The LuaTgX-ja package

The LuaTgX-ja project team

September 4, 2012

Contents

|

User’s manual

Introduction

1.1 Backgrounds e
1.2 Major Changes from pTEX o . e
1.3 Notations e e e
1.4 Aboutthe project o e e e e e e e

Getting Started

2.1 Installation L. e e e
2.2 Cautions e e e e e e
2.3 Usinginplain TEX o . 0 0 e e e
24 Using inI&TEX o o e e

Changing Fonts

3.1 plainTeX and IEX 2, o o oo
32 fONESPEC e
33 Preset
3.4 \CID, \UTF and macros in otf package

Changing Parameters

4.1 Editingtherangeof JAchars L
4.2 kanjiskip and xkanjiskip
4.3 Insertion Setting of xkanjiskip
4.4 Shifting Baseline

II Reference

5

6

Font Metric and Japanese Font

5.1 \jfontprimitive
52 Prefixpsft L e
5.3 Structure of JEM file
54 MathFontFamily 0. . e
5.5 Callbacks oL e

Parameters
6.1 \ltjsetparameter primitive

6.2 Listof Parameters e e

Other Primitives
7.1 Primitives for Compatibility
7.2 \inhibitglue primitive e

Control Sequences for IATEX 2,
81 PatchforNFSS2 e

AN L L L W A~ B~ W LW W

O 00 9 N &

10
10
11
12
12

13

13
13
14
15
16
16

18
18
18

19
19
20

20

9 Extensions 21

9.1 luatexja-fontspec.sty e 21
9.2 luatexja-otf.sty e e e 21
IIT Implementations 22
10 Storing Parameters 22
10.1 Used Dimensions, Attributes and whatsitnodes 22
10.2 Stack System of LuaTX-ja e 23
11 Linebreak after Japanese Character 24
11.1 Reference: Behavior in pTEX o o e 24
11.2 Behaviorin LuaTEX-ja e 24
12 Insertion of JFM glues, kanjiskip and xkanjiskip 25
12,1 OVErVIEW o o e e e e e e e 25
12.2 definition of a ‘cluster’ L e e 26
123 OO0O0OO0O0O0OOO000 . .. e e e e e e e e e e e e 27
124 OOOOO0OOO2 00000 AOOOO . .0 e e e e e e e e e 28
125 OOOOOO .« .o e e e e e e e e e e e 30
13 psft 33
14 Patch for the 1istings package 33
References 33
A Package versions used in this document 34

This documentation is far from complete. It may have many grammatical (and contextual) errors. Also,
several parts (especially, Section 12) are written in Japanese only.

Part 1
User’s manual

1 Introduction

The LuaTgX-ja package is a macro package for typesetting high-quality Japanese documents when using LuaTgX.

1.1 Backgrounds

Traditionally, ASCII pTEX, an extension of TgX, and its derivatives are used to typeset Japanese documents in
TeX. pTEX is an engine extension of TEX: so it can produce high-quality Japanese documents without using very
complicated macros. But this point is a mixed blessing: pTigX is left behind from other extensions of TgX, especially
&-TgX and pdfTEX, and from changes about Japanese processing in computers (e.g., the UTF-8 encoding).

Recently extensions of pTEX, namely upTEX (Unicode-implementation of pTEX) and epTeX (merging of pTX
and e-TgX extension), have developed to fill those gaps to some extent, but gaps still exist.

However, the appearance of LuaTgX changed the whole situation. With using Lua ‘callbacks’, users can cus-
tomize the internal processing of LuaTgX. So there is no need to modify sources of engines to support Japanese
typesetting: to do this, we only have to write Lua scripts for appropriate callbacks.

1.2 Major Changes from pTX

The LuaTgX-ja package is under much influence of pTX engine. The initial target of development was to implement
features of pTEX. However, LuaTgX-ja is not a just porting of pTgX; unnatural specifications/behaviors of pTgX were
not adopted.

The followings are major changes from pTEX:

* A Japanese font is a tuple of a ‘real’ font, a Japanese font metric (JFM, for short), and an optional string
called ‘variation’.

* In pTEX, a line break after Japanese character is ignored (and doesn’t yield a space), since line breaks (in
source files) are permitted almost everywhere in Japanese texts. However, LuaTgX-ja doesn’t have this func-
tion completely, because of a specification of LuaTgX.

* The insertion process of glues/kerns between two Japanese characters and between a Japanese character and
other characters (we refer these glues/kerns as JAglue) is rewritten from scratch.

— As LuaTgX’s internal character handling is ‘node-based’ (e.g., of {}fice doesn’t prevent ligatures), the
insertion process of JAglue is now ‘node-based’.

— Furthermore, nodes between two characters which have no effects in line break (e.g., \special node)
and kerns from italic correction are ignored in the insertion process.

— Caution: due to above two points, many methods which did for the dividing the process of the insertion of
JAglue in pTEX are not effective anymore. In concrete terms, the following two methods are not effective
anymore:

oo{xod Ooo\/oo
If you want to do so, please put an empty hbox between it instead:
O0O\hbox{}10J

— In the process, two Japanese fonts which only differ in their ‘real’ fonts are identified.

At the present, vertical typesetting (fategaki), is not supported in LuaTgX-ja.

For detailed information, see Part III.

1.3 Notations

In this document, the following terms and notations are used:

* Characters are divided into two types:

— JAchar: standing for Japanese characters such as Hiragana, Katakana, Kanji and other punctuation
marks for Japanese.

— ALchar: standing for all other characters like alphabets.
We say ‘alphabetic fonts’ for fonts used in ALchar, and ‘Japanese fonts’ for fonts used in JAchar.

e A word in a sans-serif font (like prebreakpenalty) means an internal parameter for Japanese typesetting,
and it is used as a key in \1tjsetparameter command.

* A word in typewriter font with underline (like fontspec) means a package or a class of IXIEX.

* The word ‘primitive’ is used not only for primitives in LuaTgX, but also for control sequences that defined in
the core module of LuaTgX-ja.

¢ In this document, natural numbers start from 0.

1.4 About the project

Project Wiki Project Wiki is under construction.

* http://sourceforge. jp/projects/luatex-ja/wiki/FrontPage’28en%29 (English)
* http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage (Japanese)

* http://sourceforge. jp/projects/luatex-ja/wiki/FrontPage’28zh%29 (Chinese)

This project is hosted by SourceForge.JP.

Members
e Hironori KITAGAWA o Kazuki MAEDA e Takayuki YATO
e Yusuke KUROKI e Noriyuki ABE e Munehiro YAMAMOTO
o Tomoaki HONDA e Shuzaburo SAITO o MA Qiyuan

http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28en%29
http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage
http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28zh%29

2 Getting Started

2.1 Installation
To install the LuaTgX-ja package, you will need:

e LuaTEX (version 0.65.0-beta or later) and its supporting packages.
If you are using TgX Live 2011 or current W32TgX, you don’t have to worry.

* The source archive of LuaTgX-ja, of course:)

» The xunicode package, which version is just v0.981 (2011/09/09).
If you have the fontspec package, this xunicode package must be exist. But be careful about the version;
other versions may not work correctly with LuaTgX-ja.

The installation methods are as follows:
1. Download the source archive, by one of the following method. At the present, LuaTgX-ja has no stable release.
* Copy the Git repository:
$ git clone git://git.sourceforge. jp/gitroot/luatex-ja/luatexja.git

* Download the tar. gz archive of HEAD in the master branch from

http:
//git.sourceforge. jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz.

* Now LuaTgX-ja is available from the following archive and distributions:

— CTAN (in the macros/luatex/generic/luatexja directory)
— MiIKTgX (in luatexja.tar.lzma)

— TgX Live (in texmf-dist/tex/luatex/luatexja)

— W32TgX (in luatexja.tar.xz)

These are based on the master branch.

Note that the master branch, and hence the archive in CTAN, are not updated frequently; the forefront of
development is not the master branch.

2. Extract the archive. You will see src/ and several other sub-directories. But only the contents in src/ are
needed to work LuaTEX-ja.

3. Copy all the contents of src/ into one of your TEXMF tree. TEXMF/tex/luatex/luatexja/ is an example
location. If you cloned entire Git repository, making a symbolic link of src/ instead copying is also good.

4. If mktexlsr is needed to update the file name database, make it so.

2.2 Cautions

» The encoding of your source file must be UTF-8. No other encodings, such as EUC-JP or Shift-JIS, are not
supported.

2.3 Using in plain TgX
To use LuaTEX-ja in plain TgX, simply put the following at the beginning of the document:
\input luatexja.sty

This does minimal settings (like ptex . tex) for typesetting Japanese documents:

¢ The following 6 Japanese fonts are preloaded:

http://git.sourceforge.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz
http://git.sourceforge.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz

classification font name ‘10 pt’ “Tpt ‘Spt’

mincho Ryumin-Light \tenmin \sevenmin \fivemin
gothic GothicBBB-Medium \tengt \sevengt \fivegt

— Itis widely accepted that the font ‘Ryumin-Light’ and ‘GothicBBB-Medium’ aren’t embedded into PDF
files, and PDF reader substitute them by some external Japanese fonts (e.g., Kozuka Mincho is used for
Ryumin-Light in Adobe Reader). We adopt this custom to the default setting.

— A character in an alphabetic font is generally smaller than a Japanese font in the same size. So actual
size specification of these Japanese fonts is in fact smaller than that of alphabetic fonts, namely scaled
by 0.962216.

* The amount of glue that are inserted between a JAchar and an ALchar (the parameter xkanjiskip) is set to

+1pt +1 pt
(0.25-0.962216 - 10py)”, [= 2.40554pt_, 7.

2.4 Using in BTEX

IXTEX 2, Using in ISTEX 2, is basically same. To set up the minimal environment for Japanese, you only have to
load luatexja.sty:

\usepackage{luatexja}

It also does minimal settings (counterparts in pI&EX are plfonts.dtx and pldefs.1ltx):

* JY3 is the font encoding for Japanese fonts (in horizontal direction).
When vertical typesetting is supported by LuaTgX-ja in the future, JT3 will be used for vertical fonts.

* Two font families mc and gt are defined:

classification family \mdseries \bfseries scale
mincho mc Ryumin-Light GothicBBB-Medium 0.962216
gothic gt GothicBBB-Medium GothicBBB-Medium 0.962216

Remark that the bold series in both family are same as the medium series of gothic family. This is a convention
in pI&TEX. This is a trace that there were only 2 fonts (these are Ryumin-Light and GothicBBB-Medium) in
early years of DTP.

* Japanese characters in math mode are typeset by the font family mc.

However, above settings are not sufficient for Japanese-based documents. To typeset Japanese-based docu-
ments, you are better to use class files other than article.cls, book.cls, and so on. At the present, we have the
counterparts of jclasses (standard classes in pI&IEX) and jsclasses (classes by Haruhiko Okumura), namely,
ltjclasses and 1tjsclasses.

3 Changing Fonts

3.1 plain TgX and BTEX 2,

plain TgX To change Japanese fonts in plain TgX, you must use the primitive \ jfont. So please see Subsec-
tion 5.1.

IXTEX 2. (NFSS2) For ISIEX 2., LuaTgX-ja adopted most of the font selection system of pIATEX 2, (inplfonts.dtx).

* Two control sequences \mcdefault and \gtdefault are used to specify the default font families for mincho
and gothic, respectively. Default values: mc for \mcdefault and gt for \gtdefault.

e Commands \fontfamily, \fontseries, \fontshape and \selectfont can be used to change attributes
of Japanese fonts.

encoding family series shape selection

alphabetic fonts \romanencoding \romanfamily \romanseries \romanshape \useroman
Japanese fonts ~ \kanjiencoding \kanjifamily \kanjiseries \kanjishape \usekanji
both — - \fontseries \fontshape —
auto select \fontencoding \fontfamily — — \usefont

\fontencoding{<encoding>} changes the encoding of alphabetic fonts or Japanese fonts depending on
the argument. For example, \fontencoding{JY3} changes the encoding of Japanese fonts to JY3 and
\fontencoding{T1} changes the encoding of alphabetic fonts to T1. \fontfamily also changes the family
of Japanese fonts, alphabetic fonts, or both. For detail, see Subsection 8.1.

* For defining a Japanese font family, use \DeclareKanjiFamily instead of \DeclareFontFamily. How-
ever, in the present implementation, using \DeclareFontFamily doesn’t cause any problem.

