The LuaTgX-ja package

The LuaTgX-ja project team

May 5, 2012

Contents

I

II

User’s manual

Introduction

1.1 Backgrounds e e
1.2 Major Changes from pTEX o e
1.3 Notations o e e e e e e e
1.4 Aboutthe project L e e e
Getting Started

2.1 Installation
22 Cautions e
23 Usinginplain TEX o o o e e
24 Using inIETEX . . . o o o e e
2.5 Changing Fonts
2.6 fONISPEC e

Changing Parameters

3.1 Editingtherange of JAchars

3.2 kanjiskipand xkanjiskip

3.3 Insertion Setting of Xkanjiskip

3.4 Shifting Baseline e e

3.5 Cropmark e e e e
Reference

Font Metric and Japanese Font

4.1 \jfont primitive
42 Prefix psft e e e
43 Structure of JEM file e
44 MathFont Family e
4.5 Callbacks o e e
Parameters

5.1 \ltjsetparameter primitive
5.2 Listof Parameters e e e e e e e e

Other Primitives
6.1 Primitives for Compatibility
6.2 \inhibitglue primitive e

Control Sequences for IXTEX 2¢

7.1 Patch for NFSS2 o e
7.2 Cropmark/‘tombow’™ L e
Extensions

8.1 Tuatexja-fontspec.sty o L e
8.2 Tuatexja-otf.sty e

~N N Lt A B B B W W N NN

O O 3

10

10
10
12
12
13
13

15
15
15

17
17
17

17
17
18

III Implementations 19

9 Storing Parameters 19
9.1 Used Dimensions, Attributes and whatsitnodes 19
9.2 Stack System of LuaTEX-ja e 20
10 Linebreak after Japanese Character 21
10.1 Reference: Behaviorin pTEX o . L 21
10.2 Behaviorin LuaTEX-ja e 21
11 Insertion of JFM glues, kanjiskip and xkanjiskip 22
T1.1 OVerview o o o e e e 22
11.2 definition of a ‘cluster’ e e e 23
113 OO0O0O00O0O0O00O0O000O000 e e e e e e e e e e e e e e e e 24
114 OO0OOOO0O2 00000 AOOOO . . .0 e e e e e e e e e e e e 25
11.5 OOOOO0M .« o o e e e e e e e e e e s s 27
12 psft 30
References 30

This documentation is far from complete. It may have many grammatical (and contextual) errors. Also,
several parts (especially, Section 11) are written in Japanese only.

Part 1
User’s manual

1 Introduction

The LuaTgX-ja package is a macro package for typesetting high-quality Japanese documents when using LuaTgX.

1.1 Backgrounds

Traditionally, ASCII pTEX, an extension of TgX, and its derivatives are used to typeset Japanese documents in
TeX. pTEX is an engine extension of TEX: so it can produce high-quality Japanese documents without using very
complicated macros. But this point is a mixed blessing: pTigX is left behind from other extensions of TgX, especially
&-TgX and pdfTEX, and from changes about Japanese processing in computers (e.g., the UTF-8 encoding).

Recently extensions of pTEX, namely upTX (Unicode-implementation of pTEX) and epTX (merging of pTX
and e-TgX extension), have developed to fill those gaps to some extent, but gaps still exist.

However, the appearance of LuaTgX changed the whole situation. With using Lua ‘callbacks’, users can cus-
tomize the internal processing of LuaTgX. So there is no need to modify sources of engines to support Japanese
typesetting: to do this, we only have to write Lua scripts for appropriate callbacks.

1.2 Major Changes from pTX

The LuaTgX-ja package is under much influence of pTX engine. The initial target of development was to implement
features of pTEX. However, LuaTgX-ja is not a just porting of pTgX; unnatural specifications/behaviors of pTgX were
not adopted.

The followings are major changes from pTEX:

* A Japanese font is a tuple of a ‘real’ font, a Japanese font metric (JFM, for short), and an optional string
called ‘variation’.

* In pTEX, a line break after Japanese character is ignored (and doesn’t yield a space), since line breaks (in
source files) are permitted almost everywhere in Japanese texts. However, LuaTgX-ja doesn’t have this func-
tion completely, because of a specification of LuaTgX.

* The insertion process of glues/kerns between two Japanese characters and between a Japanese character and
other characters (we refer these glues/kerns as JAglue) is rewritten from scratch.

— As LuaTgX’s internal character handling is ‘node-based’ (e.g., of {}fice doesn’t prevent ligatures), the
insertion process of JAglue is now ‘node-based’.

— Furthermore, nodes between two characters which have no effects in line break (e.g., \special node)
and kerns from italic correction are ignored in the insertion process.

— Caution: due to above two points, many methods which did for the dividing the process of the insertion of
JAglue in pTEX are not effective anymore. In concrete terms, the following two methods are not effective
anymore:

oo{xod Ooo\/oo
If you want to do so, please put an empty hbox between it instead:
O0O\hbox{}10J

— In the process, two Japanese fonts which only differ in their ‘real’ fonts are identified.

At the present, vertical typesetting (fategaki), is not supported in LuaTgX-ja.

For detailed information, see Part III.

1.3 Notations

In this document, the following terms and notations are used:

* Characters are divided into two types:

— JAchar: standing for Japanese characters such as Hiragana, Katakana, Kanji and other punctuation
marks for Japanese.

— ALchar: standing for all other characters like alphabets.
We say ‘alphabetic fonts’ for fonts used in ALchar, and ‘Japanese fonts’ for fonts used in JAchar.

e A word in a sans-serif font (like prebreakpenalty) means an internal parameter for Japanese typesetting,
and it is used as a key in \1tjsetparameter command.

* A word in typewriter font with underline (like fontspec) means a package or a class of I&TEX.

* The word ‘primitive’ is used not only for primitives in LuaTgX, but also for control sequences that defined in
the core module of LuaTgX-ja.

¢ In this document, natural numbers start from 0.

1.4 About the project

Project Wiki Project Wiki is under construction.

* http://sourceforge. jp/projects/luatex-ja/wiki/FrontPage’%28en%29 (English)
* http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage (Japanese)

* http://sourceforge. jp/projects/luatex-ja/wiki/FrontPage’%28zh%29 (Chinese)

This project is hosted by SourceForge.JP.

Members
e Hironori KITAGAWA e Kazuki MAEDA e Takayuki YATO
e Yusuke KUROKI e Noriyuki ABE e Munehiro YAMAMOTO
e Tomoaki HONDA e Shuzaburo SAITO e MA Qiyuan

http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28en%29
http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage
http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28zh%29

2 Getting Started

2.1 Installation

To install the LuaTgX-ja package, you will need:

e LuaTEX (version 0.65.0-beta or later) and its supporting packages.
If you are using TgX Live 2011 or current W32TgX, you don’t have to worry.

* The source archive of LuaTgX-ja, of course:)

» The xunicode package, which version is just v0.981 (2011/09/09).
If you have the fontspec package, this xunicode package must be exist. But be careful about the version;
other versions may not work correctly with LuaTgX-ja.

The installation methods are as follows:
1. Download the source archive, by one of the following method. At the present, LuaTgX-ja has no stable release.
* Copy the Git repository:
$ git clone git://git.sourceforge. jp/gitroot/luatex-ja/luatexja.git

* Download the tar. gz archive of HEAD in the master branch from

http:
//git.sourceforge. jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz.

* Now LuaTgX-ja is available from the following archive and distributions:

— CTAN (in the macros/luatex/generic/luatexja directory)
— TgX Live (in texmf-dist/tex/luatex/luatexja)
— W32TgX (in luatexja.tar.xz)

These are based on the master branch.

Note that the master branch, and hence the archive in CTAN, are not updated frequently; the forefront of
development is not the master branch.

2. Extract the archive. You will see src/ and several other sub-directories. But only the contents in src/ are
needed to work LuaTEX-ja.

3. Copy all the contents of src/ into one of your TEXMF tree. TEXMF/tex/luatex/luatexja/ is an example
location. If you cloned entire Git repository, making a symbolic link of src/ instead copying is also good.

4. If mktexlsr is needed to update the file name database, make it so.

2.2 Cautions

» The encoding of your source file must be UTF-8. No other encodings, such as EUC-JP or Shift-JIS, are not
supported.

2.3 Using in plain TEX
To use LuaTgX-ja in plain TgX, simply put the following at the beginning of the document:
\input luatexja.sty

This does minimal settings (like ptex. tex) for typesetting Japanese documents:

* The following 6 Japanese fonts are preloaded:

http://git.sourceforge.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz
http://git.sourceforge.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz

classification font name ‘10pt° “7pt’ ‘Spt’

mincho Ryumin-Light \tenmin \sevenmin \fivemin
gothic GothicBBB-Medium \tengt \sevengt \fivegt

— The ‘QOOCY is a unit used in Japanese phototypesetting, and 1 Q = 0.25mm. This length is stored in
a dimension \ jQ.

— Itis widely accepted that the font ‘Ryumin-Light’ and ‘GothicBBB-Medium’ aren’t embedded into PDF
files, and PDF reader substitute them by some external Japanese fonts (e.g., Kozuka Mincho is used for
Ryumin-Light in Adobe Reader). We adopt this custom to the default setting.

— A character in an alphabetic font is generally smaller than a Japanese font in the same size. So actual
size specification of these Japanese fonts is in fact smaller than that of alphabetic fonts, namely scaled
by 0.962216.

e The amount of glue that are inserted between a JAchar and an ALchar (the parameter xkanjiskip) is set to

(0.25-0.962216- 10pt) " by = 2.40554pt ™ .

2.4 Using in IXTEX

IATEX2¢ Using in I&TEX 2¢ is basically same. To set up the minimal environment for Japanese, you only have to
load luatexja.sty:

\usepackage{luatexja}
It also does minimal settings (counterparts in pl&TEX are plfonts.dtx and pldefs.ltx):

e JY3 is the font encoding for Japanese fonts (in horizontal direction).
When vertical typesetting is supported by LuaTgX-ja in the future, JT3 will be used for vertical fonts.

» Two font families mc and gt are defined:

classification family \mdseries \bfseries scale
mincho mc Ryumin-Light GothicBBB-Medium 0.962216
gothic gt GothicBBB-Medium GothicBBB-Medium 0.962216

Remark that the bold series in both family are same as the medium series of gothic family. This is a convention
in pISTEX. This is a trace that there were only 2 fonts (these are Ryumin-Light and GothicBBB-Medium) in
early years of DTP.

