTF-Jun101Pr6N-Light.otf

yu-win Yu fonts bundled with Windows 8.1.
yu-osx Yu fonts bundled with OSX Mavericks.

family series yu-win yu-osx

medium YuMincho-Regular YuMincho Mediummincho
bold YuMincho-Demibold YuMincho Demibold

YuGothic-Regular* YuGothic Medium*medium
YuGothic-Bold YuGothic Bold

gothic bold YuGothic-Bold YuGothic Bold
heavy YuGothic-Bold YuGothic Bold

rounded gothic YuGothic-Bold YuGothic Bold

■Presets for single weight Next, we describe settings for using only single weight. In four settings be-
low, we use same fonts for medium and bold (and heavy) weights. (Hence \mcfamily\bfseries and
\mcfamily\mdseries yields same Japanese fonts, even if deluxe option is also specified).

noembed ipa ipaex ms

mincho Ryumin-Light (non-embedded) IPAMincho IPAexMincho MS Mincho
gothic GothicBBB-Medium (non-embedded) IPAGothic IPAexGothic MS Gothic

■Using HG fonts We can use HG fonts bundled with Microsoft Office for realizing multiple weights.

ipa-hg ipaex-hg ms-hg

mincho medium IPAMincho IPAexMincho MS Mincho

mincho bold HG Mincho E

Gothic medium
without deluxe IPAGothic IPAexGothic MS Gothic
with jis2004 IPAGothic IPAexGothic MS Gothic

otherwise HG Gothic M

gothic bold HG Gothic E

gothic heavy HG Soei Kaku Gothic UB

rounded gothic HG Maru Gothic PRO

10

Note that HG Mincho E, HG Gothic E, HG Soei Kaku Gothic UB, and HG Maru Gothic PRO are
internally specified by:

default by font name (HGMinchoE, etc.).

90jis by filename (hgrme.ttc, hgrge.ttc, hgrsgu.ttc, hgrsmp.ttf).

jis2004 by filename (hgrme04.ttc, hgrge04.ttc, hgrsgu04.ttc, hgrsmp04.ttf).

3.4 \CID, \UTF, and macros in japanese-otf package

Under pLATEX, japanese-otf package (developed by Shuzaburo Saito) is used for typesetting characters
which is in Adobe-Japan1-6 CID but not in JIS X 0208. Since this package is widely used, LuaTEX-ja sup-
ports some of functions in japanese-otf package. If you want to use these functions, load luatexja-otf
package.

1 \jfontspec{KozMinPr6N-Regular.otf}
2 森\UTF{9DD7}外と内田百\UTF{9592}とが\UTF{9AD9

}島屋に行く。
3

4 \CID{7652}飾区の\CID{13706}野家，
5 \CID{1481}城市，葛西駅，
6 高崎と\CID{8705}\UTF{FA11}
7

8 \aj半角{はんかくカタカナ}

森鷗外と内田百閒とが髙島屋に行く。
󱅏飾区の𠮷野家，葛城市，葛西駅，高崎と髙﨑
はんかくｶﾀｶﾅ

4 Changing Parameters

There are many parameters in LuaTEX-ja. And due to the behavior of LuaTEX, most of them are not stored
as internal register of TEX, but as an original storage system in LuaTEX-ja. Hence, to assign or acquire those
parameters, you have to use commands \ltjsetparameter and \ltjgetparameter.

4.1 Editing the Range of JAchars

LuaTEX-ja divides the Unicode codespace U+0080–U+10FFFF into character ranges, numbered 1 to 217.
The grouping can be (globally) customized by \ltjdefcharrange. The next line adds whole characters in
Supplementary Ideographic Plane and the character “漢” to the character range 100.

\ltjdefcharrange{100}{"20000-"2FFFF,`漢}

A character can belong to only one character range. For example, whole SIP belong to the range 4 in the
default setting of LuaTEX-ja, and if you execute the above line, then SIP will belong to the range 100 and be
removed from the range 4.

The distinction between ALchar and JAchar is done for character ranges. This can be edited by setting
the jacharrange parameter. For example, this is just the default setting of LuaTEX-ja, and it sets

• a character which belongs character ranges 1, 4, and 5 is ALchar,

• a character which belongs character ranges 2, 3, 6, 7, and 8 is JAchar.

\ltjsetparameter{jacharrange={-1, +2, +3, -4, -5, +6, +7, +8}}

The argument to jacharrange parameter is a list of non-zero integer. Negative integer −𝑛 in the list means
that “each character in the range 𝑛 is an ALchar”, and positive integer +𝑛 meansthat “… is a JAchar”.

11

Table 1. Unicode blocks in predefined character range 3.
U+2000–U+206F General Punctuation U+2070–U+209F Superscripts and Subscripts
U+20A0–U+20CF Currency Symbols U+20D0–U+20FF Comb. Diacritical Marks for Symbols
U+2100–U+214F Letterlike Symbols U+2150–U+218F Number Forms
U+2190–U+21FF Arrows U+2200–U+22FF Mathematical Operators
U+2300–U+23FF Miscellaneous Technical U+2400–U+243F Control Pictures
U+2500–U+257F Box Drawing U+2580–U+259F Block Elements
U+25A0–U+25FF Geometric Shapes U+2600–U+26FF Miscellaneous Symbols
U+2700–U+27BF Dingbats U+2900–U+297F Supplemental Arrows-B
U+2980–U+29FF Misc. Mathematical Symbols-B U+2B00–U+2BFF Miscellaneous Symbols and Arrows

■Default setting LuaTEX-ja predefines eight character ranges for convenience. They are determined from
the following data:

• Blocks in Unicode 6.0.

• The Adobe-Japan1-UCS2 mapping between a CID Adobe-Japan1-6 and Unicode.

• The PXbase bundle for upTEX by Takayuki Yato.

Now we describe these eight ranges. The superscript “J” or “A” after the number shows whether each
character in the range is treated as JAchars or not by default. These settings are similar to the prefercjk
settings defined in PXbase bundle. Any characters above U+0080which does not belong to these eight ranges
belongs to the character range 217.

Range 8J The intersection of the upper half of ISO 8859-1 (Latin-1 Supplement) and JIS X 0208 (a basic
character set for Japanese). This character range consists of the following characters:

• § (U+00A7, Section Sign)
• ¨ (U+00A8, Diaeresis)
• ° (U+00B0, Degree sign)
• ± (U+00B1, Plus-minus sign)

• ´ (U+00B4, Spacing acute)
• ¶ (U+00B6, Paragraph sign)
• × (U+00D7, Multiplication sign)
• ÷ (U+00F7, Division Sign)

Range 1A Latin characters that some of them are included in Adobe-Japan1-6. This range consists of the
following Unicode ranges, except characters in the range 8 above:

• U+0080–U+00FF: Latin-1 Supplement
• U+0100–U+017F: Latin Extended-A
• U+0180–U+024F: Latin Extended-B
• U+0250–U+02AF: IPA Extensions
• U+02B0–U+02FF: Spacing Modifier Letters

• U+0300–U+036F:
Combining Diacritical Marks

• U+1E00–U+1EFF:
Latin Extended Additional

Range 2J Greek and Cyrillic letters. JIS X 0208 (hence most of Japanese fonts) has some of these characters.

• U+0370–U+03FF: Greek and Coptic
• U+0400–U+04FF: Cyrillic

• U+1F00–U+1FFF: Greek Extended

Range 3J Punctuations and Miscellaneous symbols. The block list is indicated in Table 1.

Range 4A Characters usually not in Japanese fonts. This range consists of almost all Unicode blocks which
are not in other predefined ranges. Hence, instead of showing the block list, we put the definition of
this range itself:

\ltjdefcharrange{4}{%
"500-"10FF, "1200-"1DFF, "2440-"245F, "27C0-"28FF, "2A00-"2AFF,
"2C00-"2E7F, "4DC0-"4DFF, "A4D0-"A82F, "A840-"ABFF, "FB00-"FE0F,
"FE20-"FE2F, "FE70-"FEFF, "10000-"1FFFF, "E000-"F8FF} % non-Japanese

12

Table 2. Unicode blocks in predefined character range 6.
U+2460–U+24FF Enclosed Alphanumerics U+2E80–U+2EFF CJK Radicals Supplement
U+3000–U+303F CJK Symbols and Punctuation U+3040–U+309F Hiragana
U+30A0–U+30FF Katakana U+3190–U+319F Kanbun
U+31F0–U+31FF Katakana Phonetic Extensions U+3200–U+32FF Enclosed CJK Letters and Months
U+3300–U+33FF CJK Compatibility U+3400–U+4DBF CJK Unified Ideographs Extension A
U+4E00–U+9FFF CJK Unified Ideographs U+F900–U+FAFF CJK Compatibility Ideographs
U+FE10–U+FE1F Vertical Forms U+FE30–U+FE4F CJK Compatibility Forms
U+FE50–U+FE6F Small Form Variants U+20000–U+2FFFF (Supplementary Ideographic Plane)
U+E0100–U+E01EF Variation Selectors Supplement

Table 3. Unicode blocks in predefined character range 7.
U+1100–U+11FF Hangul Jamo U+2F00–U+2FDF Kangxi Radicals
U+2FF0–U+2FFF Ideographic Description Characters U+3100–U+312F Bopomofo
U+3130–U+318F Hangul Compatibility Jamo U+31A0–U+31BF Bopomofo Extended
U+31C0–U+31EF CJK Strokes U+A000–U+A48F Yi Syllables
U+A490–U+A4CF Yi Radicals U+A830–U+A83F Common Indic Number Forms
U+AC00–U+D7AF Hangul Syllables U+D7B0–U+D7FF Hangul Jamo Extended-B

Range 5A Surrogates and Supplementary Private Use Areas.

Range 6J Characters used in Japanese. The block list is indicated in Table 2.

Range 7J Characters used in CJK languages, but not included in Adobe-Japan1-6. The block list is indicated
in Table 3.

4.2 kanjiskip and xkanjiskip

JAglue is divided into the following three categories:

• Glues/kerns specified in JFM. If \inhibitglue is issued around a Japanese character, this glue will
not be inserted at the place.

• The default glue which inserted between two JAchars (kanjiskip).

• The default glue which inserted between a JAchar and an ALchar (xkanjiskip).

The value (a skip) of kanjiskip or xkanjiskip can be changed as the following. Note that only their values at
the end of a paragraph or a hbox are adopted in the whole paragraph or the whole hbox.

\ltjsetparameter{kanjiskip={0pt plus 0.4pt minus 0.4pt},
xkanjiskip={0.25\zw plus 1pt minus 1pt}}

Here \zw is a internal dimension which stores fullwidth of the current Japanese font. This \zw can be used
as the unit zw in pTEX.

It may occur that JFM contains the data of “ideal width of kanjiskip” and/or “ideal width of xkanjiskip”.
To use these data from JFM, set the value of kanjiskip or xkanjiskip to \maxdimen.

4.3 Insertion Setting of xkanjiskip

It is not desirable that xkanjiskip is inserted into every boundary between JAchars and ALchars. For exam-
ple, xkanjiskip should not be inserted after opening parenthesis (e.g., compare “(あ” and “(あ”). LuaTEX-ja
can control whether xkanjiskip can be inserted before/after a character, by changing jaxspmode for JAchars
and alxspmode parameters ALchars respectively.