Remark: Japanese Characters in Math Mode Since pTX supports Japanese characters in math mode, there
are sources like the following:

$£_{00}$~($£_{\text{high temperature}}$). for Unigh temperature)

1

2 \[y=(x-1)"2+2\quad [1000\quad y>0 \]

3 $5\in [J:=\{\,p\in\mathbb N:\text{p is a prime
LAVAVA:R

y=(x-1?+2 000 y>0
S5eld:={peN: pisaprime}.

We (the project members of LuaTgX-ja) think that using Japanese characters in math mode are allowed if and only
if these are used as identifiers. In this point of view,

¢ The lines 1 and 2 above are not correct, since ‘1]’ in above is used as a textual label, and ‘I is used
as a conjunction.

¢ However, the line 3 is correct, since ‘[’ is used as an identifier.

Hence, in our opinion, the above input should be corrected as:

1 f_{JOI}~%

> ($f_{\text{high temperature}}$).

3 \[y=(x-1)"2+2\quad

4+ \mathrel{\text{JOI[}}\quad y>0 \]

E in []:= i : i i
s $5\ll;\ \}$\.{\,p\1n\mathbb N:\text{p is a prime Sel:={peN: pisaprime}.

T oo (/i high temperature)'

y=(x-1*+2 0O0OO y>0

We also believe that using Japanese characters as identifiers is rare, hence we don’t describe how to change Japanese
fonts in math mode in this chapter. For the method, please see Subsection 5.4.
3.2 fontspec

To coexist with the fontspec package, it is needed to load luatexja-fontspec package in the preamble. This
additional package automatically loads luatexja and fontspec package, if needed.

In luatexja-fontspec package, the following 7 commands are defined as counterparts of original commands
in the fontspec package:

1

3

6

Japanese fonts \jfontspec \setmainjfont \setsansjfont \newjfontfamily
alphabetic fonts \fontspec \setmainfont \setsansfont \newfontfamily
Japanese fonts \newjfontface \defaultjfontfeatures \addjfontfeatures
alphabetic fonts \newfontface \defaultfontfeatures \addfontfeatures

\fontspec [Numbers=01dStyle] {LMSans10-Regular}
\jfontspec{IPAexMincho}

JIS~X~0213:2004 - O] JIS X 0213:2004 —it
JIS X 0208:1990 =i
\addjfontfeatures{CJKShape=JIS1990}

JIS~X~0208:1990 - [

Note that there is no command named \setmonojfont, since it is popular for Japanese fonts that nearly all
Japanese glyphs have same widths. Also note that the kerning feature is set off by default in these 7 commands,
since this feature and JAglue will clash (see 5.1).

3.3 Preset

To use standard Japanese font settings easily, one can load luatexja-preset package with several options. This
package provides functions in a part of otf package and a part of PXchfon package by Takayuki Yato, and loads
luatexja-fontspec internally.

General options

deluxe Specifying this option enables us to use mincho with two weights (medium and bold), gothic with
three weights (medium, bold and heavy), and rounded gothic'. The heavy weight of gothic can be used
by “changing the family” \gtebfamily. This is because fontspec package can handle only medium
(\mdseries) and bold (\bfseries).

expert Use horizontal kana alternates, and define a control sequence \rubyfamily to use kana characters
designed for ruby.

bold Use bold gothic as bold mincho.

90jis Use 90JIS glyphs if possible.

jis2004 Use JIS2004 glyphs if possible.

jis Use the JFM jfm-jis.lua, instead of the default JFM of LuaTgX-ja, jfm-ujis. lua.

Kozuka fonts When using single weight, we adopt Kozuka Gothic M as gothic, because we think that Kozuka Gothic R
looks thin. There is not ‘Kozuka Maru Gothic’, therefore Kozuka Gothic H is used as a substitute for rounded gothic.

kozukad kozuka6 kozukabn

mincho medium Kozuka Mincho Pro R Kozuka Mincho ProVIR Kozuka Mincho Pr6N R
mincho bold Kozuka Mincho Pro B Kozuka Mincho ProVIB Kozuka Mincho Pr6N B
gothic medium

without deluxe Kozuka Gothic Pro M Kozuka Gothic ProVIM Kozuka Gothic ProN M
multiple weights ~ Kozuka Gothic Pro R Kozuka Gothic ProVIR Kozuka Gothic ProN R

gothic bold Kozuka Gothic Pro B Kozuka Gothic ProVI B Kozuka Gothic ProN B

gothic heavy Kozuka Gothic ProH Kozuka Gothic ProVIH Kozuka Gothic ProN H
(rounded gothic) Kozuka Gothic Pro H = Kozuka Gothic ProVIH Kozuka Gothic ProN H

"Provided by \mgfamily, because rounded gothic is called maru gothic (JOICICIC1) in Japanese.

Hiragino and Morisawa Settings for Hiragino fonts:

hiragino hiraginon
mincho medium Hiragino Mincho Pro W3 Hiragino Mincho ProN W3
mincho bold Hiragino Mincho Pro W6 Hiragino Mincho ProN W6
gothic medium Hiragino Kaku Gothic Pro W3 Hiragino Kaku Gothic ProN W3
gothic bold Hiragino Kaku Gothic Pro W6 Hiragino Kaku Gothic ProN W6
gothic heavy Hiragino Kaku Gothic Std W8 Hiragino Kaku Gothic StdN W8

rounded gothic ~ Hiragino Maru Gothic Pro W4 Hiragino Maru Gothic ProN W4

Settings for Morisawa fonts:

morisawad morisawaén
mincho medium Ryumin Pro L-KL Ryumin ProéN L-KL
mincho bold Futo Min A101 Pro Bold Futo Min A101 Pr6N Bold
gothic medium Chu Gothic BBB Pro Med = Chu Gothic BBB ProN Med
gothic bold Futo Go B101 Pro Bold Futo Go B101 Pr6N Bold
gothic heavy Midashi Go Pro MB31 Midashi Go ProN MB31
rounded gothic Jun Pro 101 Jun Pr6N 101

Settings for single weight Next, we describe settings for using only single weight. In four settings below, we use
same fonts for medium and bold (and heavy) weights. (Hence \mcfamily\bfseries and \mcfamily\mdseries
yields same Japanese fonts, if deluxe option is also specified).

noembed ipa ipaex ms

mincho Ryumin-Light (non-embedded) IPAMincho IPAexMincho MS Mincho
gothic GothicBBB-Medium (non-embedded) IPAGothic IPAexGothic MS Gothic

Using HG fonts We can use HG fonts bundled with Microsoft Office for realizing multiple weights in Japanese
fonts.

ipa-dx ipaex-dx ms-dx
mincho medium IPAMincho IPAexMincho MS Mincho
mincho bold HG Mincho E

Gothic medium
without deluxe IPAGothic IPAexGothic MS Gothic
with jis2004 [PAGothic ~ IPAexGothic =~ MS Gothic

otherwise HG Gothic M
gothic bold HG Gothic E
gothic heavy HG Soei Kaku Gothic UB
rounded gothic HG Maru Gothic PRO

Note that HG Mincho E, HG Gothic E, HG Soei Kaku Gothic UB and HG Maru Gothic PRO are internally spec-
ified by:

default by font name (HGMinchoE, etc.).
90jis by filename (hgrme.ttc, hgrge.ttc, hgrsgu.ttc, hgrsmp.ttf).

jis2004 by filename (hgrme04.ttc, hgrge04.ttc, hgrsgul4.ttc, hgrsmp04.ttf).

3.4 \CID, \UTF and macros in otf package

Under pI&TEX, otf package (developed by Shuzaburo Saito) is used for typesetting characters which is in Adobe-
Japan1-6 CID but not in JIS X 0208. Since this package is widely used, LuaTgX-ja supports some of functions in
otf package. If you want to use these functions, load luatexja-otf package.

9

4

ON\UTF{9DD7} 0 OO0 O O O\UTF{9592} (1 CI\UTF{9AD9} (]

HoBon O000000000OooaQan
\CID{7652} 11 CI\CID{13706} (1 (1] ntooooooooooooo
OOooo0ooo

4 Changing Parameters

There are many parameters in LuaTgX-ja. And due to the behavior of LuaTgX, most of them are not stored as internal
register of TgX, but as an original storage system in LuaTgX-ja. Hence, to assign or acquire those parameters, you
have to use commands \1tjsetparameter and \1tjgetparameter.

4.1 Editing the range of JAchars

To edit the range of JAchars, you have to assign a non-zero natural number which is less than 217 to the character
range first. This can be done by using \1tjdefcharrange primitive. For example, the next line assigns whole
characters in Supplementary Ideographic Plane and the character ‘C1’ to the range number 100.

\1tjdefcharrange{100}{"10000-"1FFFF, " [}

This assignment of numbers to ranges are always global, so you should not do this in the middle of a document.

If some character has been belonged to some non-zero numbered range, this will be overwritten by the new
setting. For example, whole SIP belong to the range 4 in the default setting of LuaTgX-ja, and if you specify the
above line, then SIP will belong to the range 100 and be removed from the range 4.

After assigning numbers to ranges, the jacharrange parameter can be used to customize which character range
will be treated as ranges of JAchars, as the following line (this is just the default setting of LuaTgX-ja):

\1ltjsetparameter{jacharrange={-1, +2, +3, -4, -5, +6, +7, +8}}

The argument to jacharrange parameter is a list of integer. Negative integer —n in the list means that ‘the characters
that belong to range n are treated as ALchar’, and positive integer +# means that ‘the characters that belong to
range n are treated as JAchar’.

Default Setting LuaTiX-ja predefines eight character ranges for convenience. They are determined from the fol-
lowing data:

* Blocks in Unicode 6.0.
* The Adobe-Japan1-UCS2 mapping between a CID Adobe-Japanl-6 and Unicode.

* The PXbase bundle for upTEX by Takayuki Yato.

Now we describe these eight ranges. The alphabet ‘J* or ‘A’ after the number shows whether characters in the
range is treated as JAchars or not by default. These settings are similar to the prefercjk settings defined in PXbase
bundle.

Range 8’ Symbols in the intersection of the upper half of ISO 8859-1 (Latin-1 Supplement) and JIS X 0208 (a
basic character set for Japanese). This character range consists of the following characters:

* & (U+00A7, Section Sign) e ~ (U+00B4, Spacing acute)

e ~ 7 (U+00A8, Diaeresis) * 9] (U+00B6, Paragraph sign)

e < (U+00BO, Degree sign) e > (U+00D7, Multiplication sign)
e =+ (U+00B1, Plus-minus sign) e = (U+00F7, Division Sign)

Range 14 Latin characters that some of them are included in Adobe-J apanl-6. This range consist of the following
Unicode ranges, except characters in the range 8 above:

10

U+2000-U+206F
U+20A0-U+20CF
U+2100-U+214F
U+2190-U+21FF
U+2300-U+23FF
U+2500-U+257F
U+25A0-U+25FF
U+2700-U+27BF
U+2980-U+29FF
U+E000-U+F8FF

U+2460-U+24FF
U+3000-U+303F
U+30A0-U+30FF
U+31F0-U+31FF
U+3300-U+33FF
U+4EQ0-U+9FFF
U+FE10-U+FE1F

Table 1. Unicode blocks in predefined character range 3.

General Punctuation
Currency Symbols
Letterlike Symbols

Arrows

Miscellaneous Technical

Box Drawing
Geometric Shapes
Dingbats

Misc. Mathematical Symbols-B

Private Use Area

U+2070-U+209F
U+20D0-U+20FF
U+2150-U+218F
U+2200-U+22FF
U+2400-U+243F
U+2580-U+259F
U+2600-U+26FF
U+2900-U+297F
U+2B00-U+2BFF

Superscripts and Subscripts

Comb. Diacritical Marks for Symbols
Number Forms

Mathematical Operators

Control Pictures

Block Elements

Miscellaneous Symbols
Supplemental Arrows-B
Miscellaneous Symbols and Arrows

Table 2. Unicode blocks in predefined character range 6.

Enclosed Alphanumerics
CJK Symbols and Punctuation

Katakana

Katakana Phonetic Extensions
CJK Compatibility
CJK Unified Ideographs

Vertical Forms

U+2E80-U+2EFF
U+3040-U+309F
U+3190-U+319F
U+3200-U+32FF
U+3400-U+4DBF
U+F900-U+FAFF
U+FE30-U+FE4F

CJK Radicals Supplement

Hiragana

Kanbun

Enclosed CJK Letters and Months
CJK Unified Ideographs Extension A
CJK Compatibility Ideographs

CJK Compatibility Forms

U+FE50-U+FE6F Small Form Variants U+20000-U+2FFFF (Supplementary Ideographic Plane)

e U+0080-U+OOFF: Latin-1 Supplement e U+0300-U+036F: Diacritical
s U+0100-U+017F: Latin Extended-A Marks

e U+0180-U+024F: Latin Extended-B
* U+0250-U+02AF: IPA Extensions

» U+02B0-U+02FF: Spacing Modifier Letters

Combining

¢ U+1EO0—-U+1EFF: Latin Extended Additional

Range 2} Greek and Cyrillic letters. JIS X 0208 (hence most of Japanese fonts) has some of these characters.