* Japanese characters in math mode are typeset by the font family mc.

However, above settings are not sufficient for Japanese-based documents. To typeset Japanese-based docu-
ments, you are better to use class files other than article.cls, book.cls, and so on. At the present, we have the
counterparts of jclasses (standard classes in pI&TEX) and jsclasses (classes by Haruhiko Okumura), namely,
ltjclasses and 1tjsclasses.

\CID, \UTF and macros in OTF package Under pI&TEX, otf package (developed by Shuzaburo Saito) is used for
typesetting characters which is in Adobe-Japan1-6 CID but not in JIS X 0208. Since this package is widely used,
LuaTgX-ja supports some of functions in otf package. If you want to use these functions, load luatexja-otf
package.

1 O\UTF{9DD7} 0 00O O O\UTF{9592} C1CI\UTF{9AD

9}O00O0000 0
, ¥ O000000000000gggOn
s\CID{7652} [1C1CI\CID{13706} 1]] nooooooonooooon
. O000000o

2.5 Changing Fonts

Remark: Japanese Characters in Math Mode Since pTX supports Japanese characters in math mode, there
are sources like the following:

' f_{OI01}~ ($f_{\text{high temperature}}$). Jor Unigh emperature)-

2\[y=(x-1)"2+2\quad J0[0\quad y>0 \]
3$5\in OJ:=\{\,p\in\mathbb N:\text{p is a
prime}\,\}$.

y=@-1*+2 000 y>0
5e0:={peN:pisaprime}.

We (the project members of LuaTgX-ja) think that using Japanese characters in math mode are allowed if and only
if these are used as identifiers. In this point of view,

¢ The lines 1 and 2 above are not correct, since ‘11’ in above is used as a textual label, and ‘I’ is used
as a conjunction.

e However, the line 3 is correct, since ‘[’ is used as an identifier.

Hence, in our opinion, the above input should be corrected as:

1f_{OO}~7%

2 ($f_{\text{high temperaturel}}$).

3\[y=(x-1) "2+2\quad

4+ \mathrel{\text{JOO}}\quad y>0 \]

s$5\in [:=\{\,p\in\mathbb N:\text{p is a
prime}\,\}$.

f oo (f high temperature)~
y=@x-1)2+2 000 y>0

5e0d:={peN:pisaprime}.

We also believe that using Japanese characters as identifiers is rare, hence we don’t describe how to change Japanese
fonts in math mode in this chapter. For the method, please see Subsection 4.4.

plain TEX To change Japanese fonts in plain TX, you must use the primitive \jfont. So please see Subsec-
tion 4.1.

NFSS2 For KIEX 2¢, LuaTiX-ja adopted most of the font selection system of plATEX 2¢ (in plfonts.dtx).

» Two control sequences \mcdefault and \gtdefault are used to specify the default font families for mincho
and gothic, respectively. Default values: mc for \mcdefault and gt for \gtdefault.

e Commands \fontfamily, \fontseries, \fontshape and \selectfont can be used to change attributes
of Japanese fonts.

encoding family series shape selection

alphabetic fonts \romanencoding \romanfamily \romanseries \romanshape \useroman

Japanese fonts \kanjiencoding \kanjifamily \kanjiseries \kanjishape \usekanji
both — - \fontseries \fontshape —

auto select \fontencoding \fontfamily — — \usefont

\fontencoding{<encoding>} changes the encoding of alphabetic fonts or Japanese fonts depending on
the argument. For example, \fontencoding{JY3} changes the encoding of Japanese fonts to JY3 and
\fontencoding{T1} changes the encoding of alphabetic fonts to T1. \fontfamily also changes the family
of Japanese fonts, alphabetic fonts, or both. For detail, see Subsection 7.1.

* For defining a Japanese font family, use \DeclareKanjiFamily instead of \DeclareFontFamily. How-
ever, in the present implementation, using \DeclareFontFamily doesn’t cause any problem.

2.6 fontspec

To coexist with the fontspec package, it is needed to load luatexja-fontspec package in the preamble. This
additional package automatically loads luatexja and fontspec package, if needed.

In luatexja-fontspec package, the following 7 commands are defined as counterparts of original commands
in the fontspec package:

Japanese fonts \jfontspec \setmainjfont \setsansjfont \newjfontfamily
alphabetic fonts \fontspec \setmainfont \setsansfont \newfontfamily

Japanese fonts \newjfontface \defaultjfontfeatures \addjfontfeatures
alphabetic fonts \newfontface \defaultfontfeatures \addfontfeatures

i1 \fontspec [Numbers=01dStyle]{TeX Gyre Termes}
2\jfontspec{IPAexMincho}

3J1S~X~0213:2004 - O] JIS X 0213:2004 =it
4 JIS X 0208:1990 —it:

s\addjfontfeatures{CJKShape=JIS1990}
6 JIS~X~0208:1990 - [

Note that there is no command named \setmonojfont, since it is popular for Japanese fonts that nearly all
Japanese glyphs have same widths. Also note that the kerning feature is set off by default in these 7 commands,
since this feature and JAglue will clash (see 4.1).

3 Changing Parameters

There are many parameters in LuaTigX-ja. And due to the behavior of LuaTgX, most of them are not stored as internal
register of TgX, but as an original storage system in LuaTgX-ja. Hence, to assign or acquire those parameters, you
have to use commands \1tjsetparameter and \1tjgetparameter.

3.1 Editing the range of JAchars

To edit the range of JAchars, you have to assign a non-zero natural number which is less than 217 to the character
range first. This can be done by using \1tjdefcharrange primitive. For example, the next line assigns whole
characters in Supplementary Ideographic Plane and the character ‘[J’ to the range number 100.

\1tjdefcharrange{100}{"10000-"1FFFF, 1}

This assignment of numbers to ranges are always global, so you should not do this in the middle of a document.

If some character has been belonged to some non-zero numbered range, this will be overwritten by the new
setting. For example, whole SIP belong to the range 4 in the default setting of LuaTgX-ja, and if you specify the
above line, then SIP will belong to the range 100 and be removed from the range 4.

After assigning numbers to ranges, the jacharrange parameter can be used to customize which character range
will be treated as ranges of JAchars, as the following line (this is just the default setting of LuaTgX-ja):

\1ltjsetparameter{jacharrange={-1, +2, +3, -4, -5, +6, +7, +8}}

The argument to jacharrange parameter is a list of integer. Negative integer —n in the list means that ‘the characters
that belong to range n are treated as ALchar’, and positive integer +»n means that ‘the characters that belong to
range n are treated as JAchar’.

Default Setting LuaTgX-ja predefines eight character ranges for convenience. They are determined from the fol-
lowing data:

¢ Blocks in Unicode 6.0.

* The Adobe-Japan1-UCS2 mapping between a CID Adobe-Japanl-6 and Unicode.
8

Table 1. Unicode blocks in predefined character range 3.

U+2000-U+206F General Punctuation U+2070-U+209F Superscripts and Subscripts
U+20A0-U+20CF Currency Symbols U+20D0-U+20FF Comb. Diacritical Marks for Symbols
U+2100-U+214F Letterlike Symbols U+2150-U+218F Number Forms

U+2190-U+21FF Arrows U+2200-U+22FF Mathematical Operators
U+2300-U+23FF Miscellaneous Technical U+2400-U+243F Control Pictures

U+2500-U+257F Box Drawing U+2580-U+259F Block Elements

U+25A0-U+25FF Geometric Shapes U+2600-U+26FF Miscellaneous Symbols
U+2700-U+27BF Dingbats U+2900-U+297F Supplemental Arrows-B

U+2980-U+29FF = Misc. Mathematical Symbols-B ~ U+2B00-U+2BFF Miscellaneous Symbols and Arrows
U+EO00-U+F8FF Private Use Area

* The PXbase bundle for upTEX by Takayuki Yato.

Now we describe these eight ranges. The alphabet ‘J° or ‘A’ after the number shows whether characters in the
range is treated as JAchars or not by default. These settings are similar to the prefercjk settings defined in PXbase
bundle.

Range 8! Symbols in the intersection of the upper half of ISO 8859-1 (Latin-1 Supplement) and JIS X 0208 (a
basic character set for Japanese). This character range consists of the following characters:

* & (U+00A7, Section Sign) e ~ (U+00B4, Spacing acute)

* ~ 7 (U+00A8, Diaeresis) * 97 (U+00B6, Paragraph sign)

* < (U+00BO, Degree sign) e > (U+00D7, Multiplication sign)
e =+ (U+00B1, Plus-minus sign) e = (U+00F7, Division Sign)

Range 1* Latin characters that some of them are included in Adobe-Japan1-6. This range consist of the following
Unicode ranges, except characters in the range 8 above:

e U+0080-U+OOFF: Latin-1 Supplement e U+0300-U+036F: Combining Diacritical
* U+0100-U+017F: Latin Extended-A Marks

* U+0180-U+024F: Latin Extended-B

* U+0250-U+02AF: IPA Extensions

* U+02B0-U+02FF: Spacing Modifier Letters

¢ U+1EO0—U+1EFF: Latin Extended Additional

Range 2J Greek and Cyrillic letters. JIS X 0208 (hence most of Japanese fonts) has some of these characters.

e U+0370-U+03FF: Greek and Coptic e U+1F00-U+1FFF: Greek Extended
* U+0400-U+04FF: Cyrillic

Range 3’ Punctuations and Miscellaneous symbols. The block list is indicated in Table 1.

Range 4* Characters usually not in Japanese fonts. This range consists of almost all Unicode blocks which are not
in other predefined ranges. Hence, instead of showing the block list, we put the definition of this range itself:

\1tjdefcharrange{4}{%
"500-"10FF, "1200-"1DFF, "2440-"245F, "27CO-"28FF, "2A00-"2AFF,
"2C00-"2E7F, "4DCO-"4DFF, "A4DO-"A82F, "A840-"ABFF, "FB50-"FEOF,
"FE20-"FE2F, "FE70-"FEFF, "FBOO-"FB4F, "10000-"1FFFF} J, non-Japanese

Range 54 Surrogates and Supplementary Private Use Areas.
Range 6 Characters used in Japanese. The block list is indicated in Table 2.

Range 70 Characters used in CJK languages, but not included in Adobe-Japan1-6. The block list is indicated in
Table 3.

9

Table 2. Unicode blocks in predefined character range 6.

