The LuaT_EX-ja package

The LuaT_EX-ja project team

20201030.0 (October 30, 2020)

Contents

Ι	Use	er's manual	4
1	Intr	oduction	4
	1.1	Backgrounds	4
	1.2	Major changes from pTEX	4
	1.3	Notations	5
	1.4	About the project	6
2	Gett	ting Started	7
	2.1	Installation	7
	2.2	Cautions	8
	2.3	Using in plain T _F X	8
	2.4	Using in Lar	
3		inging Fonts	10
	3.1	plain T _E X and $\Pr X_{\varepsilon}$	
	3.2	luatexja-fontspec package	
	3.3	Presets of Japanese fonts	
	3.4	\CID, \UTF, and macros in japanese-otf package	12
4	Cha	nging Internal Parameters	12
	4.1	Range of JAchars	13
	4.2	kanjiskip and xkanjiskip	15
	4.3	Insertion setting of <u>xkanjiskip</u>	16
	4.4	Shifting the baseline	16
	4.5	kinsoku parameters and OpenType features	17
Π	Re	eference	18
5	\cat	tcode in LuaT _E X-ja	18
	5.1	Preliminaries: \kcatcode in pTEX and upTEX	18
	5.2	Case of LuaT _F X-ja	
	5.3	Non-kanji characters in a control word	
6	Dire	ections	19
Ŭ	6.1	Boxes in different direction	19
	6.2	Getting current direction	
	6.3		21
7		t Metric and Japanese Font	22
	7.1	\jfont	22
	7.2	\tfont	24
	7.3	Default Japanese fonts and JFMs	25
	7.4	Prefix psft	26
	7.5	Structure of a JFM file	26
	7.6		30
	7.7	Callbacks	31

8	Parameters							
	8.1	\ltjsetparameter	32					
	8.2	\ltjgetparameter	34					
	8.3	Alternative Commands to \ltjsetparameter	35					
9	Othe	Other Commands for plain TFX and LATFX 2 ₆						
	9.1	Commands for compatibility with pTEX	36					
	9.2	\inhibitglue	36					
	9.3	\ltjfakeboxbdd, \ltjfakeparbegin	37					
	9.4	\ltjdeclarealtfont	37					
10	Con	umands for	38					
	10.1	Loading Japanese fonts in $\square T_E X 2_{\varepsilon}$	38					
	10.2	Patch for NFSS2	38					
	10.3	Detail of \fontfamily command	40					
	10.4	Notes on \DeclareTextSymbol	41					
	10.5	\strutbox	41					
11	expl	3 interface	42					
12	Add	on packages	42					
		luatexja-fontspec						
		luatexja-otf						
		luatexja-adjust						
		luatexja-ruby						
		lltjext.sty						
		luatexja-preset						
		12.6.1 General Options						
		12.6.2 Presets which support multi weights						
		12.6.3 Presets which do not support multi weights						
		12.6.4 Presets which use HG fonts						
		12.6.5 Define/Use Custom Presets						
II	IIr	nplementations	54					
13	Stor	ing Parameters	54					
		Used dimensions, attributes and whatsit nodes	54					
		Stack system of LuaTEX-ja						
		Lua functions of the stack system						
		Extending Parameters						
14	Line	break after a Japanese Character	57					
		Reference: behavior in pTFX						
		Behavior in LuaT _E X-ja						
15	Pate	h for the listings Package	59					
		Notes and additional keys						
		Class of characters						

16 Cache Management of LuaT <u>E</u> X-ja				
16.1 Use of cache	. 61			
16.2 Internal	. 62			
References	63			

This documentation is far from complete. It may have many grammatical (and contextual) errors. Also, several parts are written in Japanese only.

Part I User's manual

1 Introduction

The LuaTEX-ja package is a macro package for typesetting high-quality Japanese documents when using LuaTEX.

1.1 Backgrounds

Traditionally, ASCII pT_EX, an extension of T_EX, and its derivatives are used to typeset Japanese documents in T_EX. pT_EX is an engine extension of T_EX: so it can produce high-quality Japanese documents without using very complicated macros. But this point is a mixed blessing: pT_EX is left behind from other extensions of T_EX, especially ε -T_EX and pdfT_EX, and from changes about Japanese processing in computers (*e.g.*, the UTF-8 encoding).