* U+0370-U+03FF: Greek and Coptic e U+1F00-U+1FFF: Greek Extended

* U+0400-U+04FF: Cyrillic
Range 37 Punctuations and Miscellaneous symbols. The block list is indicated in Table 1.

Range 47 Characters usually not in Japanese fonts. This range consists of almost all Unicode blocks which are not
in other predefined ranges. Hence, instead of showing the block list, we put the definition of this range itself:

\1tjdefcharrange{4}{%

"500-"10FF, "1200-"1DFF, "2440-"245F, "27CO-"28FF, "2A00-"2AFF,
"2C00-"2E7F, "4DCO-"4DFF, "A4DO-"A82F, "A840-"ABFF, "FB50-"FEOF,
"FE20-"FE2F, "FE70-"FEFF, "FBOO-"FB4F, "10000-"1FFFF} J, non-Japanese

Range 54 Surrogates and Supplementary Private Use Areas.

Range 6! Characters used in Japanese. The block list is indicated in Table 2.

Range 77 Characters used in CJK languages, but not included in Adobe-Japan1-6. The block list is indicated in
Table 3.

4.2 kanjiskip and xkanjiskip

JAglue is divided into the following three categories:

11

Table 3. Unicode blocks in predefined character range 7.

U+1100-U+11FF Hangul Jamo U+2F00-U+2FDF Kangxi Radicals
U+2FFO-U+2FFF Ideographic Description Characters U+3100-U+312F Bopomofo

U+3130-U+318F Hangul Compatibility Jamo U+31A0-U+31BF Bopomofo Extended
U+31C0-U+31EF CJK Strokes U+A000-U+A48F Yi Syllables

U+A490-U+A4CF Yi Radicals U+A830-U+A83F Common Indic Number Forms
U+ACO0-U+D7AF Hangul Syllables U+D7BO-U+D7FF Hangul Jamo Extended-B

* Glues/kerns specified in JEM. If \inhibitglue is issued around a Japanese character, this glue will not be
inserted at the place.

¢ The default glue which inserted between two JAchars (kanjiskip).
* The default glue which inserted between a JAchar and an ALchar (xkanjiskip).

The value (a skip) of kanjiskip or xkanjiskip can be changed as the following.

\1ltjsetparameter{kanjiskip={Opt plus 0.4pt minus O.4pt},
xkanjiskip={0.25\zw plus 1pt minus 1pt}}

It may occur that JFM contains the data of ‘ideal width of kanjiskip’ and/or ‘ideal width of xkanjiskip’. To use
these data from JFM, set the value of kanjiskip or xkanjiskip to \maxdimen.

4.3 Insertion Setting of xkanjiskip

It is not desirable that xkanjiskip is inserted into every boundary between JAchars and ALchars. For example,
xkanjiskip should not be inserted after opening parenthesis (e.g., compare ‘(C]” and ‘([J°). LuaTjgX-ja can control
whether xkanjiskip can be inserted before/after a character, by changing jaxspmode for JAchars and alxspmode
parameters ALchars respectively.

\1tjsetparameter{jaxspmode={~[],preonly},
alxspmode={"\!,postonly}} pUq ! d
:» plq OO0

The second argument preonly means ‘the insertion of xkanjiskip is allowed before this character, but not after’.
the other possible values are postonly, allow and inhibit.

jaxspmode and alxspmode use a same table to store the parameters on the current version. Therefore, line 1
in the code above can be rewritten as follows:

\1ltjsetparameter{alxspmode={ [],preonly}, jaxspmode={ \!,postonly}}

One can use also numbers to specify these two parameters (see Subsection 6.2).

If you want to enable/disable all insertions of kanjiskip and xkanjiskip, set autospacing and autoxspacing
parameters to true/false, respectively.

4.4 Shifting Baseline

To make a match between a Japanese font and an alphabetic font, sometimes shifting of the baseline of one of
the pair is needed. In pTEX, this is achieved by setting \ybaselineshift to a non-zero length (the baseline of
alphabetic fonts is shifted below). However, for documents whose main language is not Japanese, it is good to shift
the baseline of Japanese fonts, but not that of alphabetic fonts. Because of this, LuaTgX-ja can independently set
the shifting amount of the baseline of alphabetic fonts (yalbaselineshift parameter) and that of Japanese fonts
(yjabaselineshift parameter).

i \vrule width 150pt height 0.4pt depth Opt\hskip

-120pt
> \1ltjsetparameter{yjabaselineshift=0pt,

yalbaselineshift=Opt}abc](1[] abe bbb lgbe
3 \ltjsetparameter{yjabaselineshift=5pt,

yalbaselineshift=2pt}abc][]

12

[T S T

[R

Here the horizontal line in above is the baseline of a line.

There is an interesting side-effect: characters in different size can be vertically aligned center in a line, by setting
two parameters appropriately. The following is an example (beware the value is not well tuned):

xyzUl OO
{\scriptsize
\1tjsetparameter{yjabaselineshift=-1pt,
yalbaselineshift=-1pt}
XyzOoood
YabcOOO

xyz OO XYz 0000 abe L

Part 11
Reference

5 Font Metric and Japanese Font

5.1 \jfont primitive

To load a font as a Japanese font, you must use the \ jfont primitive instead of \font, while \jfont admits the
same syntax used in \font. LuaTgX-ja automatically loads luaotfload package, so TrueType/OpenType fonts
with features can be used for Japanese fonts:

\jfont\tradgt={file:ipaexg.ttf:script=latn;¥%

+trad;-kern; jfm=ujis} at 14pt %/%/%/E

\tradgt{}O0 0O OO OO

Note that the defined control sequence (\tradgt in the example above) using \ jfont is not a font_def token,
hence the input like \fontname\tradgt causes a error. We denote control sequences which are defined in \ jfont

by (jfont_cs).

JFM As noted in Introduction, a JFM has measurements of characters and glues/kerns that are automatically
inserted for Japanese typesetting. The structure of JFM will be described in the next subsection. At the calling of
\jfont primitive, you must specify which JFM will be used for this font by the following keys:

jfm=(name) Specify the name of JFM. If specified JFM has not been loaded, LuaTgX-ja search and load a file
named jfm-(name).lua.

The following JEMs are shipped with LuaTgX-ja:

jfm-ujis.lua A standard JFM in LuaTgX-ja. This JFM is based on upnmlminr-h.tfm, a metric for
UTF/OTF package that is used in upTEX. When you use the luatexja-otf package, you should use
this JFM.

jfm-jis.lua A counterpartfor jis.tfm, ‘JIS font metric’ which is widely used in pTEX. A major differ-
ence of jfm-ujis.lua and this jfm-jis.lua is that most characters under jfm-ujis.lua are
square-shaped, while that under jfm-jis.lua are horizontal rectangles.

jfm-min.lua A counterpart for min10.tfm, which is one of the default Japanese font metric shipped
with pTEX. There are notable difference between this JFM and other 2 JFMs, as shown in Table 4.

jfmvar=(string) Sometimes there is a need that

2from: 0000, minl0 OOOOOOOO. http: //argent. shinshu-u.ac. jp/~otobe/tex/files/min10. pdf.

13

Table 4. Differences between JEMs shipped with LuaTgX-ja

jfm-ujis.lua jfm-jis.lua jfm-min.lua
eample 7 1O OO0 OOOOO0OO0O0 OOO0OO0OOOO
OOOoooog oot dbooddot
OOoOoooog gobodot OO0
OoOoooon bbboddd) guddoon
Oood . .
eample 2 LIOIOICICT OO OOOOOO HiE N
Bounding Box I:I I:l I:I

Note: kern feature Some fonts have information for inter-glyph spacing. However, this information is not well-
compatible with LuaTgX-ja. More concretely, this kerning space from this information are inserted before the in-
sertion process of JAglue, and this causes incorrect spacing between two characters when both a glue/kern from
the data in the font and it from JFM are present.

* You should specify —-kern in jfont primitive, when you want to use other font features, such as script=. ...

* If you want to use Japanese fonts in proportional width, and use information from this font, use jfm-prop.lua
for its JFM, and.... TODO: kanjiskip?

5.2 Prefix psft

Besides file: and name: prefixes, one can use psft: prefixin \jfont (and \font) primitive, to specify a ‘name-
only’ Japanese font which will not be embedded to PDF. Typical use of this prefix is to specify the ‘standard’
Japanese fonts, namely, ‘Ryumin-Light’ and ‘GothicBBB-Medium’.

cid key The default font defined by using psft: prefix is for Japanese typesetting; it is Adobe-Japanl-6 CID-
keyed font. One can specify cid key to use other CID-keyed non-embedded fonts for Chinese or Korean typesetting.

1 \jfont\testJ={psft:Ryumin-Light:cid=Adobe-Japanl-6;jfm=jis} % Japanese

2 \jfont\testD={psft:Ryumin-Light:jfm=jis} % default value is Adobe-Japanl-6
3 \jfont\testC={psft:AdobeMingStd-Light:cid=Adobe-CNS1-5;jfm=jis} % Traditional Chinese

4 \jfont\testG={psft:SimSun:cid=Adobe-GB1-5;jfm=jis} % Simplified Chinese

s \jfont\testK={psft:Batang:cid=Adobe-Koreal-2;jfm=jis} % Korean

Note that the code above specifies jfm-jis. lua, which is for Japanese fonts, as JFM for Chinese and Korean fonts.

At present, LuaTgX-ja supports only 4 values written in the sample code above. Specifying other values, e.g.,

\jfont\test={psft:Ryumin-Light:cid=Adobe-Japan2;jfm=jis}

occurs the following error:

1! Package luatexja Error: bad cid key “Adobe-Japan2'.

2

3 See the luatexja package documentation for explanation.
4Type H <return> for immediate help.

5 <to be read again>

6 \par

71.78

8

9?7 h

10T couldn't find any non-embedded font information for the CID
11 "Adobe-Japan2'. For now, I'll use “Adobe-Japanl-6'.

12 Please contact the LuaTeX-ja project team.
137

14

5.3 Structure of JFM file
A JFM file is a Lua script which has only one function call:
luatexja.jfont.define_jfm { ... }

Real data are stored in the table which indicated above by { ... }. So, the rest of this subsection are devoted to
describe the structure of this table. Note that all lengths in a JEM file are floating-point numbers in design-size unit.

dir=(direction) (required)

The direction of JFM. At the present, only 'yoko' is supported.

zw=(length) (required)
The amount of the length of the ‘full-width’.

zh=(length) (required)
The amount of the length of the ‘full-height’ (height + depth).

kanjiskip={(natural), (stretch), (shrink)} (optional)
This field specifies the ‘ideal’ amount of kanjiskip. As noted in Subsection 4.2, if the parameter kanjiskip
is \maxdimen, the value specified in this field is actually used (if this field is not specified in JFM, it is
regarded as O pt). Note that (stretch) and (shrink) fields are in design-size unit too.
xkanjiskip={(natural), (stretch), (shrink)} (optional)
Like the kanjiskip field, this field specifies the ‘ideal’” amount of xkanjiskip.

Character classes Besides from above fields, a JEM file have several sub-tables those indices are natural numbers.
The table indexed by i € w stores information of ‘character class’ i. At least, the character class 0 is always present,
so each JFM file must have a sub-table whose index is [0]. Each sub-table (its numerical index is denoted by i) has
the following fields:

chars={(character), ...} (required except character class 0)
This field is a list of characters which are in this character type i. This field is optional if i = 0, since all
JAchar which do not belong any character classes other than 0 are in the character class 0 (hence, the
character class 0 contains most of JAchars). In the list, character(s) can be specified in the following form:
* a Unicode code point
* the character itself (as a Lua string, like ' (J'')
* astring like ' [I*' (the character followed by an asterisk)

* several “imaginary” characters (We will describe these later.)

width=(length), height=(length), depth=(length), italic=(length) (required)

Specify width of characters in character class i, height, depth and the amount of italic correction. All
characters in character class i are regarded that its width, height and depth are as values of these fields. But
there is one exception: if 'prop' is specified in width field, width of a character becomes that of its ‘real’

glyph
left=(length), down=(length), align=(align)

These fields are for adjusting the position of the ‘real’ glyph. Legal values of align field are 'left’,
'middle' and 'right'. If one of these 3 fields are omitted, 1eft and down are treated as 0, and align
field is treated as 'left'. The effects of these 3 fields are indicated in Figure 1.