U+2460-U+24FF Enclosed Alphanumerics U+2E80-U+2EFF CJK Radicals Supplement
U+3000-U+303F CJK Symbols and Punctuation = U+3040-U+309F Hiragana

U+30A0-U+30FF Katakana U+3190-U+319F Kanbun

U+31F0-U+31FF Katakana Phonetic Extensions U+3200-U+32FF Enclosed CJK Letters and Months
U+3300-U+33FF CJK Compatibility U+3400-U+4DBF CJK Unified Ideographs Extension A
U+4E00-U+9FFF CJK Unified Ideographs U+F900-U+FAFF CJK Compatibility Ideographs
U+FE10-U+FE1F Vertical Forms U+FE30-U+FE4F CJK Compatibility Forms
U+FE50-U+FE6F Small Form Variants U+20000-U+2FFFF (Supplementary Ideographic Plane)

Table 3. Unicode blocks in predefined character range 7.

U+1100-U+11FF Hangul Jamo U+2F00-U+2FDF Kangxi Radicals
U+2FFO-U+2FFF Ideographic Description Characters U+3100-U+312F Bopomofo

U+3130-U+318F Hangul Compatibility Jamo U+31A0-U+31BF Bopomofo Extended
U+31C0-U+31EF CJK Strokes U+A000-U+A48F Yi Syllables

U+A490-U+A4CF Yi Radicals U+A830-U+A83F Common Indic Number Forms
U+ACO0-U+D7AF Hangul Syllables U+D7BO-U+D7FF Hangul Jamo Extended-B

3.2 kanjiskip and xkanjiskip
JAglue is divided into the following three categories:

* Glues/kerns specified in JFM. If \inhibitglue is issued around a Japanese character, this glue will not be
inserted at the place.

¢ The default glue which inserted between two JAchars (kanjiskip).

¢ The default glue which inserted between a JAchar and an ALchar (xkanjiskip).

The value (a skip) of kanjiskip or xkanjiskip can be changed as the following.

\1ltjsetparameter{kanjiskip={Opt plus 0.4pt minus O.4pt},
xkanjiskip={0.25\zw plus 1pt minus 1pt}}

It may occur that JFM contains the data of ‘ideal width of kanjiskip” and/or ‘ideal width of xkanjiskip’. To use
these data from JFM, set the value of kanjiskip or xkanjiskip to \maxdimen.

3.3 Insertion Setting of xkanjiskip

It is not desirable that xkanjiskip is inserted into every boundary between JAchars and ALchars. For example,
xkanjiskip should not be inserted after opening parenthesis (e.g., compare ‘([]” and ‘([1°). LuaTgX-ja can control
whether xkanjiskip can be inserted before/after a character, by changing jaxspmode for JAchars and alxspmode
parameters ALchars respectively.

1\1tjsetparameter{jaxspmode={ [J,preonly},
alxspmode={"\!,postonly}} pUOq O d
:pldq OO

The second argument preonly means ‘the insertion of xkanjiskip is allowed before this character, but not after’.
the other possible values are postonly, allow and inhibit.

jaxspmode and alxspmode use a same table to store the parameters on the current version. Therefore, line 1
in the code above can be rewritten as follows:

\1ltjsetparameter{alxspmode={ [],preonly}, jaxspmode={ \!,postonlyl}}

One can use also numbers to specify these two parameters (see Subsection 5.2).

If you want to enable/disable all insertions of kanjiskip and xkanjiskip, set autospacing and autoxspacing
parameters to true/false, respectively.

10

3.4 Shifting Baseline

To make a match between a Japanese font and an alphabetic font, sometimes shifting of the baseline of one of
the pair is needed. In pTEX, this is achieved by setting \ybaselineshift to a non-zero length (the baseline of
alphabetic fonts is shifted below). However, for documents whose main language is not Japanese, it is good to shift
the baseline of Japanese fonts, but not that of alphabetic fonts. Because of this, LuaTgX-ja can independently set
the shifting amount of the baseline of alphabetic fonts (yalbaselineshift parameter) and that of Japanese fonts
(yjabaselineshift parameter).

1\vrule width 150pt height 0.4pt depth Opt\

hskip-120pt
2\1tjsetparameter{yjabaselineshift=0pt,

yalbaselineshift=0Opt}abc]] MW
s\1tjsetparameter{yjabaselineshift=5pt,

yalbaselineshift=2pt}abc[]]]

Here the horizontal line in above is the baseline of a line.

There is an interesting side-effect: characters in different size can be vertically aligned center in a line, by setting
two parameters appropriately. The following is an example (beware the value is not well tuned):

1xyzO

2{\scriptsize

3 \ltjsetparameter{yjabaselineshift=-1pt,
4 yalbaselineshift=-1pt}

s XyzOOOO

6 Yabc

xyz OO XYz 0000 abe OO

3.5 Cropmark

Cropmark is a mark for indicating 4 corners and horizontal/vertical center of the paper. In Japanese, we call crop-
mark as tombo(w). pI&TEX and this LuaTgX-ja support ‘tombow’ by their kernel. The following steps are needed to
typeset cropmark:

1. First, define the banner which will be printed at the upper left of the paper. This is done by assigning a token
list to \@bannertoken.

For example, the following sets banner as ‘filename (YYYY-MM-DD hh:mm)’:
\makeatletter

\hour\time \divide\hour by 60 \@tempcnta\hour \multiply\@tempcnta 60\relax
\minute\time \advance\minute-\@tempcnta
\@bannertoken{’,
\jobname\space (\number\year-\two@digits\month-\two@digits\day
\space\two@digits\hour:\two@digits\minute)}%

Part 11
Reference

4 Font Metric and Japanese Font

4.1 \jfont primitive

To load a font as a Japanese font, you must use the \jfont primitive instead of \font, while \jfont admits the
same syntax used in \font. LuaTgX-ja automatically loads luaotfload package, so TrueType/OpenType fonts
with features can be used for Japanese fonts:

11

Table 4. Differences between JEMs shipped with LuaTgX-ja

jfm—ujis.lua jfm-jis.lua jfm—min.lua

Example 1! LJOIOOIOIOOL OO0 DOOOOOOM
OOO0O0000d boododd gooooon
OOoOoOoOoog bobodododd OOt
OOOoOOoOon boboood oogooot

OO NN NI

Example 2 [JLIOICIC] O oo HiEEEEN
Bounding Box I:l I:l I:l

1\jfont\tradgt={file:ipaexg.ttf:script=latn;/

> +trad;-kern;jfm=ujis} at 14pt %/%/%/E

s\tradgt{}O0O0OOOO0OO

Note that the defined control sequence (\tradgt in the example above) using \ jfont is not a font_def token,
hence the input like \fontname\tradgt causes a error. We denote control sequences which are defined in \ jfont
by (jfont_cs).

JFM As noted in Introduction, a JFM has measurements of characters and glues/kerns that are automatically
inserted for Japanese typesetting. The structure of JFM will be described in the next subsection. At the calling of
\jfont primitive, you must specify which JFM will be used for this font by the following keys:

jfm=(name) Specify the name of JFM. If specified JEM has not been loaded, LuaTgX-ja search and load a file
named jfm-({name).lua.

The following JEMs are shipped with LuaTgX-ja:

jfm-ujis.lua A standard JFM in LuaTgX-ja. This JFM is based on upnmlminr-h.tfm, a metric for
UTF/OTF package that is used in upTgX. When you use the luatexja-otf package, you should use
this JFM.

jfm-jis.lua A counterpartfor jis.tfm, ‘JIS font metric’ which is widely used in pTEX. A major differ-
ence of jfm-ujis.lua and this jfm-jis.1lua is that most characters under jfm-ujis.lua are
square-shaped, while that under jfm-jis.lua are horizontal rectangles.

jfm-min.lua A counterpart for min10.tfm, which is one of the default Japanese font metric shipped
with pTEX. There are notable difference between this JFM and other 2 JFMs, as shown in Table 4.

jfmvar=(string) Sometimes there is a need that ...

Note: kern feature Some fonts have information for inter-glyph spacing. However, this information is not well-
compatible with LuaTgX-ja. More concretely, this kerning space from this information are inserted before the in-
sertion process of JAglue, and this causes incorrect spacing between two characters when both a glue/kern from
the data in the font and it from JFM are present.

* You should specify -kern in jfont primitive, when you want to use other font features, such as script=. ...

* If you want to use Japanese fonts in proportional width, and use information from this font, use jfm-prop.lua
for its JFM, and ... TODO: kanjiskip?

from: OO0, minl0 OO OO OOOO. http: //argent . shinshu-u.ac. jp/~otobe/tex/files/minl0.pdf.

12

4.2 Prefix psft

Besides file: and name: prefixes, one can use psft: prefix in \jfont (and \font) primitive, to specify a
‘name-only’ Japanese font which will not be embedded to PDF. Typical use of this prefix is to specify the ‘stan-
dard’ Japanese fonts, namely, ‘Ryumin-Light’ and ‘GothicBBB-Medium’. For kerning or other information, that of
Kozuka Mincho Pr6N Regular (this is a font by Adobe Inc., and included in Japanese Font Packs for Adobe Reader)
will be used.

cid key cid key, ...

4.3 Structure of JFM file

A JFM file is a Lua script which has only one function call:
luatexja.jfont.define_jfm { ... }

Real data are stored in the table which indicated above by { ... }. So, the rest of this subsection are devoted to
describe the structure of this table. Note that all lengths in a JEM file are floating-point numbers in design-size unit.

dir=(direction) (required)

The direction of JFM. At the present, only 'yoko' is supported.

zw=(length) (required)
The amount of the length of the ‘“full-width’.

zh=(length) (required)
The amount of the length of the ‘full-height’ (height + depth).

kanjiskip={(natural), (stretch), (shrink)} (optional)
This field specifies the ‘ideal” amount of kanjiskip. As noted in Subsection 3.2, if the parameter kanjiskip

is \maxdimen, the value specified in this field is actually used (if this field is not specified in JFM, it is
regarded as 0 pt). Note that (strefch) and (shrink) fields are in design-size unit too.

xkanjiskip={(natural), (stretch), (shrink)} (optional)
Like the kanjiskip field, this field specifies the ‘ideal’” amount of xkanjiskip.