1 \ltjsetparameter{jaxspmode={`あ,preonly},
alxspmode={`\!,postonly}}

2 pあq い!う
pあqい!う

13

The second argument preonly means that the insertion of xkanjiskip is allowed before this character,
but not after. the other possible values are postonly, allow, and inhibit.

jaxspmode and alxspmode use a same table to store the parameters on the current version. Therefore,
line 1 in the code above can be rewritten as follows:

\ltjsetparameter{alxspmode={`あ,preonly}, jaxspmode={`\!,postonly}}

One can use also numbers to specify these two parameters (see Subsection 7.1).
If you want to enable/disable all insertions of kanjiskip and xkanjiskip, set autospacing and autoxspac-

ing parameters to true/false, respectively.

4.4 Shifting the baseline

To make a match between a Japanese font and an alphabetic font, sometimes shifting of the baseline of
one of the pair is needed. In pTEX, this is achieved by setting \ybaselineshift to a non-zero length (the
baseline of ALchar is shifted below). However, for documents whose main language is not Japanese, it is
good to shift the baseline of Japanese fonts, but not that of alphabetic fonts. Because of this, LuaTEX-ja can
independently set the shifting amount of the baseline of alphabetic fonts (yalbaselineshift parameter) and
that of Japanese fonts (yjabaselineshift parameter).

1 \vrule width 150pt height 0.4pt depth 0pt \
hskip-120pt

2 \ltjsetparameter{yjabaselineshift=0pt,
yalbaselineshift=0pt}abcあいう

3 \ltjsetparameter{yjabaselineshift=5pt,
yalbaselineshift=2pt}abcあいう

abcあいう abcあいう

Here the horizontal line in above is the baseline of a line.
There is an interesting side-effect: characters in different size can be vertically aligned center in a line,

by setting two parameters appropriately. The following is an example (beware the value is not well tuned):

1 xyz漢字
2 {\scriptsize
3 \ltjsetparameter{yjabaselineshift=-1pt,
4 yalbaselineshift=-1pt}
5 XYZひらがな
6 }abcかな

xyz漢字 XYZ ひらがな abcかな

Part II

Reference
5 \catcode in LuaTEX-ja

5.1 Preliminaries: \kcatcode in pTEX and upTEX

In pTEX and upTEX, the value of \kcatcode determines whether a Japanese character can be used in a control
word. For the detail, see Table 4.

\kcatcode can be set by a row of JIS X 0208 in pTEX, and generally by a Unicode block3 in upTEX. So
characters which can be used in a control word slightly differ between pTEX and upTEX.

5.2 Case of LuaTEX-ja

The role of \kcatcode in pTEX and upTEX caan be divided into the following four kinds, and LuaTEX-ja can
control these four kinds separately:

3upTEX divides U+FF00–U+FFEF (Halfwidth and Fullwidth Forms) into three subblocks, and \kcatcode can be set by a subblock.

14

Table 4. \kcatcode in upTEX

\kcatcode meaning control word widow penalty∗ linebreak

15 non-cjk (treated as usual LATEX)
16 kanji Y Y ignored
17 kana Y Y ignored
18 other N N ignored
19 hangul Y Y space

• Distinction between JAchar or ALchar is controlled by using the character range, see Subsection 4.1.

• Whether the character can be used in a control word is controlled by setting \catcode to 11 (enabled)
or 12 (disabled), as usual.

• Whether jcharwidowpenalty can be inserted before the character is controlled by the lowermost bit
of the kcatcode parameter.

• Ignoring linebreak after a JAchar is always ignored.

Default setting of \catcode of LuaTEX can be found in luatex-unicode-letters.tex, which is
based on unicode-letters.tex (for X ETEX). However, the default setting of \catcode differs between
X ETEX and LuaTEX, by the following reasons:

• luatex-unicode-letters.tex is based on old unicode-letters.tex.

• The latter half of unicode-letters.tex sets \catcode of Kanji and kana characters to 11, via
setting \XeTeXcharclass.
However, this latter half is simply omitted in luatex-unicode-letters.tex, hence \catcode of
Kanji and kana characters remains 12 in LuaTEX.

In other words, Kanji nor kana characters cannot be used in a control word, in the default setting of LuaTEX.
This would be inconvenient for pTEX users to shifting to LuaTEX-ja, since several control words contain-

ing Kanji, such as \西暦, are used in pTEX. Hence, LuaTEX-ja have a counterpart of unicode-letters.tex
for LuaTEX, to match the \catcode setting with that of X ETEX.

5.3 Non-kanji Characters in a Control Word

Because the engine differ, so non-kanji JIS X 0208 characters which can be used in a control word differ
in pTEX, in upTEX, and in LuaTEX-ja. Table 5 shows the difference. Except for four characters “・”, “゛”,
“゜”, “゠”, LuaTEX-ja admits more characters in a control word than upTEX. Note that the ideographic
space U+3000 can be used in a control word in LuaTEX-ja.

Difference becomes larger, if we consider non-kanji JIS X 0213 characters. For the detail, see https:
//github.com/h-kitagawa/kct.

6 Font Metric and Japanese Font

6.1 \jfont

To load a font as a Japanese font, you must use the \jfont instead of \font, while \jfont admits the same
syntax used in \font. LuaTEX-ja automatically loads luaotfload package, so TrueType/OpenType fonts
with features can be used for Japanese fonts:

1 \jfont\tradgt={file:KozMinPr6N-Regular.otf:script=latn;%
2 +trad;-kern;jfm=ujis} at 14pt
3 \tradgt 当／体／医／区

當／體／醫／區

Note that the defined control sequence (\tradgt in the example above) using \jfont is not a font def
token, but a macro. Hence the input like \fontname\tradgt causes a error. We denote control sequences
which are defined in \jfont by ⟨jfont cs⟩.

15

https://github.com/h-kitagawa/kct
https://github.com/h-kitagawa/kct

Table 5. Difference of the set of non-kanji JIS X 0208 characters which can be used in a control word
row col. pTEX upTEX LuaTEX-ja

　 (U+3000) 1 1 N N Y
・ (U+30FB) 1 6 N Y N
゛ (U+309B) 1 11 N Y N
゜ (U+309C) 1 12 N Y N
｀ (U+FF40) 1 14 N N Y
＾ (U+FF3E) 1 16 N N Y
￣ (U+FFE3) 1 17 N N Y
＿ (U+FF3F) 1 18 N N Y
ヽ (U+30FD) 1 19 N Y Y
ヾ (U+30FE) 1 20 N Y Y
ゝ (U+309D) 1 21 N Y Y
ゞ (U+309E) 1 22 N Y Y
〃 (U+3003) 1 23 N N Y
仝 (U+4EDD) 1 24 N Y Y
々 (U+3005) 1 25 N N Y
〆 (U+3006) 1 26 N N Y
〇 (U+3007) 1 27 N N Y
ー (U+30FC) 1 28 N Y Y

row col. pTEX upTEX LuaTEX-ja

／ (U+FF0F) 1 31 N N Y
＼ (U+FF3C) 1 32 N N Y
｜ (U+FF5C) 1 35 N N Y
＋ (U+FF0B) 1 60 N N Y
＝ (U+FF1D) 1 65 N N Y
＜ (U+FF1C) 1 67 N N Y
＞ (U+FF1E) 1 68 N N Y
＃ (U+FF03) 1 84 N N Y
＆ (U+FF06) 1 85 N N Y
＊ (U+FF0A) 1 86 N N Y
＠ (U+FF20) 1 87 N N Y
〒 (U+3012) 2 9 N N Y
〓 (U+3013) 2 14 N N Y
￢ (U+FFE2) 2 44 N N Y
Å (U+212B) 2 82 N N Y

Greek letters (row 6) Y N Y
Cyrillic letters (row 7) N N Y

■JFM As noted in Introduction, a JFM has measurements of characters and glues/kerns that are auto-
matically inserted for Japanese typesetting. The structure of JFM will be described in the next subsection.
At the calling of \jfont, you must specify which JFM will be used for this font by the following keys:

jfm=⟨name⟩ Specify the name of JFM. If specified JFM has not been loaded, LuaTEX-ja search and load
a file named jfm-⟨name⟩.lua.
The following JFMs are shipped with LuaTEX-ja:

jfm-ujis.lua A standard JFM in LuaTEX-ja. This JFM is based on upnmlminr-h.tfm, a metric
for UTF/OTF package that is used in upTEX. When you use the luatexja-otf package, you
should use this JFM.

jfm-jis.lua A counterpart for jis.tfm, “JIS font metric” which is widely used in pTEX. A
major difference between jfm-ujis.lua and this jfm-jis.lua is that most characters under
jfm-ujis.lua are square-shaped, while that under jfm-jis.lua are horizontal rectangles.

jfm-min.lua A counterpart for min10.tfm, which is one of the default Japanese font metric
shipped with pTEX. There are notable difference between this JFM and other 2 JFMs, as shown
in Table 6.

jfmvar=⟨string⟩ Sometimes there is a need that ….

1 \ltjsetparameter{differentjfm=both}
2 \jfont\F=file:KozMinPr6N-Regular.otf:jfm=ujis
3 \jfont\G=file:KozGoPr6N-Medium.otf:jfm=ujis
4 \jfont\H=file:KozGoPr6N-Medium.otf:jfm=ujis;jfmvar=hoge
5

6 \F ）{\G 【】}（ % halfwidth space
7 ）{\H 『』}（ % fullwidth space
8

9 \ltjsetparameter{differentjfm=paverage}

）【】（）『』（

■Note: kern feature Some fonts have information for inter-glyph spacing. However, this information is
not well-compatible with LuaTEX-ja. More concretely, this kerning space from this information are inserted

16

Table 6. Differences between JFMs shipped with LuaTEX-ja
jfm-ujis.lua jfm-jis.lua jfm-min.lua

Example 1[6] ◆◆◆◆◆◆◆
ある日モモちゃ
んがお使いで迷
子になって泣き
ました．

◆◆◆◆◆◆◆
ある日モモちゃ
んがお使いで迷
子になって泣き
ました．

◆◆◆◆◆◆◆
ある日モモちゃ
んがお使いで迷
子になって泣き
ました．

Example 2 ちょっと！何 ちょっと！何 ちょっと！何
Bounding Box 漢 漢 漢

before the insertion process of JAglue, and this causes incorrect spacing between two characters when both
a glue/kern from the data in the font and it from JFM are present.

• You should specify -kern in jfont when you want to use other font features, such as script=... .

• If you want to use Japanese fonts in proportional width, and use information from this font, use
jfm-prop.lua for its JFM, and …. TODO: kanjiskip?

■extend and slant The following setting can be specified as OpenType font features:

extend=⟨extend⟩ expand the font horizontally by ⟨extend⟩.

slant=⟨slant⟩ slant the font.

Note that LuaTEX-ja doesn’t adjust JFMs by these extend and slant settings; you have to write new JFMs
on purpose. For example, the following example uses the standard JFM jfm-ujis.lua, hence letter-spacing
and the width of italic correction are not correct:

1 \jfont\E=file:KozMinPr6N-Regular.otf:extend=1.5;jfm=ujis
2 \E あいうえお
3

4 \jfont\S=file:KozMinPr6N-Regular.otf:slant=1;jfm=ujis
5 \S あいう\/ABC

あいうえお
あいう ABC

6.2 Prefix psft

Besides “file:” and “name:” prefixes which are introduced in the luaotfload package, LuaTEX-ja adds
“psft:” prefix in \jfont (and \font), to specify a “name-only” Japanese font which will not be embedded
to PDF. Typical use of this prefix is to specify standard, non-embedded Japanese fonts, namely, “Ryumin-
Light” and “GothicBBB-Medium”.

OpenType font features, such as “+jp90”, have no meaning in name-only fonts using “psft:” prefix,
because we can’t expect what fonts are actually used by the PDF reader. Note that extend and slant
settings (see above) are supported with psft prefix, because they are only simple linear transformations.