Recently extensions of pTeX, namely upTeX (Unicode-implementation of pTeX) and ϵ -pTeX (merging of pTeX and ϵ -TeX extension), have developed to fill those gaps to some extent, but gaps still exist.

However, the appearance of LuaT_EX changed the whole situation. With using Lua "callbacks", users can customize the internal processing of LuaT_EX. So there is no need to modify sources of engines to support Japanese typesetting: to do this, we only have to write Lua scripts for appropriate callbacks.

1.2 Major changes from pTEX

The LuaT_EX-ja package is under much influence of pT_EX engine. The initial target of development was to implement features of pT_EX . However, implementing all feature of pT_EX is impossible, since all process of LuaT_EX-ja must be implemented only by Lua and T_EX macros. Hence LuaT_EX-ja is not a just porting of pT_EX ; unnatural specifications/behaviors of pT_EX were not adopted.

The followings are major changes from $pT_{E}X$. For more detailed information, see Part III or other sections of this manual.

Command names pT_EX addes several primitives, such as kanjiskip, prebreakpenalty, and ifydir. They can be used as follows:

```
\kanjiskip=10pt \dimen0=kanjiskip
\tbaselineshift=0.1zw
\dimen0=\tbaselineshift
\prebreakpenalty`&=100
\ifydir ... \fi
```

However, we cannot use them under LuaTEX-ja. Instead of them, we have to write as the following.

```
\ltjsetparameter{kanjiskip=10pt} \dimen0=\ltjgetparameter{kanjiskip}
\ltjsetparameter{talbaselineshift=0.1\zw}
\dimen0=\ltjgetparameter{talbaselineshift}
\ltjsetparameter{prebreakpenalty={、あ,100}}
\ifnum\ltjgetparameter{direction}=4 ... \fi
```

Note that pTEX adds new two useful units, namely zw and zh. As shown above, *they are changed to* zw *and* zh *respectively* in LuaTEX-ja.¹

■Linebreak after a Japanese character In pT_EX, a line break after Japanese character is ignored (and doesn't yield a space), since line breaks (in source files) are permitted almost everywhere in Japanese texts. However, LuaT_EX-ja doesn't have this feature completely, because of a specification of LuaT_EX. For the detail, see Section 14.

 $^{^1}LuaT_{\rm E}X$ -ja 20200127.0 introduces <code>ltj0zw</code> and <code>ltj0zh</code>, which are copy of <code>\zw</code> and <code>\zh</code>.

Spaces related to Japanese characters The insertion process of glues/kerns between two Japanese characters and between a Japanese character and other characters (we refer glues/kerns of both kinds as **JAglue**) is rewritten from scratch.

- As LuaTEX's internal ligature handling is *node-based* (*e.g.*, of{}fice doesn't prevent ligatures), the insertion process of **JAglue** is now *node-based*.
- Furthermore, nodes between two characters which have no effects in line break (*e.g.*, \special node) and kerns from italic correction are ignored in the insertion process.
- Caution: due to above two points, many methods which did for the dividing the process of the insertion of **JAglue** in *pT*_EX are not effective anymore. In concrete terms, the following two methods are not effective anymore:

ちょ{}っと ちょ\/っと

If you want to do so, please put an empty horizontal box (hbox) between it instead:

ちょ\hbox{}っと

• In the process, two Japanese fonts which only differ in their "real" fonts are identified.

Directions From version 20150420.0, LuaT_EX-ja supports vertical writing. We implement this feature by using callbacks of LuaT_EX; so it must *not* be confused with Ω -style direction support of LuaT_EX itself. Due to implementation, the dimension returned by \wd, \ht, or \dp depends on the content of the register *only*. This is major difference with pT_EX.

U\discretionary Japanese characters in discretionary break (\discretionary) is not supported.

■ Greek and Cyrillic letters, and ISO 8859-1 symbols By default, LuaT_EX-ja uses Japanese fonts to typeset Greek and Cyrillic letters, To change this behavior, put \ltjsetparameter{jacharrange={-2,-3}} in the preamble. For the detailed description, see Subsection 4.1.

From version 20150906.0, characters which belongs both ISO 8859-1 and JIS X 0208, such as \P and \S , are now typeset in alphabetic fonts.