Besides from above fields, a JEM file have several sub-tables those indices are natural numbers. The table
indexed by i € @ stores information of ‘character class’ i. At least, the character class 0 is always present, so each
JFM file must have a sub-table whose index is [0]. Each sub-table (its numerical index is denoted by i) has the
following fields:

chars={(character), ...} (required except character class 0)

This field is a list of characters which are in this character type i. This field is not required if i = 0, since all
JAchar which are not in any character class other than 0 are in the character class 0 (hence, the character
class 0 contains most of JAchars). In the list, a character can be specified by its code number, or by the
character itself (as a string of length 1). Moreover, there are ‘imaginary characters’ which specified in the
list. We will describe these later.

width=(length), height=(length), depth=(length), italic=(length) (required)

Specify width of characters in character class i, height, depth and the amount of italic correction. All
characters in character class i are regarded that its width, height and depth are as values of these fields. But
there is one exception: if 'prop' is specified in width field, width of a character becomes that of its ‘real’

glyph

13

i Consider a node containing Japanese character whose value of the
i align field is 'middle’.
1) » The black rectangle is a frame of the node. Its width, height and
height depth are specified by JEM.
* Since the align field is 'middle"', the ‘real’ glyph is centered
width | horizontally (the green rectangle).
down
“Heott :: depth * Furthermore, the glyph is shifted according to values of fields
T y left and down. The ultimate position of the real glyph is indi-
Y
r] cated by the red rectangle.

Figure 1. The position of the ‘real’ glyph.

left=(length), down=(length), align=(align)

These fields are for adjusting the position of the ‘real’ glyph. Legal values of align field are 'left’,
'middle' and 'right'. If one of these 3 fields are omitted, 1eft and down are treated as 0, and align
field is treated as 'left'. The effects of these 3 fields are indicated in Figure 1.

In most cases, left and down fields are 0, while it is not uncommon that the align field is 'middle’ or
'right'. Forexample, setting the align field to 'right' is practically needed when the current character
class is the class for opening delimiters’.

kern={[jl=(kern), ...}

glue={[j1={(width), (stretch), (shrink)}, ...}

As described before, you can specify several ‘imaginary characters’ in chars field. The most of these characters
are regarded as the characters of class 0 in pTEX. As a result, LuaTgX-ja can control typesetting finer than pTgX.
The following is the list of ‘imaginary characters’:

'lineend' An ending of a line.

'diffmet' Used at a boundary between two JAchars whose JFM or size is different.

'boxbdd' The beginning/ending of a horizontal box, and the beginning of a noindented paragraph.
'parbdd' The beginning of an (indented) paragraph.

'jcharbdd' A boundary between JAchar and anything else (such as ALchar, kern, glue, ...).

—1 The left/right boundary of an inline math formula.

Porting JFM from pTEX

4.4 Math Font Family

TgX handles fonts in math formulas by 16 font families?, and each family has three fonts: \textfont, \scriptfont
and \scriptscriptfont.

LuaTgX-ja’s handling of Japanese fonts in math formulas is similar; Table 5 shows counterparts to TgX’s prim-
itives for math font families. There is no relation between the value of \fam and that of \ jfam; with appropriate
settings, you can set both \fam and \ jfam to the same value.

4.5 Callbacks

Like LuaTgX itself, LuaTgX-ja also has callbacks. These callbacks can be accessed via luatexbase.add_to_callback
function and so on, as other callbacks.

2Omega, Aleph, LuaTgX and e{u)pTgEX can handles 256 families, but an external package is needed to support this in plain TgX and I&TEX.

14

Table 5. Primitives for Japanese math fonts.

Japanese fonts alphabetic fonts
font family \jfam € [0,256) \fam
text size jatextfont ={(jfam) , {jfont_cs)} \textfont (fam)=(fonr_cs)
script size jascriptfont ={(jfam) , (jfont_cs)} \scriptfont (fam)=(font_cs)

scriptscript size jascriptscriptfont ={(jfam) , (jfont_cs)} \scriptscriptfont (fam)=(font_cs)

luatexja.load_jfm callback With this callback you can overwrite JEMs. This callback is called when a new
JFM is loaded.

1 function (<table> jfm_info, <string> jfm_name)
return <table> new_jfm_info
3 end

The argument jfm_info contains a table similar to the table in a JFM file, except this argument has chars
field which contains character codes whose character class is not 0.

An example of this callback is the 1t jarticle class, with forcefully assigning character class 0 to 'parbdd’
in the JFM jfm-min.lua. This callback doesn’t replace any code of LuaTiX-ja.

luatexja.define_font callback This callback and the next callback form a pair, and you can assign letters
which don’t have fixed code points in Unicode to non-zero character classes. This luatexja.define_font
callback is called just when new Japanese font is loaded.

1 function (<table> jfont_info, <number> font_number)
2 return <table> new_jfont_info
3 end

You may assume that jfont_info has the following fields:

jfm The index number of JFM.

size Font size in a scaled point (=21 pt).

var The value specified in jfmvar=. .. at a call of \jfont.

The returned table new_jfont_info also should include these three fields. The font_number is a font
number.

A good example of this and the next callbacks is the luatexja-otf package, supporting "AJ1-xxx" form
for Adobe-Japanl CID characters in a JEM. This callback doesn’t replace any code of LuaTgX-ja.

luatexja.find_char_class callback This callback is called just when LuaTgX-ja is trying to determine which
character class a character chr_code belongs. A function used in this callback should be in the following

form:
1 function (<number> char_class, <table> jfont_info, <number> chr_code)
2 if char_class~=0 then return char_class
3 else
4 e
5 return (<number> new_char_class or 0)
6 end
7 end

The argument char_class is the result of LuaTgX-ja’s default routine or previous function calls in this
callback, hence this argument may not be 0. Moreover, the returned new_char_class should be as same as
char_class when char_class is not 0, otherwise you will overwrite the LuaTgX-ja’s default routine.

This callback doesn’t replace any code of LuaTgX-ja.

luatexja.set_width callback This callback is called when LuaTigX-ja is trying to encapsule a JAchar glyph_node,
to adjust its dimension and position.

15

1 function (<table> shift_info, <table> jfont_info, <number> char_class)
2 return <table> new_shift_info
3 end

The argument shift_info and the returned new_shift_info have down and left fields, which are the
amount of shifting down/left the character in a scaled-point.

A good example is test/valign.lua. After loading this file, the vertical position of glyphs is automatically
adjusted; the ratio (height : depth) of glyphs is adjusted to be that of letters in the character class 0. For
example, suppose that

* The setting of the JFM: (height) = 88x, (depth) = 12x (the standard values of Japanese OpenType
fonts);

* The value of the real font: (height) = 28y, (depth) = 5y (the standard values of Japanese TrueType
fonts).

Then, the position of glyphs is shifted up by

88x

26

25

5 Parameters

5.1 \ltjsetparameter primitive

As noted before, \1tjsetparameter and \1tjgetparameter are primitives for accessing most parameters of
LuaTgX-ja. One of the main reason that LuaTgX-ja didn’t adopted the syntax similar to that of pTgX (e.g., \prebreakpenalty []
=10000) is the position of hpack_filter callback in the source of LuaTgX, see Section 9.

\1ltjsetparameter and \1tjglobalsetparameter are primitives for assigning parameters. These take one
argument which is a (key)=(value) list. Allowed keys are described in the next subsection. The difference between
\1ltjsetparameter and \1tjglobalsetparameter is only the scope of assignment; \1t jsetparameter does
alocal assignment and \1tjglobalsetparameter does a global one. They also obey the value of \globaldefs,
like other assignment.

\1tjgetparameter is the primitive for acquiring parameters. It always takes a parameter name as first argu-
ment, and also takes the additional argument—a character code, for example—in some cases.

1\1tjgetparameter{differentjfm},
2\1tjgetparameter{autospacing}, average, 1, 10000.
3\1tjgetparameter{prebreakpenalty}{ [}.

The return value of \1tjgetparameter is always a string. This is outputted by tex.write (), so any character
other than space ° * (U+0020) has the category code 12 (other), while the space has 10 (space).

5.2 List of Parameters

The following is the list of parameters which can be specified by the \1t jsetparameter command. [\cs] indicates
the counterpart in pTEX, and symbols beside each parameter has the following meaning:

* No mark: values at the end of the paragraph or the hbox are adopted in the whole paragraph/hbox.
* ‘%’ : local parameters, which can change everywhere inside a paragraph/hbox.

e ‘§’: assignments are always global.

jcharwidowpenalty =(penalty) [\jcharwidowpenalty] Penalty value for suppressing orphans. This penalty is
inserted just after the last JAchar which is not regarded as a (Japanese) punctuation mark.

kcatcode ={(chr_code) , (natural number)} An additional attributes which each character whose character
code is {chr_code) has. At the present version, the lowermost bit of (natural number) indicates whether
the character is considered as a punctuation mark (see the description of jcharwidowpenalty above).

16

prebreakpenalty ={(chr_code) , (penalty)} [\prebreakpenalty]
postbreakpenalty ={{chr_code) , (penalty)} [\postbreakpenalty]
jatextfont ={(jfam) , (jfont_cs)} [\textfont in TgX]

jascriptfont ={{jfam) , (jfont_cs)} [\scriptfont in TgX]
jascriptscriptfont ={ (jfam) , {jfont_cs)} [\scriptscriptfont in TEX]
yjabaselineshift =(dimen)*

yalbaselineshift =(dimen)* [\ybaselineshift]

jaxspmode ={{chr_code) , (mode)} Setting whether inserting xkanjiskip is allowed before/after a JAchar whose
character code is (chr_code). The followings are allowed for (mode):

0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
1, preonly Insertion of xkanjiskip is allowed before the character, but not after.
2, postonly Insertion of xkanjiskip is allowed after the character, but not before.

3, allow Insertion of xkanjiskip is allowed both before the character and after the character. This is the
default value.

This parameter is similar to the \inhibitxspcode primitive of pTEX, but not compatible with \inhibitxspcode.

alxspmode ={(chr_code) , (mode)} [\xspcode]

Setting whether inserting xkanjiskip is allowed before/after a ALchar whose character code is (chr_code).
The followings are allowed for (mode):

0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
1, preonly Insertion of xkanjiskip is allowed before the character, but not after.
2, postonly Insertion of xkanjiskip is allowed after the character, but not before.

3, allow Insertion of xkanijiskip is allowed before the character and after the character. This is the default
value.