■cid key The default font defined by using psft: prefix is for Japanese typesetting; it is Adobe-Japan1-6
CID-keyed font. One can specify cid key to use other CID-keyed non-embedded fonts for Chinese or Korean
typesetting.

1 \jfont\testJ={psft:Ryumin-Light:cid=Adobe-Japan1-6;jfm=jis} % Japanese
2 \jfont\testD={psft:Ryumin-Light:jfm=jis} % default value is Adobe-

Japan1-6
3 \jfont\testC={psft:AdobeMingStd-Light:cid=Adobe-CNS1-6;jfm=jis} % Traditional Chinese
4 \jfont\testG={psft:SimSun:cid=Adobe-GB1-5;jfm=jis} % Simplified Chinese
5 \jfont\testK={psft:Batang:cid=Adobe-Korea1-2;jfm=jis} % Korean

17

Note that the code above specifies jfm-jis.lua, which is for Japanese fonts, as JFM for Chinese and Korean
fonts.

At present, LuaTEX-ja supports only 4 values written in the sample code above. Specifying other values,
e.g.,
\jfont\test={psft:Ryumin-Light:cid=Adobe-Japan2;jfm=jis}

produces the following error:
1 ! Package luatexja Error: bad cid key `Adobe-Japan2'.
2

3 See the luatexja package documentation for explanation.
4 Type H <return> for immediate help.
5 <to be read again>
6 \par
7 l.78
8

9 ? h
10 I couldn't find any non-embedded font information for the CID
11 `Adobe-Japan2'. For now, I'll use `Adobe-Japan1-6'.
12 Please contact the LuaTeX-ja project team.
13 ?

6.3 Structure of a JFM File

A JFM file is a Lua script which has only one function call:

luatexja.jfont.define_jfm { ... }

Real data are stored in the table which indicated above by { ... }. So, the rest of this subsection are
devoted to describe the structure of this table. Note that all lengths in a JFM file are floating-point numbers
in design-size unit.

dir=⟨direction⟩ (required)
The direction of JFM. At the present, only 'yoko' is supported.

zw=⟨length⟩ (required)
The amount of the length of the “full-width”.

zh=⟨length⟩ (required)
The amount of the “full-height” (height + depth).

kanjiskip={⟨natural⟩, ⟨stretch⟩, ⟨shrink⟩} (optional)
This field specifies the “ideal” amount of kanjiskip. As noted in Subsection 4.2, if the parameter
kanjiskip is \maxdimen, the value specified in this field is actually used (if this field is not specified
in JFM, it is regarded as 0 pt). Note that ⟨stretch⟩ and ⟨shrink⟩ fields are in design-size unit too.

xkanjiskip={⟨natural⟩, ⟨stretch⟩, ⟨shrink⟩} (optional)
Like the kanjiskip field, this field specifies the “ideal” amount of xkanjiskip.

■Character classes Besides from above fields, a JFM file have several sub-tables those indices are natural
numbers. The table indexed by 𝑖 ∈ 𝜔 stores information of character class 𝑖. At least, the character class 0
is always present, so each JFM file must have a sub-table whose index is [0]. Each sub-table (its numerical
index is denoted by 𝑖) has the following fields:

chars={⟨character⟩, ...} (required except character class 0)
This field is a list of characters which are in this character type 𝑖. This field is optional if 𝑖 = 0,
since all JAchar which do not belong any character classes other than 0 are in the character class 0
(hence, the character class 0 contains most of JAchars). In the list, character(s) can be specified in
the following form:

18

height

depth

width

left
down

Consider a node containing Japanese character whose value of
the align field is 'middle'.

• The black rectangle is a frame of the node. Its width,
height, and depth are specified by JFM.

• Since the align field is 'middle', the “real” glyph is cen-
tered horizontally (the green rectangle).

• Furthermore, the glyph is shifted according to values of
fields left and down. The ultimate position of the real
glyph is indicated by the red rectangle.

Figure 1. The position of the real glyph.

• a Unicode code point
• the character itself (as a Lua string, like 'あ')
• a string like 'あ*' (the character followed by an asterisk)
• several “imaginary” characters (We will describe these later.)

width=⟨length⟩, height=⟨length⟩, depth=⟨length⟩, italic=⟨length⟩ (required)
Specifythe width of characters in character class 𝑖, the height, the depth and the amount of italic
correction. All characters in character class 𝑖 are regarded that its width, height, and depth are as
values of these fields. But there is one exception: if 'prop' is specified in width field, width of a
character becomes that of its “real” glyph.

left=⟨length⟩, down=⟨length⟩, align=⟨align⟩
These fields are for adjusting the position of the “real” glyph. Legal values of align field are
'left', 'middle', and 'right'. If one of these 3 fields are omitted, left and down are treated
as 0, and align field is treated as 'left'. The effects of these 3 fields are indicated in Figure 1.
In most cases, left and down fields are 0, while it is not uncommon that the align field is
'middle' or 'right'. For example, setting the align field to 'right' is practically needed
when the current character class is the class for opening delimiters’.

kern={[𝑗]=⟨kern⟩, [𝑗′]={⟨kern⟩, [⟨ratio⟩]}, ...}

glue={[𝑗]={⟨width⟩, ⟨stretch⟩, ⟨shrink⟩, [⟨priority⟩], [⟨ratio⟩]}, ...}

Specifies the width of kern or glue which will be inserted between characters in character class 𝑖
and those in character class 𝑗.
⟨priority⟩ is an integer in [−2, 2] (treated as 0 if omitted), and this is used only in line adjustment
with priority by luatexja-adjust (see Subsection 10.3). Higher value means the glue is easy to
shretch, and is also easy to shrink.
⟨ratio⟩ is also an optional value between −1 and 1. For example, Thw width of a glue between
an ideographic full stop “。” and a fullwidth middle dot “・” is three-fourth of fullwidth, namely
halfwidth from the ideographic full stop, and quarter-width from the fullwidth middle dot. In this
case, we specify ⟨ratio⟩ to

−1 ⋅ 0.5
0.5 + 0.25

+ 1 ⋅ 0.25
0.5 + 0.25

= −1
3

.

end stretch=⟨kern⟩

end shrink=⟨kern⟩

19

■Character to character classes We explain how the character class of a character is determined, using
jfm-test.lua which contains the following:

[0] = {
chars = { '漢', 'ヒ*' },
align = 'left', left = 0.0, down = 0.0,
width = 1.0, height = 0.88, depth = 0.12, italic=0.0,

},
[2000] = {

chars = { '。', '、*', 'ﾋ' },
align = 'left', left = 0.0, down = 0.0,
width = 0.5, height = 0.88, depth = 0.12, italic=0.0,

},

Now consider the following input/output:

1 \jfont\a=file:KozMinPr6N-Regular.otf:jfm=test;+vert
2 \setbox0\hbox{\a 。\inhibitglue 漢}
3 \the\wd0

20.0pt

Now we look why the above source outputs 20 pt, not 15 pt.

1. The ideographic full stop “。” is converted to its vertical form “︒” (U+FE12), by vert feature.

2. The character class of “︒” is zero, hence its width is fullwidth.

3. The character class of “漢”, hence its width is fullwidth.

4. \inhibitglue makes that no glue will be inserted between “。” and “漢”.

5. Hence the width of \hbox equals to 20 pt.

This example shows that the character class of a character is determined after applying font features by
luaotfload.

However, a starred specificaion like “'、*'” changes the rule. Consider the following input:

1 \jfont\a=file:KozMinPr6N-Regular.otf:jfm=test;+vert
2 \a 漢、\inhibitglue 漢 漢︑漢

Here, the character class of the ideographic comma “、” (U+3001) is determined as following:

1. As the case of “。”, the ideographic comma “、” is converted to its vertical form “︑” (U+FE11).

2. The character class of “︑” is zero.

3. However, LuaTEX-ja remembers that this “︑” is obtained from “、” by font features. The character
class of “、” is non-zero value, namely, 2000.

4. Hence the ideographic comma “、” in above belongs the character class 2000.

■Imaginary characters As described before, you can specify several imaginary characters in chars
field. The most of these characters are regarded as the characters of class 0 in pTEX. As a result, LuaTEX-ja
can control typesetting finer than pTEX. The following is the list of imaginary characters:

'boxbdd' The beginning/ending of a hbox, and the beginning of a noindented (i.e., began by \noindent)
paragraph.

'parbdd' The beginning of an (indented) paragraph.

'jcharbdd' A boundary between JAchar and anything else (such as ALchar, kern, glue, …).

−1 The left/right boundary of an inline math formula.

■Porting JFM from pTEX See Japanese version of this manual.

20

Table 7. Commands for Japanese math fonts
Japanese fonts alphabetic fonts

\jfam ∈ [0, 256) \fam
jatextfont ={⟨jfam⟩,⟨jfont cs⟩} \textfont⟨fam⟩=⟨font cs⟩
jascriptfont ={⟨jfam⟩,⟨jfont cs⟩} \scriptfont⟨fam⟩=⟨font cs⟩
jascriptscriptfont ={⟨jfam⟩,⟨jfont cs⟩} \scriptscriptfont⟨fam⟩=⟨font cs⟩

6.4 Math Font Family

TEX handles fonts in math formulas by 16 font families4, and each family has three fonts: \textfont,
\scriptfont and \scriptscriptfont.

LuaTEX-ja’s handling of Japanese fonts in math formulas is similar; Table 7 shows counterparts to TEX’s
primitives for math font families. There is no relation between the value of \fam and that of \jfam; with
appropriate settings, you can set both \fam and \jfam to the same value.

6.5 Callbacks

LuaTEX-ja also has several callbacks. These callbacks can be accessed via luatexbase.add_to_callback
function and so on, as other callbacks.

luatexja.load jfm callback With this callback you can overwrite JFMs. This callback is called when a
new JFM is loaded.

1 function (<table> jfm_info, <string> jfm_name)
2 return <table> new_jfm_info
3 end

The argument jfm_info contains a table similar to the table in a JFM file, except this argument has
chars field which contains character codes whose character class is not 0.
An example of this callback is the ltjarticle class, with forcefully assigning character class 0 to
'parbdd' in the JFM jfm-min.lua.

luatexja.define jfont callback This callback and the next callback form a pair, and you can assign
characters which do not have fixed code points in Unicode to non-zero character classes. This luatexja.define font
callback is called just when new Japanese font is loaded.

1 function (<table> jfont_info, <number> font_number)
2 return <table> new_jfont_info
3 end

jfont_info has the following fields, which may not overwritten by a user:

size The font size specified at \jfont in scaled points (1 sp = 2−16 pt).
zw, zh, kanjiskip, xkanjiskip These are scaled value of those specified by the JFM, by the font

size.
jfm The internal number of the JFM.
var The value of jfmvar key, which is specified at \jfont. The default value is the empty string.
chars The mapping table from character codes to its character classes.

The specification [i].chars={⟨character⟩, ...} in the JFM will be stored in this field as
chars={[⟨character⟩]= 𝑖, ...}.

char type For 𝑖 ∈ 𝜔, char type[𝑖] is information of characters whose class is 𝑖, and has the
following fields:

• width, height, depth, italic, down, left are just scaled value of those specified by the
JFM, by the font size.

4Omega, Aleph, LuaTEX and 𝜀-(u)pTEX can handles 256 families, but an external package is needed to support this in plain TEX and
LATEX.