In most cases, left and down fields are 0, while it is not uncommon that the align field is 'middle' or
'right'. For example, setting the align fieldto 'right' is practically needed when the current character
class is the class for opening delimiters’.

kern={[jl1=(kern), ...}

glue={[j1={(width), (stretch), (shrink)}, ...}
15

i Consider a node containing Japanese character whose value of the
i align field is 'middle’.
1) » The black rectangle is a frame of the node. Its width, height and
height depth are specified by JEM.
* Since the align field is 'middle"', the ‘real’ glyph is centered
width | horizontally (the green rectangle).
down
“Heott :: depth * Furthermore, the glyph is shifted according to values of fields
T y left and down. The ultimate position of the real glyph is indi-
Y
r] cated by the red rectangle.

Figure 1. The position of the ‘real’ glyph.

Table 5. Primitives for Japanese math fonts.

Japanese fonts alphabetic fonts

\jfam € [0,256) \fam

jatextfont ={(jfam), (jfont_cs)} \textfont(fam)=(font_cs)
jascriptfont ={{jfam) , (jfont_cs)} \scriptfont(fam)=(font_cs)

jascriptscriptfont ={(jfam) , (jfont_cs)} \scriptscriptfont(fam)=(font_cs)

Imaginary characters As described before, you can specify several ‘imaginary characters’ in chars field. The
most of these characters are regarded as the characters of class 0 in pTgX. As a result, LuaTgX-ja can control
typesetting finer than pTX. The following is the list of ‘imaginary characters’:

'lineend' An ending of a line.

'diffmet' Used at a boundary between two JAchars whose JFM or size is different.

'"boxbdd' The beginning/ending of a horizontal box, and the beginning of a noindented paragraph.
'parbdd' The beginning of an (indented) paragraph.

'jcharbdd' A boundary between JAchar and anything else (such as ALchar, kern, glue, ...).

—1 The left/right boundary of an inline math formula.

Porting JFM from pTgX

5.4 Math Font Family

TgX handles fonts in math formulas by 16 font families®, and each family has three fonts: \textfont, \scriptfont
and \scriptscriptfont.

LuaTgX-ja’s handling of Japanese fonts in math formulas is similar; Table 5 shows counterparts to TgX’s prim-
itives for math font families. There is no relation between the value of \fam and that of \ jfam; with appropriate
settings, you can set both \fam and \ jfam to the same value.

5.5 Callbacks

Like LuaTgX itself, LuaTgX-ja also has callbacks. These callbacks can be accessed via luatexbase.add_to_callback
function and so on, as other callbacks.

luatexja.load_jfm callback With this callback you can overwrite JEMs. This callback is called when a new
JFM is loaded.

3 Omega, Aleph, LuaTEX and e<(u)pTEX can handles 256 families, but an external package is needed to support this in plain TgX and ISTEX.
16

1 function (<table> jfm_info, <string> jfm_name)
2> return <table> new_jfm_info
3 end

The argument jfm_info contains a table similar to the table in a JFM file, except this argument has chars
field which contains character codes whose character class is not 0.

An example of this callback is the 1t jarticle class, with forcefully assigning character class O to ' parbdd'
in the JFM jfm-min.lua.

luatexja.define_font callback This callback and the next callback form a pair, and you can assign letters
which don’t have fixed code points in Unicode to non-zero character classes. This luatexja.define_font
callback is called just when new Japanese font is loaded.
i function (<table> jfont_info, <number> font_number)

2> return <table> new_jfont_info
3 end

You may assume that jfont_info has the following fields:

size_cache A table which contains the information of a JFM, and this table must not be changed. The
contents of this table are similar to that which is written is the JFM file, but the following differ:
¢ There is a chars table, ...
e Thevaluein zw, zh,kanjiskip, xkanjiskip fields are now scaled by real font size, and in scaled-
pont unit.

L]

e There is no dir field in this table.

var The value specified in jfmvar=. .. ata call of \jfont.

The returned table new_jfont_info also should include these two fields. The font_number is a font num-
ber.

A good example of this and the next callbacks is the luatexja-otf package, supporting "AJ1-xxx" form
for Adobe-Japanl CID characters in a JEM. This callback doesn’t replace any code of LuaTgX-ja.

luatexja.find_char_class callback This callback is called just when LuaTEX-ja is trying to determine which
character class a character chr_code belongs. A function used in this callback should be in the following
form:

i function (<number> char_class, <table> jfont_info, <number> chr_code)
> if char_class~=0 then return char_class

3 else

4

5 return (<number> new_char_class or 0)
¢ end

7 end

The argument char_class is the result of LuaTgX-ja’s default routine or previous function calls in this
callback, hence this argument may not be 0. Moreover, the returned new_char_class should be as same as
char_class when char_class is not 0, otherwise you will overwrite the LuaTgX-ja’s default routine.

luatexja.set_width callback This callback is called when LuaTgX-ja is trying to encapsule a JAchar glyph_node,
to adjust its dimension and position.

i function (<table> shift_info, <table> jfont_info, <number> char_class)
2> return <table> new_shift_info
3 end

The argument shift_info and the returned new_shift_info have down and left fields, which are the
amount of shifting down/left the character in a scaled-point.

A good example is test/valign.lua. After loading this file, the vertical position of glyphs is automatically
adjusted; the ratio (height : depth) of glyphs is adjusted to be that of letters in the character class 0. For
example, suppose that

17

[S)

w

* The setting of the JFM: (height) = 88x, (depth) = 12x (the standard values of Japanese OpenType
fonts);

* The value of the real font: (height) = 28y, (depth) = Sy (the standard values of Japanese TrueType
fonts).

Then, the position of glyphs is shifted up by

88x 26
__OX 984+ 5y)— 28y = =2 = 1.04y.
88x 4 12 oY TN~ 28y =75y Y

6 Parameters

6.1 \ltjsetparameter primitive

As noted before, \1tjsetparameter and \1tjgetparameter are primitives for accessing most parameters of

LuaTgX-ja. One of the main reason that LuaTgX-ja didn’t adopted the syntax similar to that of pTgX (e.g., \prebreakpenalty [l

=10000) is the position of hpack_filter callback in the source of LuaTgX, see Section 10.

\1ltjsetparameter and \1tjglobalsetparameter are primitives for assigning parameters. These take one
argument which is a (key)=(value) list. Allowed keys are described in the next subsection. The difference between
\1ltjsetparameter and \1tjglobalsetparameter is only the scope of assignment; \1t jsetparameter does
alocal assignment and \1t jglobalsetparameter does a global one. They also obey the value of \globaldefs,
like other assignment.

\1tjgetparameter is the primitive for acquiring parameters. It always takes a parameter name as first argu-
ment, and also takes the additional argument—a character code, for example—in some cases.

\1ltjgetparameter{differentjfm},
\1t jgetparameter{autospacing}, average, 1, 10000.
\1tjgetparameter{prebreakpenalty}{ [J}.

The return value of \1tjgetparameter is always a string. This is outputted by tex.write (), so any character
other than space ¢ ’ (U+0020) has the category code 12 (other), while the space has 10 (space).

6.2 List of Parameters

The following is the list of parameters which can be specified by the \1t jsetparameter command. [\cs] indicates
the counterpart in pTEX, and symbols beside each parameter has the following meaning:

* No mark: values at the end of the paragraph or the hbox are adopted in the whole paragraph/hbox.
e ¢’ : local parameters, which can change everywhere inside a paragraph/hbox.

e ‘§’: assignments are always global.

jcharwidowpenalty =(penalty) [\jcharwidowpenalty] Penalty value for suppressing orphans. This penalty
is inserted just after the last JAchar which is not regarded as a (Japanese) punctuation mark.

kcatcode ={(chr_code) ,{natural number)} An additional attributes which each character whose character
code is {chr_code) has. At the present version, the lowermost bit of (natural number) indicates whether
the character is considered as a punctuation mark (see the description of jcharwidowpenalty above).

prebreakpenalty ={{chr_code) , {penalty)} [\prebreakpenalty]
postbreakpenalty ={{chr_code) ,{penalty}} [\postbreakpenalty]
jatextfont ={(jfam) , (jfont_cs)} [\textfont in TEX]

jascriptfont ={(jfam) , (jfoni_cs)} [\scriptfont in TgX]
jascriptscriptfont ={{jfam) , (jfont_cs)} [\scriptscriptfont in TgX]

yjabaselineshift =(dimen)*
18

yalbaselineshift =(dimen)* [\ybaselineshift]

jaxspmode ={{chr_code) ,(mode)} Setting whether inserting xkanjiskip is allowed before/after a JAchar whose
character code is (chr_code). The followings are allowed for (mode):

0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
1, preonly Insertion of xkanjiskip is allowed before the character, but not after.
2, postonly Insertion of xkanjiskip is allowed after the character, but not before.

3,allow Insertion of xkanjiskip is allowed both before the character and after the character. This is the
default value.

This parameter is similar to the \inhibitxspcode primitive of pTEX, but not compatible with \inhibitxspcode.

alxspmode ={(chr_code) ,(mode)} [\xspcode]

Setting whether inserting xkanjiskip is allowed before/after a ALchar whose character code is (chr_code).
The followings are allowed for {mode):

0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
1, preonly Insertion of xkanjiskip is allowed before the character, but not after.
2, postonly Insertion of xkanjiskip is allowed after the character, but not before.

3,allow Insertion of xkanjiskip is allowed before the character and after the character. This is the default
value.

Note that parameters jaxspmode and alxspmode use a common table, hence these two parameters are
synonyms of each other.

autospacing =(bool)* [\autospacing]
autoxspacing =(bool)* [\autoxspacing]
kanjiskip =(skip) [\kanjiskip]
xkanjiskip =(skip) [\xkanjiskip]

differentjfm =(mode)’ Specify how glues/kerns between two JAchars whose JEM (or size) are different. The
allowed arguments are the followings:

average
both
large

small
jacharrange =(ranges)*

kansujichar ={(digit), (chr_code)} [\kansujichar]

7 Other Primitives

7.1 Primitives for Compatibility

The following primitives are implemented for compatibility with pTEX. Note that these primitives don’t support
JIS X 0213, but only JIS X 0208.

\kuten
\jis
\euc
\sjis
\ucs

\kansuji

19

L T

=N

7.2 \inhibitglue primitive

The primitive \inhibitglue suppresses the insertion of JAglue. The following is an example, using a special JFM
that there will be a glue between the beginning of a box and ‘[1’, and also between ‘]’ and ‘(1.

\jfont\g=psft:Ryumin-Light:jfm=test \g O OO0
\fbox{\hbox{ OO O\inhibitglue [1}}

\inhibitglue\par\noindent [J1 o o1
\par\inhibitglue\noindent [12 O 2
\par\noindent\inhibitglue [13 0 3
\par\hrule\noindent [Joff\inhibitglue ice [0 office

With the help of this example, we remark the specification of \inhibitglue:

* The call of \inhibitglue in the (internal) vertical mode is simply ignored.

* The call of \inhibitglue in the (restricted) horizontal mode is only effective on the spot; does not get over
boundary of paragraphs. Moreover, \inhibitglue cancels ligatures and kernings, as shown in the last line
of above example.

e The call of \inhibitglue in math mode is just ignored.

8 Control Sequences for BTEX 2,

8.1 Patch for NFSS2

As described in Subsection 2.4, LuaTgX-ja simply adopted plfonts.dtx in pl&TEX 2, for the Japanese patch for
NFSS2. For an convenience, we will describe commands which are not described in Subsection 3.1.
\DeclareYokoKanjiEncoding{({encoding)}{{text-settings)}{(math-settings)}

In NFSS2 under LuaTgX-ja, distinction between alphabetic font families and Japanese font families are only
made by their encodings. For example, encodings OT1 and T1 are for alphabetic font families, and a Japanese
font family cannot have these encodings. This command defines a new encoding scheme for Japanese font
family (in horizontal direction).