Note that parameters jaxspmode and alxspmode use a common table, hence these two parameters are
synonyms of each other.

autospacing =(bool)* [\autospacing]
autoxspacing =(bool)* [\autoxspacing]
kanjiskip =(skip) [\kanjiskip]
xkanjiskip =(skip) [\xkanjiskip]

differentjfm =(mode)” Specify how glues/kerns between two JAchars whose JEM (or size) are different. The
allowed arguments are the followings:

average
both
large

small
jacharrange =(ranges)*

kansujichar ={(digit), (chr_code)} [\kansujichar]

17

6 Other Primitives

6.1 Primitives for Compatibility
The following primitives are implemented for compatibility with pTEX:
\kuten
\jis
\euc
\sjis
\ucs

\kansuji

6.2 \inhibitglue primitive

The primitive \inhibitglue suppresses the insertion of JAglue. The following is an example, using a special JFM
that there will be a glue between the beginning of a box and ‘[’ and also between ‘[J” and ‘[’

1\jfont\g=psft:Ryumin-Light:jfm=test \g O 000
2\fbox{\hbox{(JJ[\inhibitglue [}}

s\inhibitglue\par\noindent [11 o 1

4\par\inhibitglue\noindent [12 0o 2
s\par\noindent\inhibitglue [13 0O 3
s \par\hrule\noindent [] off\inhibitglue ice O office

With the help of this example, we remark the specification of \inhibitglue:

* The call of \inhibitglue in the (internal) vertical mode is simply ignored.

* The call of \inhibitglue in the (restricted) horizontal mode is only effective on the spot; does not get over
boundary of paragraphs. Moreover, \inhibitglue cancels ligatures and kernings, as shown in the last line
of above example.

* The call of \inhibitglue in math mode is just ignored.

7 Control Sequences for IXTEX 2¢

7.1 Patch for NFSS2
As described in Subsection 2.4, LuaTgX-ja simply adopted plfonts.dtx in pI&IEX 2¢ for the Japanese patch for
NFSS2. For an convenience, we will describe commands which are not described in Subsection 2.5.

\DeclareYokoKanjiEncoding{(encoding)}{(text-settings) }{ (math-settings)}

In NFSS2 under LuaTgX-ja, distinction between alphabetic font families and Japanese font families are only
made by their encodings. For example, encodings OT1 and T1 are for alphabetic font families, and a Japanese
font family cannot have these encodings. This command defines a new encoding scheme for Japanese font
family (in horizontal direction).

\DeclareKanjiEncodingDefaults{(text-settings)}{ (math-settings)}
\DeclareKanjiSubstitution{(encoding)}{(family)}{(series)}{{shape)}
\DeclareErrorKanjiFont{(encoding)}{ {family)}{(series) }{ (shape)}{(size)}

The above 3 commands are just the counterparts for DeclareFontEncodingDefaults and others.

\reDeclareMathAlphabet{(unified-cmd)}{{al-cmd)}{{ja-cmd)?}

18

\DeclareRelationFont{(ja-encoding)}{{ja-family)}{{ja-series) }{ (ja-shape)}
{{al-encoding)X{(al-family) }{{al-series) }{{al-shape)}
This command sets the ‘accompanied’ alphabetic font family (given by the latter 4 arguments) with respect to
a Japanese font family given by the former 4 arguments.

\SetRelationFont
This command is almost same as \DeclareRelationFont, except that this command does a local assignment,
where \DeclareRelationFont does a global assignment.

\userelfont

Change current alphabetic font encoding/family/... to the ‘accompanied’ alphabetic font family with respect
to current Japanese font family, which was set by \DeclareRelationFont or \SetRelationFont. Like
\fontfamily, \selectfont is required to take an effect.

\adjustbaseline

\fontfamily{(family)}
As in I&TEX 2¢, this command changes current font family (alphabetic, Japanese, or both) to (family). Which
family will be changed is determined as follows:

* Let current encoding scheme for Japanese fonts be (ja-enc). Current Japanese font family will be changed to
(family), if one of the following two conditions is met:

— The family (fam) under the encoding (ja-enc) has been already defined by \DeclareKanijFamily.

— A font definition named (enc) (ja-enc) . £d (the file name is all lowercase) exists.

¢ Let current encoding scheme for alphabetic fonts be (al-enc). For alphabetic font family, the criterion as above
is used.

* There is a case which none of the above applies, that is, the font family named (family) doesn’t seem to
be defined neither under the encoding (ja-enc), nor under (al-enc). In this case, the default family for font
substitution is used for alphabetic and Japanese fonts. Note that current encoding will not be set to (family),
unlike the original implementation in I5TEX.

As closing this subsection, we shall introduce an example of \SetRelationFont and \userelfont:

N\gtfamily{}O00O abe

2\SetRelationFont{JY3}{gt{m}{n}{0T1}{pagt{m
Hn}

s\userelfont\selectfont{}11J abc

00O abe OO abe

7.2 Cropmark/‘tombow’
8 Extensions

8.1 1luatexja-fontspec.sty

As described in Subsection 2.6, this optional package provides the counterparts for several commands defined
in the fontspec package[In addition to ‘font features’ in the original fontspec, the following ‘font features’
specifications are allowed for the commands of Japanese version:

JFM=(name)

JFM-var=(name) These 2 font features correspond to jfm and jfmvar keys for \ jfont primitive, respectively.
See Subsection 4.1.

NoEmbed By specifying this font feature, you can use ‘name-only’ Japanese font which will not be embedded in
the output PDF file. See Subsection 4.2.

CID=(name) This feature is effective only when with NoEmbed feature. You can use the non-embedded CID-
keyed font whose glyphs are addressed according to the specified character collection defined by Adobe
Inc. The default value is Adobe-Japanl. See also Subsection 4.2.

19

8.2 1luatexja-otf.sty

This optional package supports typesetting characters in Adobe-Japanl. luatexja-otf.sty offers the following
2 low-level commands:

\CID{(number)} Typeset a character whose CID number is (number).

\UTF{(hex_number)} Typeset a character whose character code is (hex_number) (in hexadecimal). This com-
mand is similar to \char" (hex_number), but please remind remarks below.

Remarks Characters by \CID and \UTF commands are different from ordinary characters in the following points:

* Always treated as JAchars.

* Processing codes for supporting OpenType features (e.g., glyph replacement and kerning) by the luaotfload
package is not performed to these characters.

Additional Syntax of JFM luatexja-otf.sty extends the syntax of JEM; the entries of chars table in JFM
now allows a string in the form 'AJ1-xxx', which stands for the character whose CID number in Adobe-Japanl is
XXX.

Part III
Implementations

9 Storing Parameters

9.1 Used Dimensions, Attributes and whatsit nodes
Here the following is the list of dimensions and attributes which are used in LuaTgX-ja.

\jQ (dimension) As explained in Subsection 2.3, \jQ is equal to 1 Q = 0.25mm, where ‘Q’ (also called ‘[1")
is a unit used in Japanese phototypesetting. So one should not change the value of this dimension.

\jH (dimension) There is also a unit called ‘]’ which equals to 0.25 mm and used in Japanese phototypesetting.
This \ jH is a synonym of \ jQ.

\1tj@zw (dimension) A temporal register for the ‘full-width’ of current Japanese font.

\1tjOzh (dimension) A temporal register for the ‘full-height’ (usually the sum of height of imaginary body
and its depth) of current Japanese font.

\jfam (attribute) Current number of Japanese font family for math formulas.

\1tj@curjfnt (attribute) The font index of current Japanese font.

\1tj@charclass (attribute) The character class of Japanese glyph_node.

\1tj@yablshift (attribute) The amount of shifting the baseline of alphabetic fonts in scaled point (276 pt).
\1tj@ykblshift (attribute) The amount of shifting the baseline of Japanese fonts in scaled point (270 pt).
\1tj@autospc (attribute) Whether the auto insertion of kanjiskip is allowed at the node.

\1tj@autoxspc (attribute) Whether the auto insertion of xkanjiskip is allowed at the node.

\1ltj@icflag (attribute) An attribute for distinguishing ‘kinds’ of a node. One of the following value is as-
signed to this attribute:

italic (1) Glues from an italic correction (\/). This distinction of origins of glues (from explicit \kern, or
from \/) is needed in the insertion process of xkanjiskip.

20

packed (2)

kinsoku (3) Penalties inserted for the word-wrapping process of Japanese characters (kinsoku).
Jrom_jfm (4) Glues/kerns from JEM.

line_end (5) Kerns for ...

kanji_skip (6) Glues for kanjiskip.

xkanji_skip (7) Glues for xkanjiskip.

processed (8) Nodes which is already processed by ...

ic_processed (9) Glues from an italic correction, but also already processed.

boxbdd (15) Glues/kerns that inserted just the beginning or the ending of an hbox or a paragraph.

\1tj@kcati (attribute) Where i is a natural number which is less than 7. These 7 attributes store bit vectors
indicating which character block is regarded as a block of JAchars.

Furthermore, LuaTgX-ja uses several ‘user-defined” whatsit nodes for inrernal processing. All those nodes store
a natural number (hence the node’s type is 100). The following user_ids are used:

30111 Nodes for indicating that \inhibitglue is specified. The value field of these nodes doesn’t matter.
30112 Nodes for LuaTgX-ja’s stack system (see the next subsection). The value field of these nodes is current
group.

30113 Nodes for Japanese Characters which the callback process of luaotfload won’t be applied, and the char-
acter code is stored in the value field. Each node having this user_id is converted to a ‘glyph_node’ after
the callback process of luaotfload. This user_id is only used by the luatexja-otf package.

30114 Nodes for indicating beginning of a paragraph. A paragraph which is started by \item in list-like environ-
ments has a horizontal box for its label before the actual contents. So ...

These whatsits will be removed during the process of inserting JAglues.