21

• align is a number which is determined from align field in the JFM:

⎧⎪
⎨
⎪⎩

0 'left' and the default value
0.5 'middle'
1 'right'

• For 𝑗 ∈ 𝜔, [𝑗] stores a kern or a glue which will be inserted between character class 𝑖 and
class 𝑗.
If a kern will be inserted, the value of this field is [𝑗]={false, ⟨kern node⟩, ⟨ratio⟩},
where ⟨kern node⟩ is a node5. If a glue will be inserted, we have [𝑗]={false, ⟨spec node⟩,
⟨ratio⟩, ⟨icflag⟩}, where ⟨spec node⟩ is also a node, and ⟨icflag⟩ = from jfm + ⟨priority⟩.

The returned table new_jfont_info also should include these fields, but you are free to add more
fields (to use them in the luatexja.find char class callback). The font_number is a font num-
ber.
A good example of this and the next callbacks is the luatexja-otf package, supporting "AJ1-xxx"
form for Adobe-Japan1 CID characters in a JFM. This callback doesn’t replace any code of LuaTEX-ja.

luatexja.find char class callback This callback is called just when LuaTEX-ja is trying to determine
which character class a character chr_code belongs. A function used in this callback should be in the
following form:

1 function (<number> char_class, <table> jfont_info, <number> chr_code)
2 if char_class~=0 then return char_class
3 else
4
5 return (<number> new_char_class or 0)
6 end
7 end

The argument char_class is the result of LuaTEX-ja’s default routine or previous function calls in
this callback, hence this argument may not be 0. Moreover, the returned new_char_class should be
as same as char_class when char_class is not 0, otherwise you will overwrite the LuaTEX-ja’s
default routine.

luatexja.set width callback This callback is called when LuaTEX-ja is trying to encapsule a JAchar
glyph node, to adjust its dimension and position.

1 function (<table> shift_info, <table> jfont_info, <number> char_class)
2 return <table> new_shift_info
3 end

The argument shift_info and the returned new_shift_info have down and left fields, which are
the amount of shifting down/left the character in a scaled point.
A good example is test/valign.lua. After loading this file, the vertical position of glyphs is auto-
matically adjusted; the ratio (height ∶ depth) of glyphs is adjusted to be that of letters in the character
class 0. For example, suppose that

• The setting of the JFM: (height) = 88𝑥, (depth) = 12𝑥 (the standard values of Japanese Open-
Type fonts);

• The value of the real font: (height) = 28𝑦, (depth) = 5𝑦 (the standard values of Japanese True-
Type fonts).

Then, the position of glyphs is shifted up by

88𝑥
88𝑥 + 12𝑥

(28𝑦 + 5𝑦) − 28𝑦 = 26
25

𝑦 = 1.04𝑦.
5This version of LuaTEX-ja uses “direct access model” for accessing nodes, if possible.

22

7 Parameters

7.1 \ltjsetparameter

As described before, \ltjsetparameter and \ltjgetparameter are commands for accessing most pa-
rameters of LuaTEX-ja. One of the main reason that LuaTEX-ja didn’t adopted the syntax similar to that
of pTEX (e.g., \prebreakpenalty`）=10000) is the position of hpack_filter callback in the source of
LuaTEX, see Section 11.

\ltjsetparameter and \ltjglobalsetparameter are commands for assigning parameters. These
take one argument which is a ⟨key⟩=⟨value⟩ list. The list of allowed keys are described in the next sub-
section. The difference between \ltjsetparameter and \ltjglobalsetparameter is only the scope of
assignment; \ltjsetparameter does a local assignment and \ltjglobalsetparameter does a global
one. They also obey the value of \globaldefs, like other assignment.

The following is the list of parameters which can be specified by the \ltjsetparameter command.
[\cs] indicates the counterpart in pTEX, and symbols beside each parameter has the following meaning:

• “∗” : values at the end of a paragraph or a hbox are adopted in the whole paragraph or the whole hbox.

• “†”: assignments are always global.

jcharwidowpenalty =⟨penalty⟩∗ [\jcharwidowpenalty] Penalty value for suppressing orphans. This
penalty is inserted just after the last JAchar which is not regarded as a (Japanese) punctuation
mark.

kcatcode ={⟨chr code⟩,⟨natural number⟩}∗ An additional attributes which each character whose char-
acter code is ⟨chr code⟩ has. At the present version, the lowermost bit of ⟨natural number⟩ indi-
cates whether the character is considered as a punctuation mark (see the description of jcharwid-
owpenalty above).

prebreakpenalty ={⟨chr code⟩,⟨penalty⟩}∗ [\prebreakpenalty] Set a penalty which is inserted auto-
matically before the character ⟨chr code⟩, to prevent a line starts from this character. For example,
a line cannot started with one of closing brackets “〗”, so LuaTEX-ja sets

\ltjsetparameter{prebreakpenalty={`〙,10000}}

by default.

postbreakpenalty ={⟨chr code⟩,⟨penalty⟩}∗ [\postbreakpenalty] Set a penalty which is inserted au-
tomatically after the character ⟨chr code⟩, to prevent a line ends with this character. pTEX has
following restrictions on \prebreakpenalty and \postbreakpenalty, but they don’t exist in
LuaTEX-ja:

• Both \prebreakpenalty and \postbreakpenalty cannot be set for the same character.
• We can set \prebreakpenalty and \postbreakpenalty up to 256 characters.

jatextfont ={⟨jfam⟩,⟨jfont cs⟩}∗ [\textfont in TEX]

jascriptfont ={⟨jfam⟩,⟨jfont cs⟩}∗ [\scriptfont in TEX]

jascriptscriptfont ={⟨jfam⟩,⟨jfont cs⟩}∗ [\scriptscriptfont in TEX]

yjabaselineshift =⟨dimen⟩

yalbaselineshift =⟨dimen⟩ [\ybaselineshift]

jaxspmode ={⟨chr code⟩,⟨mode⟩}∗ Setting whether inserting xkanjiskip is allowed before/after a JAchar
whose character code is ⟨chr code⟩. The followings are allowed for ⟨mode⟩:

0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
1, preonly Insertion of xkanjiskip is allowed before the character, but not after.
2, postonly Insertion of xkanjiskip is allowed after the character, but not before.

23

3, allow Insertion of xkanjiskip is allowed both before the character and after the character. This
is the default value.

This parameter is similar to the \inhibitxspcode primitive of pTEX, but not compatible with
\inhibitxspcode.

alxspmode ={⟨chr code⟩,⟨mode⟩}∗ [\xspcode]
Setting whether inserting xkanjiskip is allowed before/after a ALchar whose character code is
⟨chr code⟩. The followings are allowed for ⟨mode⟩:

0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
1, preonly Insertion of xkanjiskip is allowed before the character, but not after.
2, postonly Insertion of xkanjiskip is allowed after the character, but not before.
3, allow Insertion of xkanjiskip is allowed before the character and after the character. This is the

default value.

Note that parameters jaxspmode and alxspmode share a common table, hence these two parameters
are synonyms of each other.

autospacing =⟨bool⟩ [\autospacing]

autoxspacing =⟨bool⟩ [\autoxspacing]

kanjiskip =⟨skip⟩∗ [\kanjiskip]

xkanjiskip =⟨skip⟩∗ [\xkanjiskip]

differentjfm =⟨mode⟩† Specify how glues/kerns between two JAchars whose JFM (or size) are different.
The allowed arguments are the followings:

average, both, large, small, pleft, pright, paverage

The default value is paverage. …

jacharrange =⟨ranges⟩

kansujichar ={⟨digit⟩, ⟨chr code⟩}∗ [\kansujichar]

7.2 \ltjgetparameter

\ltjgetparameter is a conteol sequence for acquiring parameters. It always takes a parameter name as
first argument.

1 \ltjgetparameter{differentjfm},
2 \ltjgetparameter{autospacing},
3 \ltjgetparameter{kanjiskip},
4 \ltjgetparameter{prebreakpenalty}{`）}.

paverage, 1, 0.0pt plus 0.4pt minus 0.4pt, 10000.

The return value of \ltjgetparameter is always a string. This is outputted by tex.write(), so any
character other than space “ ” (U+0020) has the category code 12 (other), while the space has 10 (space).

• If first argument is one of the following, no additional argument is needed.

jcharwidowpenalty, yjabaselineshift, yalbaselineshift, autospacing, autoxspacing,
kanjiskip, xkanjiskip, differentjfm

Note that \ltjgetparameter{autospacing} and \ltjgetparameter{autoxspacing} returns
1 or 0, not true nor false.

• If first argument is one of the following, an additional argument—a character code, for example—is
needed.

kcatcode, prebreakpenalty, postbreakpenalty, jaxspmode, alxspmode

24

\ltjgetparameter{jaxspmode}{...} and \ltjgetparameter{alxspmode}{...} returns 0, 1,
2, or 3, instead of preonly etc.

• \ltjgetparameter{jacharrange}{⟨range⟩} returns 0 if “characters which belong to the character
range ⟨range⟩ are JAchar”, 1 if “…are ALchar”. Although there is no character range −1, specifying
−1 to ⟨range⟩ does not cause an error (returns 1).

• For an integer ⟨digit⟩ between 0 and 9, \ltjgetparameter{kansujichar}{⟨digit⟩} returns the
character code of the result of \kansuji⟨digit⟩.

• The following parameter names cannot be specified in \ltjgetparameter.

jatextfont, jascriptfont, jascriptscriptfont, jacharrange

• \ltjgetparameter{chartorange}{⟨chr code⟩} returns the range number which ⟨chr code⟩ be-
longs to (although there is no parameter named “chartorange”).
If ⟨chr code⟩ is between 0 and 127, this ⟨chr code⟩ does not belong to any character range. In this
case, \ltjgetparameter{chartorange}{⟨chr code⟩} returns −1.
Hence, one can know whether ⟨chr code⟩ is JAchar or not by the following:

\ltjgetparameter{jacharrange}{\ltjgetparameter{chartorange}{⟨chr code⟩}}
% 0 if JAchar, 1 if ALchar

8 Other Commands for plain TEX and LATEX 2𝜀
8.1 Commands for Compatibility with pTEX

The following commands are implemented for compatibility with pTEX. Note that the former five commands
don’t support JIS X 0213, but only JIS X 0208. The last \kansuji converts an integer into its Chinese
numerals.

\kuten, \jis, \euc, \sjis, \jis, \kansuji

These six commands takes an internal integer, and returns a string.

1 \newcount\hoge
2 \hoge="2423 %"
3 \the\hoge, \kansuji\hoge\\
4 \jis\hoge, \char\jis\hoge\\
5 \kansuji1701

9251,九二五一
12355,ぃ
一七〇一

To change characters of Chinese numerals for each digit, set kansujichar parameter:

1 \ltjsetparameter{kansujichar={1,`壹}}
2 \ltjsetparameter{kansujichar={7,`漆}}
3 \ltjsetparameter{kansujichar={0,`零}}
4 \kansuji1701

壹漆零壹

8.2 \inhibitglue

\inhibitglue suppresses the insertion of JAglue. The following is an example, using a special JFM that
there will be a glue between the beginning of a box and “あ”, and also between “あ” and “ウ”.