1.3 Notations

In this document, the following terms and notations are used:

- Characters are classified into following two types. Note that the classification can be customized by a user (see Subsection 4.1).
 - JAchar: standing for characters which is used in Japanese typesetting, such as Hiragana, Katakana, Kanji, and other Japanese punctuation marks.
 - ALchar: standing for all other characters like latin alphabets.

We say alphabetic fonts for fonts used in ALchar, and Japanese fonts for fonts used in JAchar.

- A word in a sans-serif font with underline (like <u>prebreakpenalty</u>) means an internal parameter for Japanese typesetting, and it is used as a key in \ltjsetparameter command.
- A word in a sens-serif font without underline (like fontspec) means a package or a class of LATEX.
- In this document, natural numbers start from zero. ω denotes the set of all natural numbers which can be used in T_EX.

1.4 About the project

Project Wiki Project Wiki is under construction.

- https://osdn.jp/projects/luatex-ja/wiki/FrontPage%28en%29 (English)
- https://osdn.jp/projects/luatex-ja/wiki/FrontPage (Japanese)
- https://osdn.jp/projects/luatex-ja/wiki/FrontPage%28zh%29 (Chinese)

This project is hosted by OSDN.

Members

- Hironori KITAGAWA
- Kazuki MAEDA
- Takayuki YATO

- Yusuke KUROKITomoaki HONDA
- Noriyuki ABE
- Shuzaburo SAITO
- MA Qiyuan

• Munehiro YAMAMOTO

2 Getting Started

2.1 Installation

The following packages are needed for the LuaTEX-ja package.

- LuaT_FX 1.10.0 (or later) (DVI output (\outputmode=0 is not supported.)
- recent luaotfload (v3.1 or later recommended)
- adobemapping (Adobe cmap and pdfmapping files)
- Large X 2020-02-02 patch level 5 or later (if you want to use LuaTeX-ja with Large X 2_{ε})
- etoolbox, everysel (if you want to use LuaT_EX-ja with \mathbb{A} T_EX 2_{ε})
- Itxcmds, pdftexcmds
- filehook, atbegshi (not needed if you want to use LuaT_EX-ja with $PT_EX 2_{\varepsilon}$ 2020-10-01 or later)
- fontspec v2.7c (or later)
- Harano Aji fonts (https://github.com/trueroad/HaranoAjiFonts) More specifically, HaranoAjiMincho-Regular and HaranoAjiGothic-Medium.

Now LuaT_EX-ja is available from CTAN (in the macros/luatex/generic/luatexja directory), and the following distributions:

- TEX Live (in texmf-dist/tex/luatex/luatexja)
- W32TEX (in luatexja.tar.xz)
- MiKT<u>E</u>X (in luatexja.tar.xz)

Harano Aji fonts are also available in these distributions (haranoaji in T_EX Live and MiKT_EX, and luatexja.tar.xz in W32T_EX).

■HarfBuzz and LuaT_EX-ja Using LuaT_EX-ja with LuaHBT_EX(LuaT_EX integrated with HarfBuzz) is not well tested. Maybe documents can typeset without an error, but with unwanted results (especially, vertical typesetting and \CID).

Especially, We don't recommend defining a Japanese font with HarfBuzz, by specifying Renderer=Harfbuzz etc. (fontspec) or mode=harf (otherwise).

Manual installation

- 1. Download the source, by one of the following method. At the present, LuaT_EX-ja has no *stable* release.
 - Clone the Git repository by
 - \$ git clone git://git.osdn.jp/gitroot/luatex-ja/luatexja.git
 - Download the tar.gz archive of HEAD in the master branch from

http://git.osdn.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz.

Note that the master branch, and hence the archive in CTAN, are not updated frequently; the forefront of development is not the master branch.

- 2. Extract the archive. You will see src/ and several other sub-directories. But only the contents in src/ are needed to work LuaT_EX-ja.
- 3. If you downloaded this package from CTAN, you have to run following commands to generate classes:

```
$ cd src
$ lualatex ltjclasses.ins
$ lualatex ltjsclasses.ins
$ lualatex ltjltxdoc.ins
```

- Copy all the contents of src/ into one of your TEXMF tree. TEXMF/tex/luatex/luatexja/ is an example location. If you cloned entire Git repository, making a symbolic link of src/ instead copying is also good.
- 5. If mktex1sr is needed to update the file name database, make it so.