9.2 Stack System of LuaTgX-ja

Background LuaTgX-ja has its own stack system, and most parameters of LuaTgX-ja are stored in it. To clarify
the reason, imagine the parameter kanjiskip is stored by a skip, and consider the following source:

1\1tjsetparameter{kanjiskip=0Opt}10000. 7

2 \setbox0=\hbox{\1ltjsetparameter{kanjiskip=5
pt}OOO0O} oood.g o o o.oogo

3\box0. 0 \par

As described in Subsection 5.2, the only effective value of kanjiskip in an hbox is the latest value, so the value
of kanjiskip which applied in the entire hbox should be 5 pt. However, by the implementation method of LuaTgX,
this ‘5 pt” cannot be known from any callbacks. In the tex/packaging.w (which is a file in the source of LuaTgX),
there are the following codes:

void package(int c)

{
scaled h; /* height of box */
halfword p; /* first node in a box */
scaled d; /* max depth */
int grp;

grp = cur_group;
d = box_max_depth;
unsave() ;
save_ptr -= 4;
if (cur_list.mode_field == -hmode) {
cur_box = filtered_hpack(cur_list.head_field,
cur_list.tail_field, saved_value(1),
saved_level(1l), grp, saved_level(2));
subtype(cur_box) = HLIST_SUBTYPE_HBOX;

Notice that unsave is executed before filtered_hpack (this is where hpack_filter callback is executed): so
‘S pt’ in the above source is orphaned at unsave, and hence it can’t be accessed from hpack_filter callback.

21

The method The code of stack system is based on that in a post of Dev-luatex mailing list>.

These are two TEX count registers for maintaining information: \1tj@@stack for the stack level, and \1t j@@group@level
for the TEX’s group level when the last assignment was done. Parameters are stored in one big table named charprop_stack_table,
where charprop_stack_table [i] stores data of stack level i. If a new stack level is created by \1t jsetparameter,
all data of the previous level is copied.
To resolve the problem mentioned in ‘Background’ above, LuaTEgX-ja uses another thing: When a new stack level
is about to be created, a whatsit node whose type, subtype and value are 44 (user_defined), 30112, and current group
level respectively is appended to the current list (we refer this node by stack_flag). This enables us to know whether
assignment is done just inside a hbox. Suppose that the stack level is s and the TgX’s group level is ¢ just after the
hbox group, then:

* If there is no stack_flag node in the list of the hbox, then no assignment was occurred inside the hbox. Hence
values of parameters at the end of the hbox are stored in the stack level s.

e If there is a stack_flag node whose value is ¢+ 1, then an assignment was occurred just inside the hbox group.
Hence values of parameters at the end of the hbox are stored in the stack level s+ 1.

* If there are stack_flag nodes but all of their values are more than ¢ + 1, then an assignment was occurred in
the box, but it is done is ‘more internal’ group. Hence values of parameters at the end of the hbox are stored
in the stack level s.

Note that to work this trick correctly, assignments to \1t j@@stack and \1tj@@group@level have to be local
always, regardless the value of \globaldefs. This problem is resolved by using \directlua{tex.globaldefs=0}
(this assignment is local).

10 Linebreak after Japanese Character

10.1 Reference: Behavior in pTEX

In pTEX, a line break after a Japanese character doesn’t emit a space, since words are not separated by spaces in
Japanese writings. However, this feature isn’t fully implemented in LuaTgX-ja due to the specification of callbacks
in LuaTgX. To clarify the difference between pTEX and LuaTgX, We briefly describe the handling of a line break
in pTEX, in this subsection.

pTEX’s input processor can be described in terms of a finite state automaton, as that of TgXin Section 2.5 of [1].
The internal states are as follows:

e State N: new line
 State S: skipping spaces
e State M: middle of line

» State K: after a Japanese character

The first three states—AN, S and M—are as same as TgX’s input processor. State K is similar to state M, and is
entered after Japanese characters. The diagram of state transitions are indicated in Figure 2. Note that pTX doesn’t
leave state K after ‘beginning/ending of a group’ characters.

10.2 Behavior in LuaTgX-ja

States in the input processor of LuaTgX is the same as that of TgX, and they can’t be customized by any callbacks.
Hence, we can only use process_input_buffer and token_filter callbacks for to suppress a space by a line
break which is after Japanese characters.

However, token_filter callback cannot be used either, since a character in category code 5 (end-of-line) is
converted into an space token in the input processor. So we can use only the process_input_buffer callback.
This means that suppressing a space must be done just before an input line is read.

Considering these situations, handling of an end-of-line in LuaTgX-ja are as follows:

3 [Dev-luatex] tex.currentgrouplevel, a post at 2008/8/19 by Jonathan Sauer.

22

scan a Cs

d:=1{3,4,6,7,8,11,12,13}, g:={1,2}, j:= (Japanese characters)

* Numbers represent category codes.

» Category codes 9 (ignored), 14 (comment) and 15 (invalid) are omitted in the above diagram.

Figure 2. State transitions of pTEX’s input processor.

A character U+FFFFF (its category code is set to 14 (comment) by LuaTgX-ja) is appended to an input
line, before LuaTgX actually process it, if and only if the following two conditions are satisfied:

1. The category code of the character (return) (whose character code is 13) is 5 (end-of-line).

2. The input line matches the following ‘regular expression’:

(any char)* (JAchar) ({catcode = 1} U {catcode = 2}))

Remark The following example shows the major difference from the behavior of pTEX:

1\1tjsetparameter{autoxspacing=false}
2\1tjsetparameter{jacharrange={-6}}x[]
3y\1tjsetparameter{jacharrange={+6}}z[]
su

xyz u

 There is no space between ‘x’ and ‘y’, since the line 2 ends with a JAchar ‘]’ (this ‘0]’ considered as an
JAchar at the ending of line 1).

* There is no space between ‘1’ (in the line 3) and ‘w’, since the line 3 ends with an ALchar (the letter ‘(1
considered as an ALchar at the ending of line 2).

11 Insertion of JFM glues, kanjiskip and xkanjiskip

11.1 Overview

LuaTeX-ja OOOOOOOOO0O00OO0O00O000OO0OpE DOOOOOO0O00O0pIX OOOOOOO00O0O
ooodn

« JFM OODOOOO0ODODO0DooO0ooooooo0oooogooonod{char_node) OO
obogoodaoodn

o xkanjiskip OO OOOOOOOOOOOOOOOOOOOOooooooooo

o kanjiskip OO OO OOOOO0O00OOODOOOOO0O00OODOOOO0O0O0O0ODOOOOO00Od 20
O (char_node) OO0 kanjiskip OO O OO0 OOQOOOO

23

OO0O0O0OwaTeX-ja OO OOO0OO0O0O0DOOOO0O00O0O0O0O0O00OOOO00000 JAgleDOOO JFM OO OO
xkanjiskipCkanjiskip O 3 OO OO0 ODOOOOO0ODOOOOODOOOOOLaTX OO0OO0O0OOO0OO
Oooooooooooooooooooooooooooooodno

LuaTeX-ja OOOO JAglue OO O OO0 000000 OO0O0O0OOOOO0OOOOO0O0OOOOOOO
Oobomodboooooooooooooooooooooooooooooooooooooodn
OooooooDooooomz doobodooooooooodnot\vad just Owhatsit DO OO0 0O
OooooooOoooodn

11.2 definition of a ‘cluster’
Definition 1. A cluster is a list of consecutive nodes in one of the following forms, with the id of it:

1. Nodes whose value of \1t j@icflag isin [3,15). These nodes come from a hbox which is already packaged,
by unpackaging (\unhbox). The id is id_pbox.

2. A inline math formula, including two math_nodes at the boundary of it. The id is id_math.
3. A glyph_node p with nodes which relate with it:

(1) A kern for the italic correction of p.

(2) An accent attached to p by \accent.

()

glyph ®
o accent
ern kern glyph kern
subtype =2| 7 Thox — |subtype =2| P — |italic corr.

accent (shifted vert.)

The id is id_jglyph or id_glyph, according to whether the glyph_node represents a Japanese character or not.

4. An box-like node, that is, an hbox, a vbox, a rule (\vrule) and an unset_node. The id is id_hlist if the node
is an hbox which is not shifted vertically, or id_box_like otherwise.

5. A glue, a kern whose subtype is not 2 (accent), and a discretionary break. The id is id_glue, id_kern and
id_disc, respectively.

Let Np, Ng and Nr denote a cluster.

id OO0 Npid OOOOOOOOOOOODOOOOOOOOO glyph_node Np.head OO O OO0 OO0
OO glyph_node Np.tail OO OOO0OO000O00000O0O0OOONp O Np.head OO OO Np.tail OO0
000000000 000O0O0O0O000O0O Np.head, Np.tail OO OO0O000000000O0O000O Lua
Oooooooooooooooooooooooooooo

id_jglyph (10100
Np.head, Np.tail OO OO0 000000000 glyph_node OO OO0

id glyph OOO0O0OO0OO0OOOQO glyph_node pO]
OoOooody d000oooooooooo 0O0OoOooooooooo glyph_node OOOO
OOo0O0O0O0OO0O0OOOodNp.kead, Np.tail = p OOOOOOOOOOOOO

* Np.head OO0 000000000 -0O00 glyph_node OO OO OO0OOOOOOOO0OO0 -
OOoOoOoooOoooooooooon glyph_node O OO0

* Np.last OOOO0O0O0O - 0000000000000 glyph_node 11O

id_ math OJOOOOOO0O
OOOO0OONp.head, Np.tail OO OOOOOOO -1 OOOOOOOOOO

id_hlist OOOOOO0O00O000O00O0OCOOOO0O0OO
OOOO0OONp.kead, Np.tail OO OO0 p OOOOOODOOOO0O0DOOOO0O0OOOOOOOO

24

s JOOOOOOORX ODOOOOOoO
\hbox{\hbox{abc}...\hbox{\loweript\hbox{xyz}1}}

Oooody OoOoooooobooboooooooooooooooooooooogn
OOOONp.head, Np.tail OO OO OO0 OO00O0O0O00O0O0O0O0O0O0O0O0O0O0O0O0OO0OOOO
OOO0O000O0o0O0o0OOodOOdtNp.kead OOOOa00 0000 OO0O0OOOOO Np.tail
OOO00O000O0000000000O000O\owerlpt\hbox{xyz} 1O OO OOOOOOOO

s JODOOODOOOooooooobooooobooooooooooooooooooodoon
OOOoOOoOooOoonoooooooooooobooooooonooooooooooOonon

s JOOOOOOOOOOOOoOOoUonoUnd glyph_node OO OO OOOOOOOO id_glyph
Ubodbouooaooaoodaoodnoo

id_ppox OO0 O OOOOO0O0OCOOOOOOOOOCOOOOOOODOOOOOOOOOOOOOOOO
1 O0O00000000O00O00000000:d_krliss OO OOO Np.head, Np.tail OO O OO0

id_disc discretionary break (\discretionary{pre}{post}{nobreak}).
id_hlist OOOOOO Np.head, Np.tail OO OO0 00 3 OO0 nobreak 1O OO0 OOOOO OO
ooooooooooooooooi0d0000000ooOoOoQ

id_box_like id_hlist OO OO0 box O Oruled
OOOOOONp.head, Np.tail OO OO0 OO00OO00OO00OO OOOOO0OOOOOOOOoOOdO
OOOO0OO0OONp.head, Np.tail 10O nil OO OO0