1 \jfont\g=file:KozMinPr6N-Regular.otf:jfm=test \g
2 \fbox{\hbox{あウあ\inhibitglue ウ}}
3 \inhibitglue\par\noindent あ1
4 \par\inhibitglue\noindent あ2
5 \par\noindent\inhibitglue あ3
6 \par\hrule\noindent あoff\inhibitglue ice

あ ウあウ
あ 1
あ 2
あ 3
あ office

With the help of this example, we remark the specification of \inhibitglue:

25

1 \DeclareKanjiFamily{JY3}{edm}{}
2 \DeclareFontShape{JY3}{edm}{m}{n} {<-> s*IPAexMincho:jfm=ujis}{}
3 \DeclareFontShape{JY3}{edm}{m}{green}{<-> s*IPAexMincho:jfm=ujis;color=007F00}{}
4 \DeclareFontShape{JY3}{edm}{m}{blue} {<-> s*IPAexMincho:jfm=ujis;color=0000FF}{}
5 \DeclareAlternateKanjiFont{JY3}{edm}{m}{n}{JY3}{edm}{m}{green}{"4E00-"67FF,{-2}-{-2}}
6 \DeclareAlternateKanjiFont{JY3}{edm}{m}{n}{JY3}{edm}{m}{blue}{ "6800-"9FFF}
7 {\kanjifamily{edm}\selectfont
8 日本国民は、正当に選挙された国会における代表者を通じて行動し、……}

日本国民は、正当に選挙された国会における代表者を通じて行動し、……

Figure 2. An example of \DeclareAlternateKanjiFont

• The call of \inhibitglue in the (internal) vertical mode is simply ignored.

• The call of \inhibitglue in the (restricted) horizontal mode is only effective on the spot; does not
get over boundary of paragraphs. Moreover, \inhibitglue cancels ligatures and kernings, as shown
in the last line of above example.

• The call of \inhibitglue in math mode is just ignored.

8.3 \ltjdeclarealtfont

Using \ltjdeclarealtfont, one can “compose” more than one Japanese fonts. This \ltjdeclarealtfont
uses in the following form:

\ltjdeclarealtfont⟨base font cs⟩⟨alt font cs⟩⟨range⟩

where ⟨base font cs⟩ and ⟨alt font cs⟩ are defined by \jfont. Its meaning is

If the current Japanese font is ⟨base font cs⟩, characters which belong to ⟨range⟩ is typeset by
another Japanese font ⟨alt font cs⟩, instead of ⟨base font cs⟩.

⟨range⟩ is a comma-separated list of character codes, but also accepts negative integers: −𝑛 (𝑛 ≥ 1) means
that all characters of character classes 𝑛, with respect to JFM used by ⟨base font cs⟩. Note that characters
which do not exist in ⟨alt font cs⟩ are ignored.

For example, if \hoge uses jfm-ujis.lua, the standard JFM of LuaTEX-ja, then

\ltjdeclarealtfont\hoge\piyo{"3000-"30FF, {-1}-{-1}}

does

If the current Japanese font is \hoge, U+3000–U+30FF and characters in class 1 (ideographic
opening brackets) are typeset by \piyo.

9 Commands for LATEX 2𝜀
9.1 Patch for NFSS2

Japanese patch for NFSS2 in LuaTEX-ja is based on plfonts.dtx which plays the same role in pLATEX 2𝜀.
We will describe commands which are not described in Subsection 3.1.

additonal dimensions
Like pLATEX 2𝜀, LuaTEX-ja defines the following dimensions for information of current Japanese font:

\cht (height), \cdp (depth), \cHT (sum of former two),
\cwd (width), \cvs (lineskip), \chs (equals to \cwd)

26

and its \normalsize version:

\Cht (height), \Cdp (depth), \Cwd (width),
\Cvs (equals to \baselineskip), \Chs (equals to \cwd).

Note that \cwd and \cHT may differ from \zw and \zh respectively. On the one hand the former di-
mensions are determined from the character “あ”, but on the other hand \zw and \zh are specified by
JFM.

\DeclareYokoKanjiEncoding{⟨encoding⟩}{⟨text-settings⟩}{⟨math-settings⟩}
In NFSS2 under LuaTEX-ja, distinction between alphabetic font families and Japanese font families are
only made by their encodings. For example, encodings OT1 and T1 are for alphabetic font families, and
a Japanese font family cannot have these encodings. This command defines a new encoding scheme for
Japanese font family (in horizontal direction).

\DeclareKanjiEncodingDefaults{⟨text-settings⟩}{⟨math-settings⟩}

\DeclareKanjiSubstitution{⟨encoding⟩}{⟨family⟩}{⟨series⟩}{⟨shape⟩}

\DeclareErrorKanjiFont{⟨encoding⟩}{⟨family⟩}{⟨series⟩}{⟨shape⟩}{⟨size⟩}
The above 3 commands are just the counterparts for \DeclareFontEncodingDefaults and others.

\reDeclareMathAlphabet{⟨unified-cmd⟩}{⟨al-cmd⟩}{⟨ja-cmd⟩}

\DeclareRelationFont{⟨ja-encoding⟩}{⟨ja-family⟩}{⟨ja-series⟩}{⟨ja-shape⟩}
{⟨al-encoding⟩}{⟨al-family⟩}{⟨al-series⟩}{⟨al-shape⟩}

This command sets the “accompanied” alphabetic font family (given by the latter 4 arguments) with
respect to a Japanese font family given by the former 4 arguments.

\SetRelationFont
This command is almost same as \DeclareRelationFont, except that this command does a local
assignment, where \DeclareRelationFont does a global assignment.

\userelfont
Change current alphabetic font encoding/family/… to the ‘accompanied’ alphabetic font family with re-
spect to current Japanese font family, which was set by \DeclareRelationFont or \SetRelationFont.
Like \fontfamily, \selectfont is required to take an effect.

\adjustbaseline
In pLATEX 2𝜀, \adjustbaseline sets \tbaselineshift to match the vertical center of “M” and that
of “あ” in vertical typesetting:

\tbaselineshift ←
(ℎM + 𝑑M) − (ℎあ + 𝑑あ)

2
+ 𝑑あ − 𝑑M,

where ℎ𝑎 and 𝑑𝑎 denote the height of “𝑎” and the depth, respectively.
Current LuaTEX-ja does not support vertical typesetting, so this \adjustbaseline has almost no
effect.

\fontfamily{⟨family⟩}
As in LATEX 2𝜀, this command changes current font family (alphabetic, Japanese, or both) to ⟨family⟩.
Which family will be changed is determined as follows:

• Let current encoding scheme for Japanese fonts be ⟨ja-enc⟩. Current Japanese font family will
be changed to ⟨family⟩, if one of the following two conditions is met:

– The family ⟨family⟩ under the encoding ⟨ja-enc⟩ has been already defined by \DeclareKanijFamily.
– A font definition named ⟨ja-enc⟩⟨family⟩.fd (the file name is all lowercase) exists.

• Let current encoding scheme for alphabetic fonts be ⟨al-enc⟩. For alphabetic font family, the
criterion as above is used.

• There is a case which none of the above applies, that is, the font family named ⟨family⟩ doesn’t
seem to be defined neither under the encoding ⟨ja-enc⟩, nor under ⟨al-enc⟩. In this case, the
default family for font substitution is used for alphabetic and Japanese fonts. Note that current
encoding will not be set to ⟨family⟩, unlike the original implementation in LATEX.

27

\DeclareAlternateKanjiFont{⟨base-encoding⟩}{⟨base-family⟩}{⟨base-series⟩}{⟨base-shape⟩}
{⟨alt-encoding⟩}{⟨alt-family⟩}{⟨alt-series⟩}{⟨alt-shape⟩}{⟨range⟩}

As \ltjdeclarealtfont (Subsection 8.3), characters in ⟨range⟩ of the Japanese font (we say the base
font) which specified by first 4 arguments are typeset by the Japanese font which specified by fifth to
eighth arguments (we say the alternate font). An example is shown in Figure 2.

• In \ltjdeclarealtfont, the base font and the alternate font must be already defined. But this
\DeclareAlternateKanjiFont is not so. In other words, \DeclareAlternateKanjiFont
is effective only after current Japanese font is changed, or only after \selectfont is executed.

• …

As closing this subsection, we shall introduce an example of \SetRelationFont and \userelfont:

1 \makeatletter
2 \SetRelationFont{JY3}{\k@family}{m}{n}{OT1}{pag}{m}{n}
3 % \k@family: current Japanese font family
4 \userelfont\selectfont あいうabc

あいう abc

10 Addons

LuaTEX-ja has several addon packages. These addons are written as LATEX packages, but luatexja-otf
and luatexja-adjust can be loaded in plain LuaTEX by \input.

10.1 luatexja-fontspec.sty

As described in Subsection 3.2, this optional package provides the counterparts for several commands de-
fined in the fontspec package．In addition to OpenType font features in the original fontspec, the fol-
lowing “font features” specifications are allowed for the commands of Japanese version:

CID=⟨name⟩

JFM=⟨name⟩

JFM-var=⟨name⟩
These 3 keys correspond to cid, jfm and jfmvar keys for \jfont respectively. CID is effective
only when with NoEmbed described below. See Subsections 6.1 and 6.2 for details.

NoEmbed By specifying this key, one can use “name-only” Japanese font which will not be embedded in
the output PDF file. See Subsection 6.2.

10.2 luatexja-otf.sty

This optional package supports typesetting characters in Adobe-Japan1 character collection (or other CID
character collecton, if the font is supported). The package luatexja-otf offers the following 2 low-level
commands:

\CID{⟨number⟩} Typeset a character whose CID number is ⟨number⟩.

\UTF{⟨hex number⟩} Typeset a character whose character code is ⟨hex number⟩ (in hexadecimal). This
command is similar to \char"⟨hex number⟩, but please remind remarks below.

■Remarks Characters by \CID and \UTF commands are different from ordinary characters in the follow-
ing points:

• Always treated as JAchars.

• Processing codes for supporting OpenType features (e.g., glyph replacement and kerning) by the
luaotfload package is not performed to these characters.

28

no adjustment 　　　　■　　　　■　　　　■　　　　■以上の原理は，「包除原理」とよく呼ばれるが
without priority 　　　　■　　　　■　　　　■　　　　■以上の原理は，「包除原理」とよく呼ばれるが
with priority 　　　　■　　　　■　　　　■　　　　■以上の原理は，「包除原理」とよく呼ばれるが

Note: the value of kanjiskip is 0 pt+1/5 em
−1/5 em in this figure, for making the difference obvious.

Figure 3. Line adjustment

■Additional syntax of JFM The package luatexja-otf extends the syntax of JFM; the entries of
chars table in JFM now allows a string in the form 'AJ1-xxx', which stands for the character whose
CID number in Adobe-Japan1 is xxx.

This extened notation is used in the standard JFM jfm-ujis.lua to typeset halfwidth Hiragana glyphs
(CID 516–598) in halfwidth.

■IVS support Recent fonts support Ideographic Variation Selector (IVS). It seems that luaotfload and
fontspec packages do not support IVS, so we implemented IVS support in luatexja-otf. IVS support is
experimental; if you want to enable this, load luatexja-otf and execute the following:

\directlua{luatexja.otf.enable_ivs()}

After executing the command above, you can use IVS like the following:

1 \Large
2 \jfontspec{KozMinPr6N-Regular}
3 奈良県葛0E0

100城市と，東京都葛0E0
101飾区．\\

4 こんにちは，渡
5 邉0E0

100邉0E0
101邉0E0

102邉0E0
103邉0E0

104

6 邉0E0
105邉0E0

106邉0E0
107邉0E0

108邉0E0
109

7 邉0E0
10A邉0E0

10B邉0E0
10C邉0E0

10D邉0E0
10E

8 さん．

奈良県葛城市と，東京都󱅏飾区．
こんにちは，渡邉󱈳󱓙󱓚󱓛󱓜󱓝󱓞󱓟
󱓠󱓡󱓢󱓣󱓤󱖄さん．

Specifying glyph variants by IVS precedes glyph replacement by font features. For example, only “葛”
in “葛西” is changed by font features jp78 or jp90, which does not followed by any variation selector.