\DeclareKanjiEncodingDefaults{(text-settings)}{(math-settings)}
\DeclareKanjiSubstitution{{encoding)}{(family)}{(series)}{(shape)}
\DeclareErrorKanjiFont{(encoding)}{{family)}{(series)}{(shape)}{(size)}

The above 3 commands are just the counterparts for DeclareFontEncodingDefaults and others.
\reDeclareMathAlphabet{(unified-cmd)}{{al-cmd)}{{ja-cmd)}

\DeclareRelationFont{(ja-encoding)}{(ja-family)}{(ja-series)}{{ja-shape)}
{(al-encoding)}{{al-family)}{{al-series) }{{al-shape)}
This command sets the ‘accompanied’ alphabetic font family (given by the latter 4 arguments) with respect to
a Japanese font family given by the former 4 arguments.

\SetRelationFont
This command is almost same as \DeclareRelationFont, except that this command does a local assignment,
where \DeclareRelationFont does a global assignment.

\userelfont

Change current alphabetic font encoding/family/... to the ‘accompanied’ alphabetic font family with respect
to current Japanese font family, which was set by \DeclareRelationFont or \SetRelationFont. Like
\fontfamily, \selectfont is required to take an effect.

\adjustbaseline

\fontfamily{(family)}

As in ISTEX 2, this command changes current font family (alphabetic, Japanese, or both) to (family). Which
family will be changed is determined as follows:

20

* Let current encoding scheme for Japanese fonts be (ja-enc). Current Japanese font family will be changed to
(family), if one of the following two conditions is met:

— The family (fam) under the encoding (ja-enc) has been already defined by \DeclareKani jFamily.

— A font definition named (enc){ja-enc) .£d (the file name is all lowercase) exists.

e Let current encoding scheme for alphabetic fonts be (al-enc). For alphabetic font family, the criterion as
above is used.

 There is a case which none of the above applies, that is, the font family named (family) doesn’t seem to
be defined neither under the encoding (ja-enc), nor under {al-enc). In this case, the default family for font
substitution is used for alphabetic and Japanese fonts. Note that current encoding will not be set to (family),
unlike the original implementation in I&TEX.

As closing this subsection, we shall introduce an example of \SetRelationFont and \userelfont:

1 \kanjifamily{gt}\selectfont [[xyz
2 \SetRelationFont{JY3Hgt HmHnHOT1HpagHm}{n} OO0 xyz OO0 abc
3 \userelfont\selectfont [1[][Jabc

9 Extensions

9.1 1luatexja-fontspec.sty

As described in Subsection 3.2, this optional package provides the counterparts for several commands defined
in the fontspec package[In addition to ‘font features’ in the original fontspec, the following ‘font features’
specifications are allowed for the commands of Japanese version:

CID=(name)
JFM=(name)

JFM-var=(name)

These 3 font features correspond to cid, jfm and jfmvar keys for \ jfont primitive, respectively. CID is
effective only when with NoEmbed described below. See Subsections 5.1 and 5.2 for details.

NoEmbed By specifying this font feature, one can use ‘name-only’ Japanese font which will not be embedded in
the output PDF file. See Subsection 5.2.
9.2 1luatexja-otf.sty

This optional package supports typesetting characters in Adobe-Japanl. luatexja-otf.sty offers the following
2 low-level commands:

\CID{(number)} Typeset a character whose CID number is {number).

\UTF{(hex_number)} Typeset a character whose character code is (hex_number) (in hexadecimal). This com-
mand is similar to \char" (hex_number), but please remind remarks below.

Remarks Characters by \CID and \UTF commands are different from ordinary characters in the following points:

* Always treated as JAchars.

* Processing codes for supporting OpenType features (e.g., glyph replacement and kerning) by the luaotfload
package is not performed to these characters.

21

Additional Syntax of JFM luatexja-otf.sty extends the syntax of JEM; the entries of chars table in JFM

now allows a string in the form 'AJ1-xxx', which stands for the character whose CID number in Adobe-Japanl is
XXX.

Part 111
Implementations

10 Storing Parameters

10.1 Used Dimensions, Attributes and whatsit nodes

Here the following is the list of dimensions and attributes which are used in LuaTgX-ja.

\jQ (dimension) \jQ is equal to 1 Q = 0.25 mm, where ‘Q’ (also called ‘(1) is a unit used in Japanese photo-
typesetting. So one should not change the value of this dimension.

\jH (dimension) There is also a unit called ‘CJ° which equals to 0.25 mm and used in Japanese phototypesetting.
This \ jH is a synonym of \jQ.

\1tj@zw (dimension) A temporal register for the ‘full-width’ of current Japanese font.

\1tj@zh (dimension) A temporal register for the ‘full-height’ (usually the sum of height of imaginary body
and its depth) of current Japanese font.

\jfam (attribute) Current number of Japanese font family for math formulas.

\1tj@curjfnt (attribute) The font index of current Japanese font.

\1tj@charclass (attribute) The character class of Japanese glyph_node.

\1tj@yablshift (attribute) The amount of shifting the baseline of alphabetic fonts in scaled point (27'° pt).
\1tj@ykblshift (attribute) The amount of shifting the baseline of Japanese fonts in scaled point (27'° pt).
\1tj@autospc (attribute) Whether the auto insertion of kanjiskip is allowed at the node.

\1tj@autoxspc (attribute) Whether the auto insertion of xkanijiskip is allowed at the node.

\1tj@icflag (attribute) An attribute for distinguishing ‘kinds’ of a node. One of the following value is as-
signed to this attribute:

italic (1) Glues from an italic correction (\/). This distinction of origins of glues (from explicit \kern, or
from \/) is needed in the insertion process of xkanjiskip.

packed (2)

kinsoku (3) Penalties inserted for the word-wrapping process of Japanese characters (kinsoku).

from_jfm (4) Glues/kerns from JFM.

line_end (5) Kerns for ...

kanji_skip (6) Glues for kanjiskip.

xkanji_skip (7) Glues for xkanjiskip.

processed (8) Nodes which is already processed by

ic_processed (9) Glues from an italic correction, but also already processed.

boxbdd (15) Glues/kerns that inserted just the beginning or the ending of an hbox or a paragraph.

\1tj@kcati (attribute) Where i is a natural number which is less than 7. These 7 attributes store bit vectors
indicating which character block is regarded as a block of JAchars.

22

[S)

w

Furthermore, LuaTgX-ja uses several ‘user-defined” whatsit nodes for inrernal processing. All those nodes store
a natural number (hence the node’s type is 100). The following user_ids are used:

30111 Nodes for indicating that \inhibitglue is specified. The value field of these nodes doesn’t matter.

30112 Nodes for LuaTgX-ja’s stack system (see the next subsection). The value field of these nodes is current
group.
30113 Nodes for Japanese Characters which the callback process of luaotfload won’t be applied, and the char-

acter code is stored in the value field. Each node having this user_id is converted to a ‘glyph_node’ after
the callback process of luaotfload. This user_id is only used by the luatexja-otf package.

30114 Nodes for indicating beginning of a paragraph. A paragraph which is started by \item in list-like environ-
ments has a horizontal box for its label before the actual contents. So ...

These whatsits will be removed during the process of inserting JAglues.

10.2 Stack System of LuaTgX-ja

Background LuaTgX-ja has its own stack system, and most parameters of LuaTgX-ja are stored in it. To clarify
the reason, imagine the parameter kanjiskip is stored by a skip, and consider the following source:

\1ltjsetparameter{kanjiskip=Opt}1II[].%

tbox0=\hb ltjset t kanjiskip=5pt}[]
\se 5}{‘:\5}0}{{\ jsetparameter{kanjiskip=5pt} e e

\box0. OO O \par

As described in Subsection 6.2, the only effective value of kanjiskip in an hbox is the latest value, so the value
of kanjiskip which applied in the entire hbox should be 5 pt. However, by the implementation method of LuaTgX,
this ‘5 pt’ cannot be known from any callbacks. In the tex/packaging.w (which is a file in the source of LuaTgX),
there are the following codes:

void package(int c)

{
scaled h; /* height of box */
halfword p; /* first node in a box */
scaled d; /* max depth */
int grp;

grp = cur_group;
d = box_max_depth;
unsave() ;
save_ptr -= 4;
if (cur_list.mode_field == -hmode) {
cur_box = filtered_hpack(cur_list.head_field,
cur_list.tail_field, saved_value(1),
saved_level(1), grp, saved_level(2));
subtype(cur_box) = HLIST_SUBTYPE_HBOX;

Notice that unsave is executed before filtered_hpack (this is where hpack_filter callback is executed): so
‘5pt’ in the above source is orphaned at unsave, and hence it can’t be accessed from hpack_filter callback.

The method The code of stack system is based on that in a post of Dev-luatex mailing list*.

These are two TgX count registers for maintaining information: \1t j@@stack for the stack level, and \1t j@@group@level
for the TEX’s group level when the last assignment was done. Parameters are stored in one big table named charprop_stack_table,

where charprop_stack_table [i] stores data of stack level i. If a new stack level is created by \1t jsetparameter,
all data of the previous level is copied.

To resolve the problem mentioned in ‘Background’ above, LuaTgX-ja uses another thing: When a new stack level
is about to be created, a whatsit node whose type, subtype and value are 44 (user_defined), 30112, and current group
level respectively is appended to the current list (we refer this node by stack_flag). This enables us to know whether
assignment is done just inside a hbox. Suppose that the stack level is s and the TgX’s group level is 7 just after the
hbox group, then:

4[Dev-luatex] tex.currentgrouplevel, a post at 2008/8/19 by Jonathan Sauer.

23

« If there is no stack_flag node in the list of the hbox, then no assignment was occurred inside the hbox. Hence
values of parameters at the end of the hbox are stored in the stack level s.

* If there is a stack_flag node whose value is 7+ 1, then an assignment was occurred just inside the hbox group.
Hence values of parameters at the end of the hbox are stored in the stack level s + 1.

* If there are stack_flag nodes but all of their values are more than ¢ + 1, then an assignment was occurred in
the box, but it is done is ‘more internal’ group. Hence values of parameters at the end of the hbox are stored
in the stack level s.

Note that to work this trick correctly, assignments to \1t j@@stack and \1tj@@group@level have to be local
always, regardless the value of \globaldefs. This problem is resolved by using \directlua{tex.globaldefs=0}
(this assignment is local).

11 Linebreak after Japanese Character

11.1 Reference: Behavior in pTEX

In pTEX, a line break after a Japanese character doesn’t emit a space, since words are not separated by spaces in
Japanese writings. However, this feature isn’t fully implemented in LuaTgX-ja due to the specification of callbacks
in LuaTgX. To clarify the difference between pTEX and LuaTgX, We briefly describe the handling of a line break
in pTEX, in this subsection.

pIEX’s input processor can be described in terms of a finite state automaton, as that of TgX in Section 2.5 of [1].
The internal states are as follows:

e State N: new line
* State .S skipping spaces
e State M: middle of line

e State K: after a Japanese character

The first three states—N, .S and M —are as same as TgX’s input processor. State K is similar to state M, and is
entered after Japanese characters. The diagram of state transitions are indicated in Figure 2. Note that pTX doesn’t
leave state K after ‘beginning/ending of a group’ characters.

11.2 Behavior in LuaTgX-ja

States in the input processor of LuaTgX is the same as that of TgX, and they can’t be customized by any callbacks.
Hence, we can only use process_input_buffer and token_filter callbacks for to suppress a space by a line
break which is after Japanese characters.

However, token_filter callback cannot be used either, since a character in category code 5 (end-of-line) is
converted into an space token in the input processor. So we can use only the process_input_buffer callback.
This means that suppressing a space must be done just before an input line is read.

Considering these situations, handling of an end-of-line in LuaTgX-ja are as follows:

A character U+FFFFF (its category code is set to 14 (comment) by LuaTgX-ja) is appended to an input
line, before LuaTgX actually process it, if and only if the following three conditions are satisfied:

1. The category code of \endlinechar” is 5 (end-of-line).
2. The category code of U+FFFFF itself is 14 (comment).

3. The input line matches the following ‘regular expression’:

(any char)*(JAchar)({catcode = 1} U {catcode = 2})"

5Usually, it is (return) (whose character code is 13).

24

2w ow =

G Beginning of group (usually {)
and ending of group (usually }).

J Japanese characters.
5 end-of-line (usually ~~J).
10 space (usually).

O other characters, whose category code is in
{3,4,6,7,8,11,12,13}.

[u], [\par] emits a space, or \par.

* We omitted about category codes 9 (ignored), 14 (comment) and 15 (invalid) from the above diagram. We also ignored
the input like ‘~~A’ or ‘“~~df’.

* When a character whose category code is 0 (escape character) is seen by TgX, the input processor scans a control sequence
(scan a c.s.). These paths are not shown in the above diagram.
After that, the state is changed to State .S (skipping blanks) in most cases, but to State M (middle of line) sometimes.