O OO0O0O0d OO0O00OONp.head, Np.tail OO OOO0OOO

Oooooooood OooJrM DOoOoooogooooobooooooood.d ooogoog
Ooooooooboooobogooo2 oooooooooooooooooobooooonoooon
OOooooooooboooooooooooooooonoo yp oOoOooooooooooooooadno
OOO00O000OO0000O000000O00 kead O last OOOOOOOOO0OOOOOOO

OO0A ODOOOO0O0O0oO0Oooooooootid Oid_jegyph OOOOO
id O id_pbox OO OO Np.head O JAchar OO OO0O0

O0OB OOOOO0OOoOooOooOoooooooooooooooooono A oooooooooono
JFM OO 0000000000 Oxkanjiskip, kanjiskip OO OO OO0OOOOOO
id O id_hlist O id_disc OO OO Np.head O JAchar OO OO OO0

OO0 dooooobooooobooboooooboooooobooooooao s ooooooao

e id Oid_glyph OO0
e id Oid_math 00
* id O id_pbox I id_hlist (1 id_disc (A1 CNp.head [ALchar[(]

O boxOOOOOOOOOOOOOOOO2 OO0OOO

* id O id_pbox (1 id_hlist (1 id_disc OO ONp.head [glyph_node (1110
e id O id_box_like OO0
11.3 ODO0OOO0OoOdOooOOOomod

ooboodn ooooobooobooboobooboooodooo vp Oooboooooooooodn
Oooooooooooooooooooooooooooooooogoooono

\parindent OO OOOOOOO (subtype = 3)A 00 subtype (1 44 (user_defined) O OO OO whatsit[]

OO0O0O\parindent OO OOOO0O0OOOOOOOOOOOOOOOOOOOOOOO
OOoOnNy OO00Odo g oooooaoood

1. OOoOOoooooooNxy oooAoooo
25

2. 00000 O0O0O0O0O000O0O0OO\parindent JOOOOOODOOOOO0OOOOOOOOOgO
OOoO00O0'parbdd' OOOOO Np OOOOOOOOO0OOOOOOO

3. OOOOOO0OOOnoindent OO OOOOOOOOOOOOOOOOg OOOOOOO "boxbdd' OO
ooo Ny OOoooooooooooodno

OOoO0000 g O glve DOOOOOOOOOOOOOO Ny OOOOOOOOOOOOOOOOOOOO
OO0OOOOoOooOdDOoOodg OOOO\penalty10000 DO OOOO

- LOOuooaooaoodaoodnog
 Np ODOOOODOOOOOOOOOOg O glueld

Oooooo oooooooooooooooooooooooooooooobooooboonoooon
OOoboooooodoodnod Ng OOO0OO0ONg OOO00O0O0O 'voxbdd ' OOOOOOOOOOOONO
OOoOodoNg OOO0OOooooooooono

OOOO0ODOoOOoooOdoOooOdOoodnoOd\penalty10000 HO\parfillskip OO OOOH
OOO00OO0oooooOOoOooo vp OO0O0\parfillskip OO OOOOOO0O0OO0OOOOOOOO
OO0 1 0000000 N 0oono

1. OO Ng OOOOOOOOOoOdline-end [E] DOOOOODOOOOOOOOO
2. 0O0MOOOoOMooOdoood + DOMooOoOooooooodoodOgdeharwidowpenalty
OOoooOooooooobooooooooodn

OOoO0O00OoOoOoOooOoOddhead O JAchar OO OO0 OO0OO0OO0OONO keatcode OOOOOOOO
OO0000000000000000000040

114 OOOO0OOOD200000AC000O0O

OOoooOooodz oO0OooOoooOdoodoNg O Np OOO0O0000000 O\ vad just Cwhatsit 10
UOoooogooooogooaooaooanoon

(@)

cluster penalty whatsit cluster
Ng — p —_— e — — Np

OOoOooOoOoOoOooOooo @ ouoboooooobooooooooooooooooooooooodan
JFM OOOO0000000o0 2 ooooooooooaoood

(a)

cluster kern penalty whatsit glue or kern cluster
Ng |~ |O00| | p+x | 7 —| Ooog || M

OO0D0DOO0O0DOO00OoDogdN ONp OOOOOAODOOO0OOoDOoooooooooood
Ooooooooodno

OOooooodon OomoobooooobooboooOoooobooooooodo?2 oooooon
oooooooodno

JFM OO [M] JFM OO O00O00000000000000ooooooooooooooooooogono
OOo0o0o0oOoooooooooood kanjiskip OO OOOOOOOOOOOOOO

1. OOOOO0O00O00O\inhibitglue OOOOOOOOOOOOOON whatsit 00O OO0OO0OO
O000mMO000 kanjiskip OO OOOOOOOOOOOOO

2. Ng O Np OOOJFMOOO jfmvar OOOOOOO0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0OO8
OOooOoOJFM O0OooOooooooooooooooboooooooooood

‘0000000Okecatcode DOOOOOOOO JAchar DOOO0OODOO00O0OOOOOOOkeatcode 0000 OO OOOO
jcharwidowpenalty OO0 O0OOOOOO

26

3. 1. 002 0000O0000O00Ng O Np OO0 JFM/jfmvar/O0 0000000000000

gh =g OOOOOOOOdiffmet' OOOOOOOOOOOOOOOONH)
ga =00000O00O0O'diffmet' OOOOO Np OOOOOOOOOOOONH)

Oooooooooooooooboooooooooooooooono JAM 0oooodiga
Ogh DOOOOOOOOOOOOOOOOOOOOO0O0OO0O00O00O0O00O000o00an
ga D gh OOOODOOOOOOONDOOOOOOND 000000000

ooog

\jfont\foo=psft:Ryumin-Light:jfm=ujis
\jfont\bar=psft:GothicBBB-Medium: jfm=ujis
\jfont\baz=psft:GothicBBB-Medium: jfm=ujis;jfmvar=piyo

00O 30oooooood
14 q r
—N— —— —N—
glyph glyph glyph
\foo, ‘0’ 7 \bar, ‘[’ 7 \baz, ‘0’

oo oooooooooooooooooobobmoooddy 0 g OoOooooon
OOoOooooooooo @ oooooooooog Oy Joooooobooooooddjfmvar
Oooooooooodo ¢ oooogono

kanjiskip [K] OO M] OODOOO000O00O00000O00kanjiskip OOOOOOOO00OOOOO
OO0O0000oO0O0oOo0Oo0dddd\inhibitglue OOOOOOOOOOOOOCOOODOD O
totodoudoudoodooabooaboaooaooaoodood

1. OO0OO000000O Ng.tailCONp.head OO OO OO0 O0OOOOOO autospacing OO0
O0O0O0 false OOOOOOOOO0 O glue OOOO

2. OOO0OO00O0O0 kanjiskip 0D OO0 0000 \maxdimen = (230 — 1) sp O 0 O Ckanjiskip
OO00000000 glve DOOOOO

3. 2. 0000000Ng, Np OOOOOOOJFM OO0OOO0 OO0 kanjiskip OOOOOCOOOO
O00000000oOooooOoOoooo A0 BOooooooooooooooooon
OOJFAM O 0OO00O000ooooooooooooooo JFAM Oooooooodno] 3.
OoOoOooooooooooodn

OOoOoOooooooooooon oomooOoooooooboooodn

line-end [E] Ng O Np OO OO OOOOOOOOOONg DOOOODOOOOOOOOOOOOOOOOO
googooaooaooaoodanod
. OoOOOooooooooooooooooomoooooooogodon

2. 000000 ghve OOOOOOO0 O gluve OOOODOODOOMIDNOOOOO Ng OOOOOO
O'lineend' OOOOOOOOOOOOOOOOOIIM OOOOOOOO

3. 2. 00000000000000ocO0000000000000o000o00000o0a0a0ood
oood

Odoooooooooo ood
a:= (N¢°* OO OOOO postbreakpenalty C101) + (Np’ 1O OO OO0 prebreakpenalty CI01)

O00OO00oOoOoogogoog [—10000,10000 DOCOOOOOOO £10000 DOCOOOOOOOOOOO
Uboooboaobodo « banhoaouobouaooaooaod

a OOOOOOO Ng O Np OO DO OOOOOOOOO0OOO0oodn

Sdifferentjfm 00O 000000 0MO0O00MOO000MNO0000000000000
"MO0000000 Ng.tail ONp.head Ol

27

Table 6. Summary of JEM glues.

Np L | OOA ooB [O glue kern
DI:]BE?DBA_}K—PSK_PSX

Qo : ?DBA_}X — PS 2

H : PA =

glue EpiNOB

kern EpisoB
Here E M-K means that

PN

1. To determine the ‘right-space’, LuaTgX-ja first attempts by the method ‘JFM-origin [M]’. If this
attempt fails, LuaTgX-ja use the method ‘kanjiskip [K]'.