2.2 Cautions

For changes from pTEX, see Subsection 1.2.

- The encoding of your source file must be UTF-8. Other encodings, such as EUC-JP or Shift-JIS, are not supported.
- LuaTEX-ja is very slower than pTEX, and uses a lot of memory.
- (Outdated) note for MiKTEX users LuaTEX-ja requires that several CMap files² must be found from LuaTEX. Strictly speaking, those CMaps are needed only in the first run of LuaTEX-ja after installing or updating. But it seems that MiKTEX does not satisfy this condition, so you will encounter an error like the following:

! LuaTeX error ...iles (x86)/MiKTeX 2.9/tex/luatex/luatexja/ltj-rmlgbm.lua bad argument #1 to 'open' (string expected, got nil)

If so, please execute a batch file which is written on the Project Wiki (English). This batch file creates a temporary directory, copy CMaps in it, run a test file which loads LuaTEX-ja in this directory, and finally delete the temporary directory.

• Note that when LuaT_EX-ja is loaded in plain LuaT_EX, we cannot use color specification on font loading, such as

\font\hoge=lmroman10-regular.otf:color=FF0000 % \font primitive

This is because codes for shifting baseline in math mode (LuaTEX-ja) collide with and prevents loading codes for font color (luaotfload) in these environments. *We recommend to use LATEX 2020-02-02 (or later)*, since we can avoid this collision in there.

2.3 Using in plain T_EX

To use LuaT_EX-ja in plain T_EX, simply put the following at the beginning of the document:

\input luatexja.sty

This does minimal settings (like ptex.tex) for typesetting Japanese documents:

• The following 12 Japanese fonts are preloaded:

direction	classification	font name	"10 pt"	"7 pt"	"5 pt"
<i>yoko</i> (horizontal)	mincho	HaranoAjiMincho-Regular	\tenmin	\sevenmin	\fivemin
	gothic	HaranoAjiGothic-Medium	\tengt	\sevengt	\fivegt
<i>tate</i> (vertical)	mincho	HaranoAjiMincho-Regular	\tentmin	\seventmin	\fivetmin
	gothic	HaranoAjiGothic-Medium	\tentgt	\seventgt	\fivetgt

- The "default" Japanese fonts (and JFMs for them) can be modified by defining \ltj@stdmcfont etc. *before* one inputs luatexja.sty (Subsection 7.3).

²UniJIS2004-UTF32-{H,V} and Adobe-Japan1-UCS2.

- A character in an alphabetic font is generally smaller than a Japanese font in the same size. So actual size specification of these Japanese fonts is in fact smaller than that of alphabetic fonts, namely scaled by 0.962216.
- The amount of glue that are inserted between a **JAchar** and an **ALchar** (the parameter <u>xkanjiskip</u>) is set to

 $(0.25 \cdot 0.962216 \cdot 10 \text{ pt})^{+1 \text{ pt}}_{-1 \text{ pt}} = 2.40554 \text{ pt}^{+1 \text{ pt}}_{-1 \text{ pt}}$

2.4 Using in LATEX

Using in $\text{PTEX } 2_{\varepsilon}$ is basically same. To set up the minimal environment for Japanese, you only have to load luatexja.sty:

\usepackage{luatexja}

It also does minimal settings (counterparts in pLATEX are plfonts.dtx and pldefs.ltx).

- Font encodings for Japanese fonts are JY3 (for horizontal direction) and JT3 (for vertical direction).
- Traditionally, Japanese documents use only two families: *mincho* (明朝体) and *gothic* (ゴシック体). *mincho* is used in the main text, while *gothic* is used in the headings or for emphasis.

classification	commands		family
mincho (明朝体) gothic (ゴシック体)		<pre>{\mcfamily} {\gtfamily}</pre>	\mcdefault \gtdefault
(Japanese counterpart for typewriter font)		—	\jttdefault

Here <code>\jttdefault</code> specifies the Japanese font family in <code>\verb</code> or <code>verbatim</code> environment, and its default value is <code>\mcdefault</code> (mincho family).³ LuaT_EX-ja does not define commands to only switch current Japanese font family to <code>\jttdefault</code>.