Figure 2. State transitions of pTEX’s input processor.

Remark The following example shows the major difference from the behavior of pTEX:

\1tjsetparameter{autoxspacing=false}
\1ltjsetparameter{jacharrange={-6}}x[]
y\1ltjsetparameter{jacharrange={+6}}z[]
u

xyz[u

* There is no space between ‘x’ and °y’, since the line 2 ends with a JAchar ‘[’ (this ‘[0’ considered as an
JAchar at the ending of line 1).

» There is no space between ‘1’ (in the line 3) and ‘w’, since the line 3 ends with an ALchar (the letter ‘[1’
considered as an ALchar at the ending of line 2).

12 Insertion of JFM glues, kanjiskip and xkanjiskip

12.1 Overview

LuaTeX-ja OO OO OOOO0OOO0O00O0O0OpTX OO OOOO0O00OOpTX OOO0OOOoo4n
ooodn

« JFPM DO OOOOOOOOoooooooooooooooooooooooOO{char_nodey OO
ooooOooooOood

« xkanjiskip OOOOOOOODOOO0OOOOO0OOOOO0OOOO0O0OOoOoono

 kanjiskip OO OO OOODOOODOOODOOOO0OOODOO0OOoO0OOo0Oo0ooooog 240
O {char_node) OO0 kanjiskip OO OO OOOOOOOOoO

OO00OLTEX-ja DO DOOOOOOO0OO0OO0DOOODOOoOooOoood JAglue IO O JFM OO OO
xkanjiskipOkanjiskip O 3 OO OO0 O0000OOOO0OO0OOOOOOO0O0OLwaTgX OO0O0O0O0OOO0oonO
OOoOobooOoooooooooooonooooooonoooodn

LuaTeX-ja D000 JAglue OO O OO0 O0OO0O0O0OOOOO0OOCOOOOOOOOOOOOOOOOO
OoOomooboooooooooooooooooooooooooonoooooooooooodn
OO00OO0O0O0ODOoOooooz 0ooogoooooboooodnot\vadjust Owhatsit OO OOO0OO0OO
ooooooOoooodno

25

12.2 definition of a ‘cluster’
Definition 1. A cluster is a list of consecutive nodes in one of the following forms, with the id of it:

1. Nodes whose value of \1tj@icflagisin [3, 15). These nodes come from a hbox which is already packaged,
by unpackaging (\unhbox). The id is id_pbox.

2. A inline math formula, including two math_nodes at the boundary of it. The id is id_math.
3. A glyph_node p with nodes which relate with it:

(1) A kern for the italic correction of p.

(2) An accent attached to p by \accent.

(a)
r N
(b)
glyph —_——
kern accent kern glyph kern
subtype =2| Thox T |subtype =2| " | p | |italic corr.

accent (shifted vert.)

The id is id_jglyph or id_glyph, according to whether the glyph_node represents a Japanese character or not.

4. An box-like node, that is, an hbox, a vbox, a rule (\vrule) and an unset_node. The id is id_hlist if the node
is an hbox which is not shifted vertically, or id_box_like otherwise.

5. A glue, a kern whose subtype is not 2 (accent), and a discretionary break. The id is id_glue, id_kern and
id_disc, respectively.

Let Np, Ng and Nr denote a cluster.

id 000 Npid 00000000000 IDOO0O0000000 glyph_node Np.head DINOO O OO0
OO0 glyph_node Np.tail 0000000000000 00000C0Np O Np.head D000 Np.tail OO
D000000000000000000000 Np.head, Np.tail 000000 00000000000
D0 L 0000000000000000000000000000

id_jglyph OO0
Np.head, Np.tail OO OO OOOOOOOOO glyph_node OO OO OO OO

id glyph OOO0O0OO0OO0OOOQO glyph_node pC]
Ooooody OooooooooooooOo«s DOOOOooooooog glyph_node OOOO
OOO000O00000OO0ONp.head, Np.tail = p OOOOOOOOOOOOO

* Np.head OOOOOOO0OOOOO-0O00 glyph_node OO O OOOOO0O0O0O0OOOOS......
OOoOO0O0O0oOoOo0OoooooOooon. glyph_node OO0
 Nplast 1OOOO0O0O - 0000000000000 glyph_node (111

id_math OOOOOOO0O
OOOO0OONp.head, Np.tail OOOOOOO0OO -1 OOOOOOOOOO

id_hlist OOOOOO0O00O00O0O00O0OCOOOO0OOO
OOOO0OONp.head, Np.tail OOOO0 p OO OOOOOO0OOOO0O00OO0OOOOOO0OOOO

s JOOOOOOORX ODOOOOOoO
\hbox{\hbox{abc}...\hbox{\loweript\hbox{xyz}1}}

OOOooOdp O0ooooboooooooooooooooooobooooooooon
OOOO0OONp.head, Np.tail OOOOOOOOO0OO0O0O00O0O0O0O0OO0OO0O0OOOOOO
OOOOoOooOobooobodoOooOdOoOodddNp.kead OOO0aO000O000OO00OOOO

O Nptail OOODOO0O0O0O0OO0O0O0O0O0O0O0O0OO\Lowerlpt\hbox{xyz}IODOOOOOO
oood

26

- HOOOOOOoOooOooooobooboooboooooooooooooooooooonon
OOoobooobooonooooooooooooboooobooonooooooooooaoon

- 00000000000000000000 ghyph_node 0000000000000 id_glyph
DO0O000000000000000000

id_ppox OO0 O O0OOOO0O0OOOOOOOOOOOOOOOOOOOOOOOOOOOOoOOOO
10000000000 0000000004d_krliss OOOOOO Np.head, Np.tail OO OO0

id_disc discretionary break (\discretionary{pre}{post}{nobreak}).
id_hlist OOO0O0O0O Np.head, Np.tail OOOO0O0O00 3 OO0 nobreak IO OOOOOOOONO
ooooooooooooooo0000000000ooooo

id_box_like id_hlist OO OO0 box O Orule™d
OOOOOON p.head, Np.tail OO OO00000O0000002 OO0O0O0O0OOOOOO000dOoOO
OOOOOOON p.head, Np.tail OO0 nil OO OO0

0O 00000« OO0OO0OONp.head, Np.tail OOOOOOOO

OOoO0O0Ooooo0d OOOOJFAM OOO0O0O0o0ooOoooooooooooooodd ooooooo
OoOooooooooooooooo 2 ooooooobooooooooooooooooooono
Ooooooboooooooooooooooooooo yp oo oooooooobogomao
OOOOO0OoO0OoOooOoooooOonOn kead O last OO OO OOOOOOOOOOOO

OO0 A OOOO0O0O0O0O0O0OOoOoOoOoOOddid O id_jglyph OOOOO
id O id_pbox OOOO Np.head O JAchar OO OO OO

OO0OB DOOO0OOoDOOooooooooooooooooooooooo A doooooooooo
JFM OO 0000000000 0Oxkanjiskip, kanjiskip D OO OO0C0OOOO0OO0OO
id O id_hlist O id_disc OO0 N p.head [0 JAchar OO OO0

O0 OdOoooooboooooobooooboooooooboonoooooo s oooooodno

e id Oid_glyph OO0
e id Oid math OO0
e id O id_pbox (1 id_hlist O id_disc OO ON p.head [0 ALchar[]

O boxOOOOOOOOOOOOOOOO2 00000

* id O id_pbox O id_hlist 11 id_disc IO OO N p.head [glyph_node (1110
e id O id_box_like OO0

123 OO0OOOOOOoOooOoOooono

OOoOooon OoooooooobOooboobOoobOoooOooOoo Ny OoobOoooooOoooOoodn
OoOoooooooooooooooooooboooooooooooooonon

\parindent OO OOOOOONO (subtype = 3) A0 subtype 11 44 (user_defined) O OO OO whatsit[

OO0O0OO\parindent OO OOOO0O0OO0OOOOOOOOOOOOOOOOOOOOO
OOoOnNy OO00Odo g ooooaooan

. 0000000000 Ny OO0 AOOOO

2. JOO0DOOOOO0DOOOOO0O0OO\parindent JOOOOOO0O0OOOOO0OOCOOOOOO g O
OOO000O'parbdad' OOOOO0O Np OOOOOOOOOOOOOOOO

3. OO0OO0OO0OO0OOneindent OO OOOOOOOOOOOOOONOOg OOOOOOO 'boxbdd' O
ooo Ny DOoooooooooooodno

OOoodbOd g O glve DOOOOOOOOOOOOOO Ny OOOOOOOOOOOOOOOOOOOO
OOO0O0O0ooOooooOoOodg OO0 O\penalty10000 OOOOOO

- OO0 O0OO0OOOoOOoooooonOn

« Np OOOOODOOOOODOOOOOg O glued
27

Oooooo oooooooooooooooooooooooooooooobooooboonoooon
Ooboooooodooonod Ng OOO0O0ONg OOO00O0O00O 'voxbdd ' OOOOOOOOOOOONO
OOoodoNg OOO0OOooooooooono

OO0000ooooooOoooOOOoOOOOdd\penalty10000 O0\parfillskip OO OOO0OO0OO
OOO00OOooooooOOoooo Np O0O0O\parfillskip OO OOO0OO0O0O0O0O0O0OOO0OOOO
OO 1 00o0oo0ono Ng O0Oodno

1. OO Ng OOOOOOOOOoOdline-end [E] DOOOOODOOOOOOOOO

2. JO0MOOOOMboOobOoood + OOMododogogbogooooddceharwidowpenalty
oooobooooooobooooooooodan

OOoO0O00o0OoOoOooOoOdOhread O JAchar 0O OO0 OO0O0OO0OONO keatcode OOOOOOOO
Oo0000000000000000000°%0

124 OOUOO0OOO200000AC00On

OOoooOooodz oOOooOoooOdoodoNg O Np OO0O0O0O000000 O\ vad just Cwhatsit 10
UOoooogooooogooaooaooanoon

(@)
s % N

cluster penalty whatsit cluster
Ng — » —_— e — — Np

OOooooooooOoo @ Oooboooooooooooooooooooooooooooogg
JFM O OOO00000000 2 00o0ooooooooog

@:3
r Y
cluster kern penalty whatsit glue or kern cluster’
Ng OoOono " p+x R ’ oono > | Np

OO00DOO0O00OO0o0OoDOoodNg ONp OOOOOAOODOO0O0OOOooOooooooood
Ooooooooodno

OOoooooon OOomoooooooobooooooooooooooooogo 2 oooogoo
Uoooogoodn

JFM OO [M] JFM OO O0O0O0OO00O0O0OC0O0O00OO0O0O000O0O00O0O00o0oooooooogn
OO0O00OO0O0O0DOo0OdooOogOn kanjiskip OOOOOOOOOOOOOOOO

1. OO0O0O00000O\inhibitglue OOOOOOODOOOOOOOO whatsit OO OOOOO
O000mMO000 kanjiskip OO OOOOOOOOOOOOO

2. N¢ O Np OOOJFMOOO jfmvar OOOOOOO0O0O0O0O0O0O0O0O0O0O00O00O0O0OO0OO
oo JFAM O0Oooooooooooooooooboooooooooood

3. 1. 002 0000O0000O00Ng O Np OOO JFM/jfmvar/O0 0000000000000

gh = (WNqg OOOOOOOOdiffmet' OOOOOOOOOOOOOOOON)
ga =Q0O0O0O0O0OO'diffmet' OOOOO Np OOOOOOOOOOOOH)

I) 200/ A I N (O 7
Ogh DOOOO0OOOOOOOOOOOOOOOOOOOOoooOoooooooooogn
ga D gh DO IOOOIDO00IOOODOOOD' 00000000

oood

‘OOO00000Okeatcode DOOOOONDOO JAchar OOODOOOODOOOOOOONDkeatcode OO OOOOOONN
jcharwidowpenalty O OO0 OO0
Tdifferentjfm OO O OOOO00OMOO00MOO0OMOO0000000000000

28

\jfont\foo=psft:Ryumin-Light:jfm=ujis
\jfont\bar=psft:GothicBBB-Medium: jfm=ujis
\jfont\baz=psft:GothicBBB-Medium: jfm=ujis;jfmvar=piyo

oOoo3ooooooon

p q r
— — —
glyph glyph glyph
\foo, ‘[0’ \bar, ‘[’ \baz, ‘[1’