2. The ‘left space’ between Ng and Np is determined by the method ‘line-end [E]".

3. LuaTgX-ja adopts the method ‘P-normal [PN]’ to adjust the penalty between two clusters for
kinsoku shori.

P-normal [PN] Ng O Np 000 (a) DOOOOO00 (penalty_node) 0000000 0000000000
OO0O000000000000000+10000 100000000000 000000000000
010000+ (—10000) =0 OOOO00

0000000 OOOoOoOoooooooooooooooooooooooooodd« oo O
OO0O0O00000000 penalty_node OO O0OOOO0O0O0OOO0OO0OO Ny OOOOOOO......
Ooooooooooobooooooobooooooaon

- HOOOOOOOoOOooooooonodnoNg O Np OOO0OOOoooooooooooodan
0000000000000« 0 000000000000O000000

s DOOOOOOOOOOoOOOOoOoooOooooooooomoboooooooooOnn
OOoO0O0O0ooOooobooOoboooobooOoooobodde =0 OOOOO penalty_node
ooooooood

s OOOOOOOOOOOda # 0 OO0 penalty_node OO O OOOOOO

11.5 OOOOOd

OoOoOooooe booooood

OO0AOOO0OO NgOOOAOONy OOOOOOOJFM O0OO000OOo0oooooooogoo

- 0000O000000000000000 Boundary-B [Og] 0000000000 O00000000
00000000 Oxkanjiskip [X] 00000000

- JOOOOOOOOOOOOOOOline-end [E] OO0OOOOOOOOOOOOOOOOOOOOO
ooog

- JOOOOODOOoOoOoooOodo P-normal [PN] OO OOOOO

28

Boundary-B [Og] OOOOOOOOOOOODOOODOOOOODOOOOOOOOOOOOOOOOOonog
OO0OoDOoooodoodooododrM-origin (M OOOOOOOO0OOOO0O0OOOOOOOO
ooooooooooooooooooooooooooooogn

1. OOD0O0O00000O\inhibitglue OOOOOOODOOOOOOOO whatsit OO OOOOO
OoooomOonood

2. O00OO00OO00ONg ODOO0O0O0oOd jenarbdd' OOOOOOOOOOOO0OOOOOOO
ooodo

xkanjiskip [X] DO OO OO 0Okanjiskip [K] DOOOOO0OO0 OO Oxkanjiskip DO OOOO0O0OO0O0OO
OO0O0000O0oOooOdooOoodot\inhibitglue OOOOOOOOOOOOOOOO

. 00000000 ooOOxkanjiskip OO0 O0O0OOOODOOOOO0O0O0OOOOOOOOOOO
OOoOoOooood glve OOOOOO

s JOOOOOOOOOOOOOoDOOOdOoOdOOoOOd autoxspacing OO OO
false OO OO

« Ng OO OOOOOOOOO0OImMOOOO xkanjiskip DO OO0 D OO0O00O0OOO0O0OO0O
jaxspmode (or alxspmode) (10 2 OO0

« Np OOOOOOOOOO0OOImOOOO xkanjiskip OO OO0 O OO0O00O0ODOO00OO0O
jaxspmode (or alxspmode) OO0 O OO OO0

2. 00000000 xkanjiskip 000000000 \naxdimen = (230 — 1) sp DO OO0 Xkanijiskip
OO00000000 ge 000000

3. 2.0000000ONg, NpO OO A/OOBOOODOOOOOOOOOOOOJEM OOOOOOon
O xkanjiskip OO OOOOO

OO0OO0OoAOO NgOOOOONy OOOAOOOOVFM DOOOO0OOoOooooooooooood
OO0 AD0OO0O00OO0OO0OdOBoundary-A [O] DO OOOOCOOOO

- 0000O000000000000000 Boundary-A [0,] 00000000 0000000000
00000000 Oxkanjiskip [X] 00000000

« Ng OO OOOOOMOOOO0OOOOoOonOd
- JOOOOODOOOoOoooOodo P-normal [PN] OO OOOOO

Boundary-A [Op] OOOOOOO0OOO0OOODOOOOOOOOOOOODOOOOOOO0OOOOOoOoQg
OOoOO00ooooooOooooooJdrM-erigin (M DO DODOOOO0O0O0O0O0O0O0O0O0O0O0O0OO
ootooooooodgooonoooboooooobogooooodnon

. OOOO0O0O0000OO\inhibitglue DO OOOODOOOOOOOOO whatsit OO0 OO OO0
OoOooomonood

2. DO0O0O0O00D0IMOO0O00OO"jeharbdd' OOOOO Np OOOOOOOOOOOOOOOO
oood

O0ADO0OO0O0DOOOO0O0OO0 NgOOOAOONy OOOOODOOO0000Oooooooooooo
HboooodaoodIFM otoaotodooaoooboaooaoooodoodaoooboaoodnog
OOoOooooOooooooooooooooooooooonon

- OO0 0OODOOO0OOOO0OOOOd Boundary-B [Og] DO O OO DOOODOOOOOOOOOOOO
Ooooomooooooooooan

- JOOOODOOOOOoOoOoOonogdline-end [E] OO OOOODDOOOOOOOOOOOOOO
ooooooood

s OO OOOOOOOOODOOOOOOnO Ny OOOOOO0O0OOOO0OddNp.head OO
OO0O0OO0Np.head OO0 prebreakpenalty OO OO 0 OOOOOOOOOOOOooO

a:= (N¢* OO DO 0ODO OO postbreakpenalty C107).

29

O Np OOOOOOOOoMOOooOoOoOdD0oOoMOodogoOooOodOdO\penalty10000
o o e o o o o o > oV [Y
O P-normal [PN] OO OOOOOOOOO

000 Nyp OO0O00000000dddddd P-normal [PN] OO OO0

oo yp dhoobogoooboootooooobooboobogooogbooooaoooodan
OOooOoooodooooooooodoooooodoodoogooad P-suppress [PS] O
oono

OO0O4d P-normal [PN]CP-allow [PA]OP-suppress [PS] OO OO ONg O Np OOOOOOOOO (a)
OoOooOooOoooooooodooogoooodo

P-allow [PA] Ng O Np OO0 () DOOOOOOOOCOOOOP-normal [PN] OOOOOO0OOOOOOO
Ooooooooood e« DOooooood

(OO0OOOOoOoOooooobooOodddLeaTyX-ja O Ng O Np OOOOOOOO0OOOOOO
OO0O000000o0Oo00onond « OO0 penalty_node OO O OOOOO0OO0OOOOOOONO Np
Ooooooogoon
s JOOODOODOoOOoooOoooooooooooogog
- HOOOOOOOoOoooOooooooboonooonod
P-suppress [PS] Ng O Np OO0 () OOOOOOOOOOOOOP-normal [PN] DOODOOO0OOCOOOO
ooooooooooon « ooooodno

(DO OODOoOOoOoogoogonodng O Ny OO ooooooogonogano
OO000LvaTeX-ja OO OOOOOOOOOOOOOOOOOOODOOMmOOOOn gue OOOOd
OOO0OO0OO\penalty10000 OOOOOO

Oomboooooooomooooonooon

Ng Np
—~ =
glyph glue
‘O | |1pt

00000000 00000000«.0000000 postbreakpenalty OO O O0O00O000O0ODOOO2 O

oooooodd
Ng Np
—~ A~
glyph kern glue
‘07 |~ (OO0 | 1pt M

0000« OO0O0OO0OOO0O000000000000O0OOOOpostbreakpenalty O« OOOOO OO
Oooooooooooooooooooano a) a

Ng Np
—~ A~

glyph penalty kern glue
‘|| « |T|OO0O] " |Ipt

Ooooooooooo®o

OOoOooOdooooooAOoO ypOOoooooooooooooodoNy DO A0OOOoooo
OOoOoonNg O Np OOOoooooooooodooooooooomoooooooooooodan
oono

- OO0 OODOOOOOOOOOOd Boundary-A [Oa] OO OOOODOOOOOOOOOOOOOOO
Oboooomooooooooooan

« Ng OO OOOOOMOOOO0OOOOOo0nOd

kern—glue O 1 DODODO00 (000000000000 0) 000000000 «= 10000 0O00000ONg O Np 0000
OOoOooooooooooood

30

- JOOOOODOOOOOOONg OOOOOOOOOOdnNg.teil OOOOOOOO
a:= (Np"’0OOOOO0 prebreakpenalty C101).

O Ng DOOODODOOP-allow [PA] DOOOO
OO0 Ng OOOOOooooodP-normal [PN] OOOOO
000 Ng OOOOOO0OOOP-suppress [PS] OO0

OO0 AO0OOBOOD OOOOODOOOODBOOOOOOOOODOOOODor OODOOOOOO
0000000000000 AD00ooog

- JOBOOOOOOFM DOO0O0OOOOOODOO0O JEM-origin [M]Boundary-A [Oa]Boundary-B [Og]
O0oOdodoomoooodooonoooooooood

- 00000 AD0000000B 00000000 OBoundary-A [O4] OO0 Boundary-B [Og]
DO0O000000000000 kanjiskip [K] 0000000

- O0O0OBO2000000000OOkanjiskip [K]DOOOOOOO

- JOBOOODDODOOODOOODOOOOODOOOOOOOOOmOgIFM OO0OOoOooo
oooooooooodno

- JOBOOOBOOOODOBOODOIODODOOONDOOOOODOOOOOO P-suppress [PS]
ooooodno

OB OO0O0OOOO prebreakpenalty, postbreakpenalty OO0 OO0 00000 DOOOOOOOO

oooooogog
1 0 \inhibitglue A\\ OCA
2\hbox{[J CJFA\\ OOA
sOA COOA

* 1 OOO\inhibitglue [0 Boundary-B [Og] OO O OO OO0 O OO0OODDOOOOAOOOOO
xkanjiskipOOOOOooooooooooo

L0 = O
OO0O0DOO0O0OoOO0oOoOgogOn Boundary-B [Og] DO OOOOOOODOOOOOxkanjiskip OO
ooooodno

- 300000000000000000000AO00000000000000000A00ODOO
Boundary-B [Og] 0000 OO0O00000O0O0O000

12 psft

References

[1] Victor Eijkhout, TgX by Topic, A TgXnician’s Reference, Addison-Wesley, 1992.

31

	I User's manual
	Introduction
	Backgrounds
	Major Changes from pTeX
	Notations
	About the project

	Getting Started
	Installation
	Cautions
	Using in plain TeX
	Using in LaTeX
	Changing Fonts
	fontspec

	Changing Parameters
	Editing the range of JAchars
	kanjiskip and xkanjiskip
	Insertion Setting of xkanjiskip
	Shifting Baseline
	Cropmark

	II Reference
	Font Metric and Japanese Font
	92jfont primitive
	Prefix psft
	Structure of JFM file
	Math Font Family
	Callbacks

	Parameters
	92 ltjsetparameter primitive
	List of Parameters

	Other Primitives
	Primitives for Compatibility
	92 inhibitglue primitive

	Control Sequences for LaTeX2ε
	Patch for NFSS2
	Cropmark/`tombow'

	Extensions
	luatexja-fontspec.sty
	luatexja-otf.sty

	III Implementations
	Storing Parameters
	Used Dimensions, Attributes and whatsit nodes
	Stack System of LuaTeX-ja

	Linebreak after Japanese Character
	Reference: Behavior in pTeX
	Behavior in LuaTeX-ja

	Insertion of JFM glues, kanjiskip and xkanjiskip
	Overview
	definition of a `cluster'
	段落／水平ボックスの先頭や末尾
	概観と典型例：2つの「和文A」の場合
	その他の場合

	psft
	References