1 \def\TEST#1{%
2 {\jfontspec[#1]{KozMinPr6N-Regular}%
3 葛0E0

100城市，葛0E0
101飾区，葛西}\\}

4 指定なし：\TEST{}
5 \texttt{jp78}：\TEST{CJKShape=JIS1978}
6 \texttt{jp90}：\TEST{CJKShape=JIS1990}

指定なし：葛城市，󱅏飾区，葛西
jp78：葛城市，󱅏飾区，󱅏西
jp90：葛城市，󱅏飾区，葛西

10.3 luatexja-adjust.sty

(see Japanese version of this manual)

Part III

Implementations
11 Storing Parameters

11.1 Used Dimensions, Attributes and Whatsit Nodes

Here the following is the list of dimensions and attributes which are used in LuaTEX-ja.

29

\jQ (dimension) \jQ is equal to 1 Q = 0.25 mm, where “Q” (also called “級”) is a unit used in Japanese
phototypesetting. So one should not change the value of this dimension.

\jH (dimension) There is also a unit called “歯” which equals to 0.25 mm and used in Japanese photo-
typesetting. This \jH is the same \dimen register as \jQ.

\ltj@zw (dimension) A temporal register for the “full-width” of current Japanese font. The command
\zw sets this register to the correct value, and “return” this register itself.

\ltj@zh (dimension) A temporal register for the “full-height” (usually the sum of height of imaginary
body and its depth) of current Japanese font. The command \zh sets this register to the correct
value, and “return” this register itself.

\jfam (attribute) Current number of Japanese font family for math formulas.

\ltj@curjfnt (attribute) The font index of current Japanese font.

\ltj@charclass (attribute) The character class of Japanese glyph node.

\ltj@yablshift (attribute) The amount of shifting the baseline of alphabetic fonts in scaled point
(2−16 pt).

\ltj@ykblshift (attribute) The amount of shifting the baseline of Japanese fonts in scaled point (2−16 pt).

\ltj@autospc (attribute) Whether the auto insertion of kanjiskip is allowed at the node.

\ltj@autoxspc (attribute) Whether the auto insertion of xkanjiskip is allowed at the node.

\ltj@icflag (attribute) An attribute for distinguishing “kinds” of a node. One of the following value
is assigned to this attribute:

italic (1) Glues from an italic correction (\/). This distinction of origins of glues (from explicit
\kern, or from \/) is needed in the insertion process of xkanjiskip.

packed (2)
kinsoku (3) Penalties inserted for the word-wrapping process (kinsoku shori) of Japanese charac-

ters.
(from jfm − 2)–(from jfm + 2) (4–8) Glues/kerns from JFM.
kanji skip (9), kanji skip jfm (10) Glues from kanjiskip.
xkanji skip (11), xkanji skip jfm (12) Glues from xkanjiskip.
processed (13) Nodes which is already processed by ….
ic processed (14) Glues from an italic correction, but already processed in the insertion process of

JAglues.
boxbdd (15) Glues/kerns that inserted just the beginning or the ending of an hbox or a paragraph.

\ltj@kcat𝑖 (attribute) Where 𝑖 is a natural number which is less than 7. These 7 attributes store bit vec-
tors indicating which character block is regarded as a block of JAchars.

Furthermore, LuaTEX-ja uses several user-defined whatsit nodes for inrernal processing. All those nodes
store a natural number (hence the node’s type is 100). Their user id (used for distinguish user-defined
whatsits) are allocated by luatexbase.newuserwhatsitid.

inhibitglue Nodes for indicating that \inhibitglue is specified. The value field of these nodes doesn’t
matter.

stack marker Nodes for LuaTEX-ja’s stack system (see the next subsection). The value field of these nodes
is current group level.

char by cid Nodes for JAchar which the callback process of luaotfload won’t be applied, and the char-
acter code is stored in the value field. Each node of this type are converted to a glyph node after the
callback process of luaotfload. Nodes of this type is used in \CID, \UTF and IVS support.

30

replace vs Similar to char by cid whatsits above. These nodes are for ALchar which the callback process
of luaotfload won’t be applied.

begin par Nodes for indicating beginning of a paragraph. A paragraph which is started by \item in list-like
environments has a horizontal box for its label before the actual contents. So …

These whatsits will be removed during the process of inserting JAglues.

11.2 Stack System of LuaTEX-ja

■Background LuaTEX-ja has its own stack system, and most parameters of LuaTEX-ja are stored in it. To
clarify the reason, imagine the parameter kanjiskip is stored by a skip, and consider the following source:

1 \ltjsetparameter{kanjiskip=0pt}ふがふが.%
2 \setbox0=\hbox{%
3 \ltjsetparameter{kanjiskip=5pt}ほげほげ}
4 \box0.ぴよぴよ\par

ふがふが.ほ げ ほ げ.ぴよぴよ

As described in Subsection 7.1, the only effective value of kanjiskip in an hbox is the latest value, so the
value of kanjiskip which applied in the entire hbox should be 5 pt. However, by the implementation method
of LuaTEX, this “5 pt” cannot be known from any callbacks. In the tex/packaging.w, which is a file in the
source of LuaTEX, there are the following codes:

1226 void package(int c)
1227 {
1228 scaled h; /* height of box */
1229 halfword p; /* first node in a box */
1230 scaled d; /* max depth */
1231 int grp;
1232 grp = cur_group;
1233 d = box_max_depth;
1234 unsave();
1235 save_ptr -= 4;
1236 if (cur_list.mode_field == -hmode) {
1237 cur_box = filtered_hpack(cur_list.head_field,
1238 cur_list.tail_field, saved_value(1),
1239 saved_level(1), grp, saved_level(2));
1240 subtype(cur_box) = HLIST_SUBTYPE_HBOX;

Notice that unsave() is executed before filtered hpack(), where hpack filter callback is executed)
here. So “5 pt” in the above source is orphaned at unsave(), and hence it can’t be accessed from hpack filter
callback.

■Implementation The code of stack system is based on that in a post of Dev-luatex mailing list6.
These are two TEX count registers for maintaining information: \ltj@@stack for the stack level, and

\ltj@@group@level for the TEX’s group level when the last assignment was done. Parameters are stored
in one big table named charprop stack table, where charprop stack table[𝑖] stores data of stack
level 𝑖. If a new stack level is created by \ltjsetparameter, all data of the previous level is copied.

To resolve the problem mentioned in above paragraph “Background”, LuaTEX-ja uses another trick.
When the stack level is about to be increased, a whatsit node whose type, subtype and value are 44 (user defined),
stack marker and the current group level respectively is appended to the current list (we refer this node by
stack flag). This enables us to know whether assignment is done just inside a hbox. Suppose that the stack
level is 𝑠 and the TEX’s group level is 𝑡 just after the hbox group, then:

• If there is no stack flag node in the list of the contents of the hbox, then no assignment was occurred
inside the hbox. Hence values of parameters at the end of the hbox are stored in the stack level 𝑠.

• If there is a stack flag node whose value is 𝑡 + 1, then an assignment was occurred just inside the hbox
group. Hence values of parameters at the end of the hbox are stored in the stack level 𝑠 + 1.

6[Dev-luatex] tex.currentgrouplevel, a post at 2008/8/19 by Jonathan Sauer.

31

380 \protected\def\ltj@setpar@global{%
381 \relax\ifnum\globaldefs>0\directlua{luatexja.isglobal='global'}%
382 \else\directlua{luatexja.isglobal=''}\fi
383 }
384 \protected\def\ltjsetparameter#1{%
385 \ltj@setpar@global\setkeys[ltj]{japaram}{#1}\ignorespaces}
386 \protected\def\ltjglobalsetparameter#1{%
387 \relax\ifnum\globaldefs<0\directlua{luatexja.isglobal=''}%
388 \else\directlua{luatexja.isglobal='global'}\fi%
389 \setkeys[ltj]{japaram}{#1}\ignorespaces}

Figure 4. Definiton of parameter setting commands

• If there are stack flag nodes but all of their values are more than 𝑡+1, then an assignment was occurred
in the box, but it is done in more internal group. Hence values of parameters at the end of the hbox
are stored in the stack level 𝑠.

Note that to work this trick correctly, assignments to \ltj@@stack and \ltj@@group@level have to
be local always, regardless the value of \globaldefs. To solve this problem, we use another trick: the
assignment \directlua{tex.globaldefs=0} is always local.

11.3 Lua Functions of the Stack System

In this subsection, we will see how a user use LuaTEX-ja’s stack system to store some data which obeys the
grouping of TEX.

The following function can be used to store data into a stack:

luatexja.stack.set_stack_table(index, <any> data)

Any values which except nil and NaN are usable as index. However, a user should use only negative integers
or strings as index, since natural numbers are used by LuaTEX-ja itself. Also, whether data is stored locally
or globally is determined by luatexja.isglobal (stored globally if and only if luatexja.isglobal ==
'global').

Stored data can be obtained as the return value of

luatexja.stack.get_stack_table(index, <any> default, <number> level)

where level is the stack level, which is usually the value of \ltj@@stack, and default is the default value
which will be returned if no values are stored in the stack table whose level is level.

11.4 Extending Parameters

Keys for \ltjsetparameter and \ltjgetparameter can be extended, as in luatexja-adjust.

■Setting parameters Figure 4 shows the “most outer” definition of two commands, \ltjsetparameter
and \ltjglobalsetparameter. Most important part is the last \setkeys, which is offered by the xkeyval
package.

Hence, to add a key in \ltjsetparameter, one only have to add a key whose prefix is ltj and whose
family is japaram, as the following.

\define@key[ltj]{japaram}{...}{...}

\ltjsetparameter and \ltjglobalsetparameter automatically sets luatexja.isglobal. Its mean-
ing is the following.

luatexja.isglobal =
{

'global' global
'' local

(1)

This is determined not only by command name (\ltjsetparameter or \ltjglobalsetparameter), but
also by the value of \globaldefs.

32

start 𝑁

𝑀

𝑆

𝐾

scan a c.s.

G, O 10

G, O
1010

(∗)
(∗)

5 [␣]

G, O

55 [\par]

J

J

O

10

G, J

J

5

G Beginning of group (usually {)
and ending of group (usually }).

J Japanese characters.

5 end-of-line (usually ^^J).

10 space (usually ␣).

O other characters, whose category code is in
{3, 4, 6, 7, 8, 11, 12, 13}.

[␣], [\par] emits a space, or \par.

• We omitted about category codes 9 (ignored), 14 (comment), and 15 (invalid) from the above diagram. We also
ignored the input like “^^A” or “^^df”.

• When a character whose category code is 0 (escape character) is seen by TEX, the input processor scans a control
sequence (scan a c.s.). These paths are not shown in the above diagram.
After that, the state is changed to State 𝑆 (skipping blanks) in most cases, but to State 𝑀 (middle of line) some-
times.

Figure 5. State transitions of pTEX’s input processor

12 Linebreak after a Japanese Character

12.1 Reference: Behavior in pTEX

In pTEX, a line break after a Japanese character doesn’t emit a space, since words are not separated by spaces
in Japanese writings. However, this feature isn’t fully implemented in LuaTEX-ja due to the specification of
callbacks in LuaTEX. To clarify the difference between pTEX and LuaTEX, We briefly describe the handling
of a line break in pTEX, in this subsection.

pTEX’s input processor can be described in terms of a finite state automaton, as that of TEX in Section 2.5
of [1]. The internal states are as follows:

• State 𝑁 : new line

• State 𝑆: skipping spaces

• State 𝑀 : middle of line

• State 𝐾: after a Japanese character

The first three states—𝑁 , 𝑆, and 𝑀—are as same as TEX’s input processor. State 𝐾 is similar to state 𝑀 ,
and is entered after Japanese characters. The diagram of state transitions are indicated in Figure 5. Note that
pTEX doesn’t leave state 𝐾 after “beginning/ending of a group” characters.