Oogs3 00oooooooooooonooonoooomOoooody O ¢ ooooooog
Ooooooooooo @ booooboobodg O r oo jfovar
OOooOoOooooooo ¢ oooooono

kanjiskip [K] OO [M] OODOOOO00OOO0OO00O0O0OOOOOkanjiskip OOOOOOOOO0OOOOOOd
O0OO000000O00O0O0000000O\inhibitglue OOOOOOOOOOOOOOOOOD O
Oooooooooooboooooooboooooooooooooan

1. 0000000000 Ng.tailONp.head 00000000 OOOO OO autospacing OO0
OO0O0O0O false OOOOOOOOO 0 O glue OO0

2. 00000000 kanjiskip DOO0O000000 \maxdimen = (2°° — 1) sp DO 000 Ckanijiskip
OO00000000 ge 000000

3. 2.0000000Ng, Np OOOO0OOOJFM 00000000 kanjiskip OOOOOOOOd
OO0DOO0O0OooOoooOoodoogodno ADOD BOoooooooooooooooooo
OOJFM 0000 000o0oooooooooooooOgJFAM DO OoooooooQ] 3.
Oooooooooooooodn

Ooboooooooboooooodn oomoooooooooboooodn

line-end [E] Ng O Np OOOOODOOO0OO0OOO0OOONg OOOOOODOOOOOO0DOOOOOOOOOO
ooooooooooooonooood

1. OOOoOooooooooooboooooboomoboooooooodnon

2. 000000 ghve OOOOOOO 0 O ghve OO OOOOOOOONOOOOO Ng OOOOOO
O'lineend' OOOOOOOOOOOOOOOOOIFM OOOOOOOO

3. 2.0000000000000000000000000o000oobooooboooooog
oood

ODoO0o0ooooOdo Ood
a 1= (Ng®* OO OO OO0 postbreakpenalty C101) + (Np? OO OO OO prebreakpenalty C10])
OO00000000000 [-10000, 10000] OO0DOO00O0OO00 £10000 0000000000000

ooobogobodgo « onhooooobooooooogon
a UOO0OO0OO0O Ng O Np OOOOO00OO0OO0OO0O0O0O000o0od

P-normal [PN] Ng O Np OO0 (a) DOODOO00 (pendalty_node) 0000 000000000000
OD000000000000000+10000 000000000000« 000000000000
CICI10000 + (—10000) = 0 OO0 OO0

0000000 OOooOoooooooooooooooooooooooooodd e« oo O

OO0O000000000 penalty_node OO OO0 OO0 O0O0O0OOO0O0OO Ny OOOOOOO......
Oooooooooooboooooooooooooaon

- (OO0OOODOODOOOODOoOnDodNg O Ny OO OO OOoooooogoooon
OOoOOooooooogdbe«#0 00D OO0O00OODOOOOOOOOO

- DOOOOOoOoOooooooboooobooooobooooomobooooooooodnnm
OOOoOooooodooooooooooodoooodnodte = 0 ODOOO penalty_node
Uoooooanog

- DOOOODOOOOOOOOa #0000 penalty_node OO OO OOOOMO

‘00000000 Ngq.tail ON p.head O
29

Table 6. Summary of JEM glues.

Np v | OOA ooB [O glue kern
00 A E MoK — O4-K — 0Oy-X — O, — O, — On
PN PN PN PA PN PS
E Og-K — K — X
hoB PA PS PS
E Og-X — X
B PA PS
. E Og
PA
E Og
gle | —py—
E Og
ki —
ern PS
E M-K
Here AN means that

1. To determine the ‘right-space’, LuaTgX-ja first attempts by the method ‘JFM-origin [M]". If this
attempt fails, LuaTgX-ja use the method ‘kanjiskip [K]'.

2. The ‘left space’ between Ng and Np is determined by the method ‘line-end [E]".

3. LuaTgX-ja adopts the method ‘P-normal [PN]’ to adjust the penalty between two clusters for
kinsoku shori.

125 OOOOodo

oOoOoooooe OoOooonodn

O0ADOOOOO NgOOOAOONy OOOOOOOIFM ODOOOOoooooooooooooooo

- 1000000000000000000 Boundary-B [Og] 0000000000 00000000
00000000 Oxkanjiskip [X] 00000000

- 000D OOOOOOOOOO line-end [E] OO0OOOOOOOOOOOOOOOOOOOOO
oood

- 000000000 00O00OO0 P-normal [PN] OOOOOOO

Boundary-B [Og] OOOOOOOOOOOODOOODOOOOODOOOOOOOOOOOOOOoOogonog
OOoOoDOooooooodooododrM-erigin [M] OOOOOOOO0OO0OOOOOOOOOOO
oboooboooooooboooooooooooooooooodn

1. OO0O0O0O0000O\inhibitglue OOOOOOODOOOOOOOO whatsit OO OOOOO
OoooomOood

2. O0OO0OO00ONg OOO0OO0000 jenarbdd' OOOOOOOOOO0OO00OOO0OOOOO
ooodo

xkanjiskip [X] OO OOOO0Okanjiskip [K] DOOOOO0OO0 OO Oxkanjiskip DO OOOO0O0OO0DO0OO
OO0O0000O0oOooOdDooOoOodot\inhibitglue OOOOOOOOOOOOOOOO

1. OOOO00000000Oxkanjiskip OO OOO0O00000O0OOOOOO0OOOOOOOONO
OOooOooood glve OOOOOO

s JOOOOOOOOOOOOODOOOOodOOOoOoOd autoxspacing OO OO
false OO

« Ng OOOOOOOOOOO0OOImMOOOO xkanjiskip DO OO0 D OO0O0O0O0OOO0O0OOO
jaxspmode (or alxspmode) OO OO0 2 OO0

30

« Np OOOOOOOOOO0OOmOOOO xkanjiskip OO OO0 ODO0O0O0O00OOOO0OOO
jaxspmode (or alxspmode) OO OO OO OO0

2. 00000000 xkanjiskip 000000000 \maxdimen = (23— 1) sp OO OO0 CXkanijiskip
000000000 ghe 000000

3. 2.0000000Ng, NpO OO A/OOBOOODOOOOOOOOOOOOJEM OOOOOOnO
O xkanjiskip OO OOOOO

OO00OO0oAOO NgOOOOONy OOOAOOOOVFM DO0OO0OOoooooooooooood
OO0 AD0OO0O00OO0OO0OdOBoundary-A [O] DO OOOOOOOO

- 0000000000000000000 Boundary-A [0,] 00000 0000000000000
00000000 Oxkanjiskip [X] 00000000

- Ng OOOOOOOMOOOOOOOOOo0nOd
- JOOOOODOOOOnooOodo P-normal [PN] OOOOOOO

Boundary-A [O,] DOODOODOODODOOOOODOOOOOODOOOOOODOOODOOOOOOd
OOo000ooooooooooodJdrM-erigin (M DOOOOOOOOO0O0O0O0O0O0O0O0O0Od
Obooooooooooooboooooooboooooboonooood

1. OOO0O0000OO\inhibitglue OOOOO0OOO0O0O0OOOOO whatsit OO OO0OOO
OoooomOood

2. O00OO00O0OmMOOO0O0O0 jeharbdd' OOOOO Np OOOOOOOOOOOOOOOO
oo

O0ADO0OO00DOOOOO0O00 N OOOAOONy OOOODO0O000000D0O0000000oo
OoooodoodIFM oogoodoooboooogooonoooodaooonooooooodnog
OOoOooooooooooooooooooooooooonon

- OO0 ODOOOO0OOODODd Boundary-B [Og] OO D OOOOOODODOOOOOOOO
Ooooomooooooooooon

- JOOOOOOOOOOOOOOOline-end [El OO0OOOOOOOOOOOOOOOOOOOOO
ooooooood

- JOO0OOOOO0OOOOOoOOoOoood Ny OO0OOo0OdOo0OddNp.head OOOONO
OO0OOOON p.head OODO O prebreakpenalty O OO0 0 OO OOOOOOOOOOOO

a 1= (N¢'"°00D00000 postbreakpenalty C100).

O Np ODOOOODOOOoMoOOoDoOoODO0oO0MmoO0DOoo0oO00OdO\penalty10000
OooooooooOooooooooooooooooooooooooooon P-allow [PA]
O P-normal [PN] OO OOOOOOOOO

000 Np OODOOOOODOOO0OoOooodd P-normal [PN] OO OOO

ooo yp Obbhooooooobooooboooooooooooobooooooooboooodn
OoO0ooooDoDoooooooooooooooogooooogn P-suppress [PS] O
oo

OO0 P-normal [PN]CP-allow [PA]CIP-suppress [PS] O OO CONg O Np OO0 OO OO0 (a)
Ooooooooooogoooooobooogooon

P-allow [PA] Ng OO Np OO0 (a) OOOOO OO OOO0O0OO0OP-normal [PN] OOOOOOOOOOOOO
ootooooooodn « bobooogno

(OO0O0O0O0OoO0OoOoOooobooboObDdLeaTgX-ja O Ng O Np OOOOOOOO0OOOOOO
OO0O0000000000000d « OO0 penalty_node OO OOOOOOOOOOOOOOO Np
ooooooooono

- HOOOOOOOoOooooooooooooooooaonoad
31

- HOOOOOOOoOoooOooooooboonooonod

P-suppress [PS] Ng O Np OO0 () OOOOOOOOOOOOOP-normal [PN] O OOOOOOCOOOOO
ooooooooooon e« ooooodno

() DODOOO0DOOO0D00D0O00000O0ONg ONp DO0O0O00DO00O00ooooooooog
OD000LuaTgX-ja OO0OO0DOO0OO000000O00D0000000000000 glve DOOOO
OOO0O0OO0O\penalty10000 OOOOOO

Oomoooooooomoooodoooono

Ngq Np
glyph glue
T | |1pt

OO0DO000O00DO000DO0O0e.0000000 postbreakpenalty OO OO0 OO O0OOOOOOO 20

oooooogd
Ngq Np
glyph kern glue

0000« OOO0ODOO000OO00OOoo0boogooOodnoOpostbreakpenalty OO« OOOOOOO
ooooooooooooooooooao a) a

Ng Np
—_—— —_——

glyph penalty kern glue
Al R — |Ooog|— |1pt

a

Ooooooooooo'lo

OOoOOooOdooooooAOoO ypOOoooooooooooooodoNy oo A0OOOoooo
OOoOoonNg O Np OOOoooooooooodoooboooooomoooooooooooodn
oono

- OO0 OODOOOOO0OOOO Boundary-A [0, OO OOOOOOODOOODOOOOOOOOO
Ooooomooooooooooan

 Ng OO OOOOOMOOOO0OOoOooOonOd
- JOOOOOOOOOOO0ONg OOOOO00O000O00Ng.teil OOOOOOOO

a 1= (Np"?0000O0O0 prebreakpenalty C100).

0 Ng OOOOOO0P-allow [PA] 00000
000 Ng 00000000 0P-normal [PN] 00000
000 Ng OOOOO0O0000P-suppress [PS] OO OO0

O0ADOOOBOOO DOOOODOOOODOOBOOODOODOOODOOOor OOOOoOoOonood
OOoOoOoO0oDoooooodooDoodooooooDoooobooooo Anooooog

- JOBOOOOOOFM DOOOO0OOOOOODOOO JFM-origin [M]Boundary-A [Ox]Boundary-B [Og]O
oo ooboonooonogonogood

- 00000 AD0OOOOO0B 00000000 0Boundary-A [0,] OO0 Boundary-B [Og]
DO0000000000000 kanjiskip [K] 0000000
- 00BO20000000000OkKanjiskip [K| DOO000000

- JOBOOOOOOODOOOOOOOOOonooooooooooommoOoIFrM OOoOdooo
OoOooOoOoooooodno

Mkern—glue 0 1 DOO0O000 (000000000000 0) 000000000 « = 10000 DOOOOONg O Np OOOO
OOoOooooooooooOOnd

32

- JOBOOOBOOODOOBOODOOOODOOOIDOOOOOOOOOOONO P-suppress [PS]
ooooodno

OO B OOO0OOOO prebreakpenalty, postbreakpenalty OO0 OO O0O0O00 DOOOOOOOO

doodaoodnog
1 OO\inhibitglue A\\ O0OA
2 \hbox{[JTTI}A\\ O0OA
3 OOA COOA

* 1 OOO\inhibitglue 00 Boundary-B [Og] OO O OO OOOODDOOOOOODOOOOAOOOOO
xkanjiskipOOOOOoOoOooooooooao

L0 . =
OOO00OO0oOdoodoOodn Boundary-B [Og] DO OO OO OO OO OO O Oxkanjiskip 1O
oooOoodno

- 300000000000000000000A 00000000000000000A00000
Boundary-B [Og] 0000000000000000

13 psft

14 Patch for the 1istings package

References

[1] Victor Eijkhout, TgX by Topic, A TgXnician’s Reference, Addison-Wesley, 1992.