12.2 Behavior in LuaTEX-ja

States in the input processor of LuaTEX is the same as that of TEX, and they can’t be customized by any
callbacks. Hence, we can only use process_input_buffer and token_filter callbacks for to suppress
a space by a line break which is after Japanese characters.

However, token_filter callback cannot be used either, since a character in category code 5 (end-of-
line) is converted into an space token in the input processor. So we can use only the process_input_buffer
callback. This means that suppressing a space must be done just before an input line is read.

Considering these situations, handling of an end-of-line in LuaTEX-ja are as follows:

33

A character U+FFFFF (its category code is set to 14 (comment) by LuaTEX-ja) is appended to
an input line, before LuaTEX actually process it, if and only if the following three conditions are
satisfied:

1. The category code of \endlinechar7 is 5 (end-of-line).
2. The category code of U+FFFFF itself is 14 (comment).
3. The input line matches the following “regular expression”:

(any char)∗(JAchar)({catcode = 1} ∪ {catcode = 2})
∗

■Remark The following example shows the major difference from the behavior of pTEX.

1 \fontspec[Ligatures=TeX]{TeX Gyre Termes}
2 \ltjsetparameter{autoxspacing=false}
3 \ltjsetparameter{jacharrange={-6}}xあ
4 y\ltjsetparameter{jacharrange={+6}}zい
5 u

xyzい u

It is not strange that “あ” does not printed in the above output. This is because TEX Gyre Termes does not
contain “あ”, and because “あ” in line 3 is considered as an ALchar.

Note that there is no space before “y” in the output, but there is a space before “u”. This follows from
following reasons:

• When line 3 is processed by process input buffer callback, “あ” is considered as an JAchar.
Since line 3 ends with an JAchar, the comment character U+FFFFF is appended to this line, and hence
the linebreak immediately after this line is ignored.

• When line 4 is processed by process input buffer callback, “い” is considered as an ALchar.
Since line 4 ends with an ALchar, the linebreak immediately after this line emits a space.

13 Patch for the listings Package

It is well-known that the listings package outputs weird results for Japanese input. The listings package
makes most of letters active and assigns output command for each letter ([2]). But Japanese characters are not
included in these activated letters. For pTEX series, there is no method to make Japanese characters active; a
patch jlisting.sty ([4]) resolves the problem forcibly.

In LuaTEX-ja, the problem is resolved by using the process_input_buffer callback. The callback
function inserts the output command (active character U+FFFFF) before each letter above U+0080. This
method can omits the process to make all Japanese characters active (most of the activated characters are
not used in many cases).

If the listings package and LuaTEX-ja were loaded, then the patch lltjp-listings is loaded auto-
matically at \begin{document}.

13.1 Notes
■Escaping to LATEX We used the process_input_buffer callback to output JAchars. But it has a
drawback; any commands whose name contains a JAchar cannot be used in any “escape to LATEX”.

Consider the following input:

\begin{lstlisting}[escapechar=`\#]
#\ほげ ␣xぴよ#
\end{lstlisting}

The line 2 is transformed by the callback to
#\0FF

FFFほ 0FF
FFFげ␣x0FF

FFFぴ 0FF
FFFよ#

before the line is actually processed. In the escape (between the character “#”), the category code of U+FFFFF
is set to 9 (ignored). Hence the control symbol “\ 0FF

FFF” will be executed, instead of “\ほげ”.
7Usually, it is ⟨return⟩ (whose character code is 13).

34

13.2 Class of Characters

Roughly speaking, the listings package processes input as follows:

1. Collects letters and digits, which can be used for the name of identifiers.

2. When reading an other, outputs the collected character string (with modification, if needed).

3. Collects others.

4. When reading a letter or a digit, outputs the collected character string.

5. Turns back to 1.

By the above process, line breaks inside of an identifier are blocked. A flag \lst@ifletter indicates
whether the previous character can be used for the name of identifiers or not.

For Japanese characters, line breaks are permitted on both sides except for brackets, dashes, etc. Hence
the patch lltjp-listings introduces a new flag \lst@ifkanji, which indicates whether the previous
character is a Japanese character or not. For illustration, we introduce following classes of characters:

Letter Other Kanji Open Close

\lst@ifletter T F T F T
\lst@ifkanji F F T T F
Meaning char in an identifier other alphabet most of Japanese char opening brackets closing brackets

Note that digits in the listings package can be Letter or Other according to circumstances.
For example, let us consider the case an Open comes after a Letter. Since an Open represents Japanese

open brackets, it is preferred to be permitted to insert line break after the Letter. Therefore, the collected
character string is output in this case.

The following table summarizes 5 × 5 = 25 cases:

Next

Letter Other Kanji Open Close

Letter collects outputs collects
Other outputs collects outputs collects

Prev Kanji outputs collects
Open collects
Close outputs collects

In the above table,

• “outputs” means to output the collected character string (i.e., line breaking is permitted there).

• “collects” means to append the next character to the collected character string (i.e., line breaking is
prohibited there).

Charatcers above U+0080 except Variation Selectors are classified into above 5 classes by the following
rules:

• ALchars above U+0080 are classified as Letter.

• JAchars are classified in the order as follows:

1. Characters whose prebreakpenalty is greater than or equal to 0 are classified as Open.
2. Characters whose postbreakpenalty is greater than or equal to 0 are classified as Close.
3. Characters that don’t satisfy the above two conditions are classified as Kanji.

The width of halfwidth kana (U+FF61–U+FF9F) is same as the width of ALchar; the width of the other
JAchars is double the width of ALchar.

This classification process is executed every time a character appears in the lstlisting environment
or other environments/commands.

35

Table 8. cid key and corresponding files

cid key name of the cache used CMaps

Adobe-Japan1-* ltj-cid-auto-adobe-japan1.lua UniJIS2004-UTF32-H Adobe-Japan1-UCS2
Adobe-Korea1-* ltj-cid-auto-adobe-korea1.lua UniKS-UTF32-H Adobe-Korea1-UCS2
Adobe-GB1-* ltj-cid-auto-adobe-gb1.lua UniGB-UTF32-H Adobe-GB1-UCS2
Adobe-CNS1-* ltj-cid-auto-adobe-cns1.lua UniCNS-UTF32-H Adobe-CNS1-UCS2

14 Cache Management of LuaTEX-ja

LuaTEX-ja creates some cache files to reduce the loading time. in a similar way to the luaotfload package:

• Cache files are usually stored in (and loaded from) $TEXMFVAR/luatexja/.

• In addition to caches of the text form (the extension is “.lua”), caches of the binary, precompiled
form are supported.

– We cannot share same binary cache for LuaTEX and LuaJITTEX. Hence we distinguish them by
their extension, “.luc” for LuaTEX and “.lub” for LuaJITTEX.

– In loading a cache, the binary cache precedes the text form.
– When LuaTEX-ja updates a cache hoge.lua, its binary version is also updated.

14.1 Use of Cache

LuaTEX-ja uses the following cache:

ltj-cid-auto-adobe-japan1.lua The font table of a CID-keyed non-embedded Japanese font. This is
loaded in every run. It is created from two CMaps, UniJIS2004-UTF32-H and Adobe-Japan1-UCS2,
and this is why these two CMaps are needed in the first run of LuaTEX-ja.
Similar caches are created as Table 8, if you specified cid key in \jfont to use other CID-keyed
non-embedded fonts for Chinese or Korean, as in Page 17.

ivs ***.lua This file stores the table of Unicode variants in a font “***”. The structure of the table is the
following:

return {
{
[10955]={ -- U+2ACB "Subset Of Above Not Equal To"
[65024]=983879, -- <2ACB FE00>
},
[37001]={ -- U+9089 "邉"
[0]=37001, -- <9089 E0100>
991049, -- <9089 E0101>
...
},
...
},
["chksum"]="FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", -- checksum of the fontfile
["version"]=4, -- version of the cache
}

ltj-jisx0208.{luc|lub} The binary version of ltj-jisx0208.lua. This is the conversion table be-
tween JIS X 0208 and Unicode which is used in Kanji-code conversion commands for compatibility
with pTEX.

36

14.2 Internal

Cache management system of LuaTEX-ja is stored in luatexja.base (ltj-base.lua). There are three
public functions for cache management in luatexja.base, where ⟨filename⟩ stands for the filename without
suffix:

save cache(⟨filename⟩, ⟨data⟩) Save a non-nil table ⟨data⟩ into a cache ⟨filename⟩. Both the text form
⟨filename⟩.lua and its binary version are created or updated.

save cache luc(⟨filename⟩, ⟨data⟩[, ⟨serialized data⟩])
Same as save cache, except that only the binary cache is updated. The third argument ⟨serial-
ized data⟩ is not usually given. But if this is given, it is treated as a string representation of ⟨data⟩.

load cache(⟨filename⟩, ⟨outdate⟩) Load the cache ⟨filename⟩. ⟨outdate⟩ is a function which takes one
argument (the contents of the cache), and its return value is whether the cache is outdated.
load cache first tries to read the binary cache ⟨filename⟩.{luc|lub}. If its contents is up-to-date,
load cache returns the contents. If the binary cache is not found or its contents is outdated, load cache
tries to read the text form ⟨filename⟩.lua. Hence, the return value of load cache is non-nil, if and
only if the updated cache is found.

References

[1] Victor Eijkhout. TEX by Topic, A TEXnician’s Reference, Addison-Wesley, 1992.

[2] C. Heinz, B. Moses. The Listings Package.

[3] Takuji Tanaka. upTeX—Unicode version of pTeX with CJK extensions, TUG 2013, October 2013.
http://tug.org/tug2013/slides/TUG2013_upTeX.pdf

[4] Thor Watanabe. Listings - MyTeXpert. http://mytexpert.sourceforge.jp/index.php?
Listings

[5] W3C Japanese Layout Task Force (ed). Requirements for Japanese Text Layout (W3C Working Group
Note), 2011, 2012. http://www.w3.org/TR/jlreq/

[6] 乙部厳己，min10フォントについて．
http://argent.shinshu-u.ac.jp/~otobe/tex/files/min10.pdf

[7] 日本工業規格 (Japanese Industrial Standard), JIS X 4051,日本語文書の組版方法 (Formatting rules
for Japanese documents), 1993, 1995, 2004.