33

A Package versions used in this document

This document was typeset using the following packages:

geometry.sty
keyval.sty
ifpdf.sty
ifvtex.sty
ifxetex.sty
amsmath.sty
amstext.sty
amsgen. sty
amsbsy.sty
amsopn.sty
tikz.sty
pgf.sty
pgfrcs.sty
everyshi.sty
pgfcore.sty
graphicx.sty
graphics.sty
trig.sty
infwarerr.sty
ltxcmds.sty
pdftexcmds.sty
ifluatex.sty
luatex-loader.sty

pgfsys.sty
xcolor.sty

2010/09/12
1999/03/16
2011/01/30
2010/03/01
2010/09/12
2000/07/18
2000/06/29
1999/11/30
1999/11/29
1999/12/14
2010/10/13
2008/01/15
2010/10/25
2001/05/15
2010/04/11
1999/02/16
2009/02/05
1999/03/16
2010/04/08
2011/11/09
2011/11/29
2010/03/01
2010/03/09
2010/06/30
2007/01/21

pgfcomp-version-0-65.sty 2007/07/03
pgfcomp-version-1-18.sty 2007/07/23

pgffor.sty
pgfkeys.sty
pict2e.sty
multienum.sty
float.sty
booktabs.sty
multicol.sty
listings.sty
lstmisc.sty
showexpl.sty
calc.sty
ifthen.sty
varwidth.sty
hyperref.sty
hobsub-hyperref.sty
hobsub-generic.sty
hobsub.sty
intcalc.sty
etexcmds.sty
kvsetkeys.sty
kvdefinekeys.sty
pdfescape.sty
bigintcalc.sty
bitset.sty
uniquecounter.sty

letltxmacro.sty

2010/03/23

2011/04/05

2001/11/08
2005/04/14
2011/06/27
2007/02/22
2007/02/22
2011/08/22
2007/08/22
2001/05/26
2009/03/30
2012/08/03
2012/05/28
2012/05/28
2012/05/28
2007/09/27
2011/02/16
2012/04/25
2011/04/07
2011/11/25
2012/04/08
2011/01/30
2011/01/30
2010/09/02

v5.6 Page Geometry

v1.13 key=value parser (DPC)

v2.3 Provides the ifpdf switch (HO)

v1.5 Detect VTeX and its facilities (HO)

v0.6 Provides ifxetex conditional

v2.13 AMS math features

v2.01

v2.0

vi.2d

v2.01 operator names

v2.10 (rcs-revision 1.76)

v2.10 (rcs-revision 1.12)

v2.10 (rcs-revision 1.24)

v3.00 EveryShipout Package (MS)

v2.10 (rcs-revision 1.7)

v1.0f Enhanced LaTeX Graphics (DPC,SPQR)

v1.0o Standard LaTeX Graphics (DPC,SPQR)

v1.09 sin cos tan (DPC)

v1.3 Providing info/warning/error messages (HO)
v1.22 LaTeX kernel commands for general use (HO)
v0.20 Utility functions of pdfTeX for LuaTeX (HO)
v1.3 Provides the ifluatex switch (HO)

v0.4 Lua module loader (HO)

v2.10 (rcs-revision 1.37)

v2.11 LaTeX color extensions (UK)

v2.10 (rcs-revision 1.7)

v2.10 (rcs-revision 1.1)

v2.10 (rcs-revision 1.18)

v0.2y Improved picture commands (HjG,RN,JT)

v1.3d Float enhancements (AL)

v1.61803 publication quality tables

vl.7a multicolumn formatting (FMi)

1.4 (Carsten Heinz)

1.4 (Carsten Heinz)

v0.3i Typesetting example code (RN)

v4.3 Infix arithmetic (KKT,FJ)

vl.1lc Standard LaTeX ifthen package (DPC)

ver 0.92; Variable-width minipages

v6.82y Hypertext links for LaTeX

v1.13 Bundle oberdiek, subset hyperref (HO)
v1.13 Bundle oberdiek, subset generic (HO)
v1.13 Construct package bundles (HO)

vl.1 Expandable calculations with integers (HO)
v1.5 Avoid name clashes with e-TeX commands (HO)
v1.16 Key value parser (HO)

v1.3 Define keys (HO)

v1.13 Implements pdfTeX's escape features (HO)
v1.3 Expandable calculations on big integers (HO)
vl.1 Handle bit-vector datatype (HO)

v1.2 Provide unlimited unique counter (HO)

v1.4 Let assignment for LaTeX macros (HO)

34

hopatch.sty
xcolor-patch.sty
atveryend.sty
atbegshi.sty
refcount.sty
hycolor.sty
auxhook.sty
kvoptions.sty
url.sty
rerunfilecheck.sty
amsthm.sty
luatexja-otf.sty
luatexja.sty
luatexja-core.sty
luaotfload.sty

luatexbase.sty

luatexbase-compat.sty

luatexbase-loader.sty

luatexbase-regs.sty
etex.sty

luatexbase-attr.sty
luatexbase-cctb.sty

luatexbase-mcb.sty

luatexbase-modutils.sty

xkeyval.sty
1tj-cctbreg.sty
1tj-base.sty
1ltj-latex.sty
1ltjfont.sty
11ltjdefs.sty
1lltjcore.sty

luatexja-compat.sty

luatexja-ajmacros.sty

luatexja-preset.sty
expl3.sty
13names.sty
13bootstrap.sty
luatex.sty
13basics.sty
13expan.sty
13tl.sty
13seq.sty
13int.sty
13quark.sty
13prg.sty
13clist.sty
13token.sty
13prop.sty
13msg.sty
13file.sty
13skip.sty
13keys.sty
13fp.sty
13box.sty
13coffins.sty
13color.sty
13luatex.sty

2012/05/28
2011/01/30
2011/06/30
2011/10/05
2011/10/16
2011/01/30
2011/03/04
2011/06/30
2006/04/12
2011/04/15
2009/07/02
2012/04/20
2011/04/01
2012/04/20
2012/05/28
2010/10/06
2010/10/10
2010/10/10
2010/10/10
1998/03/26
2011/05/21
2010/10/10
2010/10/10
2010/10/10
2008/08/13
2012/04/21
2012/04/21
2012/04/21
2011/11/22
2011/11/22
2011/11/22
2011/04/01
2012/05/08
2012/05/18
2012/07/16
2012/07/16
2012/07/15
2010/03/09
2012/07/15
2012/07/15
2012/07/15
2012/07/15
2012/07/15
2012/07/15
2012/07/15
2012/07/15
2012/07/15
2012/07/15
2012/07/15
2012/07/15
2012/07/15
2012/07/15
2012/07/15
2012/07/15
2012/07/15
2012/07/15
2012/07/15

v1.2 Wrapper for package hooks (HO)

xcolor patch
v1.8 Hooks at the very end of document (HO)
v1.16 At begin shipout hook (HO)

v3.4 Data extraction from label references (HO)

v1.7 Color options for hyperref/bookmark (HO)

v1.3 Hooks for auxiliary files (HO)

v3.11 Key value format for package options (HO)

ver 3.3 Verb mode for urls, etc.

v1.7 Rerun checks for auxiliary files (HO)

v2.20
v0.2
v0.1
v0.2

.1

v1.27 OpenType layout system

v0.3
v0.3
v0.3
v0.3
v2.0

Module utilities for LuaTeX

Compatibility tools for LuaTeX

Lua

module loader for LuaTeX

Registers allocation for LuaTeX

eTeX basic definition package (PEB)

v0.31 Attributes allocation for LuaTeX

v0.3 Catcodetable allocation for LuaTeX

v0.3 Callback management for LuaTeX

v0.3 Module utilities for LuaTeX

v2.6a package option processing (HA)

v0.2
v0.2

LualLaTeX-ja
Patch to NFSS2 for LualLaTeX-ja
Default font settings for LualLaTeX-ja

Patch to LaTeX2e Kernel for LualLaTeX-ja

v0.1
v0.1la
v0.0

v3990 L3 Experimental code bundle wrapper

v3990 L3 Namespace for primitives

v3986 L3 Experimental bootstrap code

v0.4 LuaTeX basic definition package (HO)

v3987
v3986
v3986
v3986
v3986
v3986
v3986
v3986
v3986
v3986
v3986
v3986
v3986
v3986
v3986
v3986
v3986
v3986
v3986

L3
L3
L3
L3
L3
L3
L3
L3
L3
L3
L3
L3
L3
L3
L3
L3
L3
L3
L3

Basic definitions

Argument expansion

Token lists

Sequences and stacks

Integers

Quarks

Control structures

Comma separated lists
Experimental token manipulation
Property lists

Messages

File and I/0 operations
Dimensions and skips
Experimental key-value interfaces
Floating points

Experimental boxes

Coffin code layer

Experimental colour support

Experimental LuaTeX-specific functions

35

13candidates.sty 2012/05/12 v3633 L3 Experimental additions to 13kernel
luatexja-fontspec.sty 2011/09/23 v0.2

fontspec.sty 2012/05/06 v2.2b Advanced font selection for XeLaTeX/LuaLaTeX

xparse.sty 2012/07/16 v3990 L3 Experimental document command parser

fontspec-patches.sty 2012/05/06 v2.2b Advanced font selection for XeLaTeX/LualaTeX

fixltx2e.sty 2006/09/13 vi.1m fixes to LaTeX

fontspec-luatex.sty 2012/05/06 v2.2b Advanced font selection for XeLaTeX/LualaTeX

fontenc.sty

xunicode.sty 2011/09/09 v0.981 provides access to latin accents and many other characters in Unicode
lower plane

unicode-math.sty 2012/07/28 v0.7a Unicode maths in XeLaTeX and LuaLaTeX

13keys2e.sty 2012/07/16 v3990 LaTeX2e option processing using LaTeX3 keys

catchfile.sty 2011/03/01 v1.6 Catch the contents of a file (HO)

fix-cm.sty 2006/09/13 v1.1m fixes to LaTeX

filehook.sty 2011/10/12 v0.5d Hooks for input files

unicode-math-luatex.sty

lualatex-math.sty 2011/09/18 v0.3b Patches for mathematics typesetting with LuaLaTeX

etoolbox.sty 2011/01/03 v2.1 e-TeX tools for LaTeX

metalogo.sty 2010/05/29 v0.12 Extended TeX logo macros

11tjp-xunicode.sty 2012/04/18 Patch to xunicode for LuaLaTeX-ja

11tjp-unicode-math.sty 2011/11/22 Patch to unicode-math for LualaTeX-ja

11tjp-listings.sty 2012/02/02 0.51

epstopdf-base.sty 2010/02/09 v2.5 Base part for package epstopdf

grfext.sty 2010/08/19 v1.1 Manage graphics extensions (HO)

nameref.sty 2012/07/31 v2.42 Cross-referencing by name of section

gettitlestring.sty 2010/12/03 v1.4 Cleanup title references (HO)

36

	I User's manual
	Introduction
	Backgrounds
	Major Changes from pTeX
	Notations
	About the project

	Getting Started
	Installation
	Cautions
	Using in plain TeX
	Using in LaTeX

	Changing Fonts
	plain TeX and LaTeX2ε
	fontspec
	Preset
	92 CID, 92 UTF and macros in otf package

	Changing Parameters
	Editing the range of JAchars
	kanjiskip and xkanjiskip
	Insertion Setting of xkanjiskip
	Shifting Baseline

	II Reference
	Font Metric and Japanese Font
	92jfont primitive
	Prefix psft
	Structure of JFM file
	Math Font Family
	Callbacks

	Parameters
	92 ltjsetparameter primitive
	List of Parameters

	Other Primitives
	Primitives for Compatibility
	92 inhibitglue primitive

	Control Sequences for LaTeX2ε
	Patch for NFSS2

	Extensions
	luatexja-fontspec.sty
	luatexja-otf.sty

	III Implementations
	Storing Parameters
	Used Dimensions, Attributes and whatsit nodes
	Stack System of LuaTeX-ja

	Linebreak after Japanese Character
	Reference: Behavior in pTeX
	Behavior in LuaTeX-ja

	Insertion of JFM glues, kanjiskip and xkanjiskip
	Overview
	definition of a `cluster'
	段落／水平ボックスの先頭や末尾
	概観と典型例：2つの「和文A《の場合
	その他の場合

	psft
	Patch for the listings package
	References
	Package versions used in this document