37

http://tug.org/tug2013/slides/TUG2013_upTeX.pdf
http://mytexpert.sourceforge.jp/index.php?Listings
http://mytexpert.sourceforge.jp/index.php?Listings
http://www.w3.org/TR/jlreq/
http://argent.shinshu-u.ac.jp/~otobe/tex/files/min10.pdf

A Package versions used in this document

This document was typeset using the following packages:

geometry.sty 2010/09/12 v5.6 Page Geometry

keyval.sty 1999/03/16 v1.13 key=value parser (DPC)

ifpdf.sty 2011/01/30 v2.3 Provides the ifpdf switch (HO)

ifvtex.sty 2010/03/01 v1.5 Detect VTeX and its facilities (HO)

ifxetex.sty 2010/09/12 v0.6 Provides ifxetex conditional

luatexja-adjust.sty 2013/05/14

luatexja.sty 2013/05/14 Japanese Typesetting with LuaTeX

luatexja-core.sty 2014/02/01 Core of LuaTeX-ja

luaotfload.sty 2013/12/28 v2.4 OpenType layout system

luatexbase.sty 2013/05/11 v0.6 Resource management for the LuaTeX macro programmer

ifluatex.sty 2010/03/01 v1.3 Provides the ifluatex switch (HO)

luatex.sty 2010/03/09 v0.4 LuaTeX basic definition package (HO)

infwarerr.sty 2010/04/08 v1.3 Providing info/warning/error messages (HO)

etex.sty 1998/03/26 v2.0 eTeX basic definition package (PEB)

luatex-loader.sty 2010/03/09 v0.4 Lua module loader (HO)

luatexbase-compat.sty 2011/05/24 v0.4 Compatibility tools for LuaTeX

luatexbase-modutils.sty 2013/05/11 v0.6 Module utilities for LuaTeX

luatexbase-loader.sty 2013/05/11 v0.6 Lua module loader for LuaTeX

luatexbase-regs.sty 2011/05/24 v0.4 Registers allocation for LuaTeX

luatexbase-attr.sty 2013/05/11 v0.6 Attributes allocation for LuaTeX

luatexbase-cctb.sty 2013/05/11 v0.6 Catcodetable allocation for LuaTeX

luatexbase-mcb.sty 2013/05/11 v0.6 Callback management for LuaTeX

ltxcmds.sty 2011/11/09 v1.22 LaTeX kernel commands for general use (HO)

pdftexcmds.sty 2011/11/29 v0.20 Utility functions of pdfTeX for LuaTeX (HO)

xkeyval.sty 2012/10/14 v2.6b package option processing (HA)

ltj-base.sty 2013/05/14

ltj-latex.sty 2013/05/14 LaTeX support of LuaTeX-ja

lltjfont.sty 2014/01/23 Patch to NFSS2 for LuaTeX-ja

lltjdefs.sty 2013/06/12 Default font settings of LuaTeX-ja

lltjcore.sty 2013/05/14 Patch to LaTeX2e Kernel for LuaTeX-ja

luatexja-compat.sty 2013/12/22 Compatibility with pTeX

expl3.sty 2014/01/07 v4646 L3 Experimental code bundle wrapper

l3names.sty 2014/01/04 v4640 L3 Namespace for primitives

l3bootstrap.sty 2014/01/04 v4640 L3 Experimental bootstrap code

l3basics.sty 2014/01/04 v4642 L3 Basic definitions

l3expan.sty 2014/01/04 v4642 L3 Argument expansion

l3tl.sty 2013/12/27 v4625 L3 Token lists

l3seq.sty 2013/12/14 v4623 L3 Sequences and stacks

l3int.sty 2013/08/02 v4583 L3 Integers

l3quark.sty 2013/12/14 v4623 L3 Quarks

l3prg.sty 2014/01/04 v4642 L3 Control structures

l3clist.sty 2013/07/28 v4581 L3 Comma separated lists

l3token.sty 2013/08/25 v4587 L3 Experimental token manipulation

l3prop.sty 2013/12/14 v4623 L3 Property lists

l3msg.sty 2013/07/28 v4581 L3 Messages

l3file.sty 2013/10/13 v4596 L3 File and I/O operations

l3skip.sty 2013/07/28 v4581 L3 Dimensions and skips

l3keys.sty 2013/12/08 v4614 L3 Experimental key-value interfaces

l3fp.sty 2014/01/04 v4642 L3 Floating points

l3box.sty 2013/07/28 v4581 L3 Experimental boxes

l3coffins.sty 2013/12/14 v4624 L3 Coffin code layer

l3color.sty 2012/08/29 v4156 L3 Experimental color support

l3luatex.sty 2013/07/28 v4581 L3 Experimental LuaTeX-specific functions

38

l3candidates.sty 2014/01/06 v4643 L3 Experimental additions to l3kernel

amsmath.sty 2013/01/14 v2.14 AMS math features

amstext.sty 2000/06/29 v2.01

amsgen.sty 1999/11/30 v2.0

amsbsy.sty 1999/11/29 v1.2d

amsopn.sty 1999/12/14 v2.01 operator names

array.sty 2008/09/09 v2.4c Tabular extension package (FMi)

tikz.sty 2010/10/13 v2.10 (rcs-revision 1.76)

pgf.sty 2008/01/15 v2.10 (rcs-revision 1.12)

pgfrcs.sty 2010/10/25 v2.10 (rcs-revision 1.24)

everyshi.sty 2001/05/15 v3.00 EveryShipout Package (MS)

pgfcore.sty 2010/04/11 v2.10 (rcs-revision 1.7)

graphicx.sty 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR)

graphics.sty 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR)

trig.sty 1999/03/16 v1.09 sin cos tan (DPC)

pgfsys.sty 2010/06/30 v2.10 (rcs-revision 1.37)

xcolor.sty 2007/01/21 v2.11 LaTeX color extensions (UK)

pgfcomp-version-0-65.sty 2007/07/03 v2.10 (rcs-revision 1.7)

pgfcomp-version-1-18.sty 2007/07/23 v2.10 (rcs-revision 1.1)

pgffor.sty 2010/03/23 v2.10 (rcs-revision 1.18)

pgfkeys.sty

pict2e.sty 2014/01/12 v0.2z Improved picture commands (HjG,RN,JT)

multienum.sty

float.sty 2001/11/08 v1.3d Float enhancements (AL)

booktabs.sty 2005/04/14 v1.61803 publication quality tables

multicol.sty 2011/06/27 v1.7a multicolumn formatting (FMi)

listings.sty 2013/08/26 1.5b (Carsten Heinz)

lstmisc.sty 2013/08/26 1.5b (Carsten Heinz)

showexpl.sty 2014/01/19 v0.3l Typesetting example code (RN)

calc.sty 2007/08/22 v4.3 Infix arithmetic (KKT,FJ)

ifthen.sty 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC)

varwidth.sty 2009/03/30 ver 0.92; Variable-width minipages

hyperref.sty 2012/11/06 v6.83m Hypertext links for LaTeX

hobsub-hyperref.sty 2012/05/28 v1.13 Bundle oberdiek, subset hyperref (HO)

hobsub-generic.sty 2012/05/28 v1.13 Bundle oberdiek, subset generic (HO)

hobsub.sty 2012/05/28 v1.13 Construct package bundles (HO)

intcalc.sty 2007/09/27 v1.1 Expandable calculations with integers (HO)

etexcmds.sty 2011/02/16 v1.5 Avoid name clashes with e-TeX commands (HO)

kvsetkeys.sty 2012/04/25 v1.16 Key value parser (HO)

kvdefinekeys.sty 2011/04/07 v1.3 Define keys (HO)

pdfescape.sty 2011/11/25 v1.13 Implements pdfTeX's escape features (HO)

bigintcalc.sty 2012/04/08 v1.3 Expandable calculations on big integers (HO)

bitset.sty 2011/01/30 v1.1 Handle bit-vector datatype (HO)

uniquecounter.sty 2011/01/30 v1.2 Provide unlimited unique counter (HO)

letltxmacro.sty 2010/09/02 v1.4 Let assignment for LaTeX macros (HO)

hopatch.sty 2012/05/28 v1.2 Wrapper for package hooks (HO)

xcolor-patch.sty 2011/01/30 xcolor patch

atveryend.sty 2011/06/30 v1.8 Hooks at the very end of document (HO)

atbegshi.sty 2011/10/05 v1.16 At begin shipout hook (HO)

refcount.sty 2011/10/16 v3.4 Data extraction from label references (HO)

hycolor.sty 2011/01/30 v1.7 Color options for hyperref/bookmark (HO)

auxhook.sty 2011/03/04 v1.3 Hooks for auxiliary files (HO)

kvoptions.sty 2011/06/30 v3.11 Key value format for package options (HO)

url.sty 2013/09/16 ver 3.4 Verb mode for urls, etc.

rerunfilecheck.sty 2011/04/15 v1.7 Rerun checks for auxiliary files (HO)

bookmark.sty 2011/12/02 v1.24 PDF bookmarks (HO)

amsthm.sty 2004/08/06 v2.20

39

luatexja-otf.sty 2013/05/14

luatexja-ajmacros.sty 2013/05/14

luatexja-preset.sty 2013/10/28 Japanese font presets

luatexja-fontspec.sty 2014/01/23 fontspec support of LuaTeX-ja

fontspec.sty 2013/05/20 v2.3c Font selection for XeLaTeX and LuaLaTeX

xparse.sty 2013/12/31 v4634 L3 Experimental document command parser

fontspec-patches.sty 2013/05/20 v2.3c Font selection for XeLaTeX and LuaLaTeX

fixltx2e.sty 2006/09/13 v1.1m fixes to LaTeX

fontspec-luatex.sty 2013/05/20 v2.3c Font selection for XeLaTeX and LuaLaTeX

fontenc.sty

xunicode.sty 2011/09/09 v0.981 provides access to latin accents and many other characters
in Unicode lower plane

unicode-math.sty 2013/05/04 v0.7e Unicode maths in XeLaTeX and LuaLaTeX

l3keys2e.sty 2013/12/31 v4634 LaTeX2e option processing using LaTeX3 keys

catchfile.sty 2011/03/01 v1.6 Catch the contents of a file (HO)

fix-cm.sty 2006/09/13 v1.1m fixes to LaTeX

filehook.sty 2011/10/12 v0.5d Hooks for input files

unicode-math-luatex.sty

lualatex-math.sty 2013/08/03 v1.3 Patches for mathematics typesetting with LuaLaTeX

etoolbox.sty 2011/01/03 v2.1 e-TeX tools for LaTeX

metalogo.sty 2010/05/29 v0.12 Extended TeX logo macros

lltjp-fontspec.sty 2013/05/14 Patch to fontspec for LuaTeX-ja

lltjp-xunicode.sty 2013/05/14 Patch to xunicode for LuaTeX-ja

lltjp-unicode-math.sty 2013/05/14 Patch to unicode-math for LuaTeX-ja

lltjp-listings.sty 2014/01/09 Patch to listings for LuaTeX-ja

epstopdf-base.sty 2010/02/09 v2.5 Base part for package epstopdf

grfext.sty 2010/08/19 v1.1 Manage graphics extensions (HO)

nameref.sty 2012/10/27 v2.43 Cross-referencing by name of section

gettitlestring.sty 2010/12/03 v1.4 Cleanup title references (HO)

40

	I User's manual
	Introduction
	Backgrounds
	Major Changes from pTeX
	Notations
	About the Project

	Getting Started
	Installation
	Cautions
	Using in plain TeX
	Using in LaTeX

	Changing Fonts
	plain TeX and LaTeX2ε
	fontspec
	Presets
	\CID, \UTF, and macros in japanese-otf package

	Changing Parameters
	Editing the Range of JAchars
	kanjiskip and xkanjiskip
	Insertion Setting of xkanjiskip
	Shifting the baseline

	II Reference
	\catcode in LuaTeX-ja
	Preliminaries: \kcatcode in pTeX and upTeX
	Case of LuaTeX-ja
	Non-kanji Characters in a Control Word

	Font Metric and Japanese Font
	\jfont
	Prefix psft
	Structure of a JFM File
	Math Font Family
	Callbacks

	Parameters
	\ltjsetparameter
	\ltjgetparameter

	Other Commands for plain TeX and LaTeX2ε
	Commands for Compatibility with pTeX
	\inhibitglue
	\ltjdeclarealtfont

	Commands for LaTeX2ε
	Patch for NFSS2

	Addons
	luatexja-fontspec.sty
	luatexja-otf.sty
	luatexja-adjust.sty

	III Implementations
	Storing Parameters
	Used Dimensions, Attributes and Whatsit Nodes
	Stack System of LuaTeX-ja
	Lua Functions of the Stack System
	Extending Parameters

	Linebreak after a Japanese Character
	Reference: Behavior in pTeX
	Behavior in LuaTeX-ja

	Patch for the listings Package
	Notes
	Class of Characters

	Cache Management of LuaTeX-ja
	Use of Cache
	Internal

	References
	Package versions used in this document