• By default, the following fonts are used for these two families.

classification	family	\mdseries	\bfseries	scale
mincho (明朝体)	mc	J 0	HaranoAjiGothic-Medium	0.962216
gothic (ゴシック体)	gt		HaranoAjiGothic-Medium	0.962216

- Note that the bold series (series bx or b) in both family are same as the medium series of gothic family. There is no italic nor slanted shape for these mc and gt.
- From version 20181102.0, one can specifies disablejfam option at loading LuaT_EX-ja. This option prevents loading a patch for LAT_EX, which are needed to support Japanese characters in math mode.

Without disablejfam option, one can typeset Japanese characters in math mode as \$ a \$ (see Page 11) as before. Japanese characters in math mode are typeset by the font family mc.

• If you use the beamer class with the default font theme (which uses sans serif fonts) and with LuaTEXja, you might want to change default Japanese fonts to the gothic family. The following line changes the default Japanese font family to it:

\renewcommand{\kanjifamilydefault}{\gtdefault}

However, above settings are not sufficient for Japanese-based documents. To typeset Japanese-based documents, you are better to use class files other than article.cls, book.cls, and so on. At the present, LuaTEX-ja has the counterparts of jclasses (standard classes in pLATEX) and jsclasses (classes by Haruhiko Okumura), namely, ltjclasses⁴ and ltjsclasses⁵.

³When ltjsclasses classes are used, or luatexja-fontspec (or luatexja-preset) is loaded with match option, \ttfamily changes the current Japanese font amily to \jttdefault. These classes and packages also redefine \jttdefault to \gtdefault (gothic family). ⁴ltjarticle.cls, ltjbook.cls, ltjreport.cls, ltjtarticle.cls, ltjtbook.cls, ltjtreport.cls. The latter ltjt*.cls are

for vertically written Japanese documents.

⁵ltjsarticle.cls, ltjsbook.cls, ltjsreport.cls, ltjskiyou.cls.

Original jsclasses use \mag primitive to set the main document font size. However, LuaTEX does not support \mag in PDF output, so ltjsclasses uses the nomag* option⁶ by default to set the main font size. If this causes some unexpected behavior, specify nomag option in \documentclass.

geometry package and classes for vertical writing It is well-known that the geometry package produces the following error, when classes for vertical writing is used:

```
! Incompatible direction list can't be unboxed.
```

```
\@begindvi ->\unvbox \@begindvibox
```

\global \let \@begindvi \@empty

Now, LuaTEX-ja automatically applies the patch Iltjp-geometry to the geometry package, when the direction of the document is *tate* (vertical writing). This patch Iltjp-geometry also can be used in pLATEX; for the detail, please refer lltjp-geometry.pdf (Japanese).

3 Changing Fonts

\square plain T_EX To change Japanese fonts in plain T_EX, you must use the command \jfont and \tfont. So please see Subsection 7.1.

■ LATEX 2_{ε} (NFSS2) For LATEX 2_{ε} , LuaTEX-ja adopted most of the font selection system of pLATEX 2_{ε} (in plfonts.dtx).

	encoding	family	series	shape	selection
Alphabetic fonts	\romanencoding	\romanfamily	\romanseries	\romanshape	\useroman
Japanese fonts	\kanjiencoding	\kanjifamily	\kanjiseries	\kanjishape	\usekanji
both	_	-	\fontseries	\fontshape*	_
auto select	\fontencoding	\fontfamily	_	_	\usefont

• \fontfamily, \fontseries, and \fontshape try to change attributes of Japanese fonts, as well as those of alphabetic fonts. Of course, \selectfont is needed to select current text fonts.

Note that \fontshape always changes current alphabetic font shape, but it does *not* change current Japanese font shape if the target shape is unavailable for current Japanese encoding/family/series. For the detail, see Subsection 10.2.

- \fontencoding{(encoding)} changes the encoding of alphabetic fonts or Japanese fonts depending on the argument. For example, \fontencoding{JY3} changes the encoding of Japanese fonts to JY3, and \fontencoding{T1} changes the encoding of alphabetic fonts to T1. \fontfamily also changes the current Japanese font family, the current alphabetic font family, or both. For the detail, see Subsection 10.2.
- For defining a Japanese font family, use \DeclareKanjiFamily instead of \DeclareFontFamily. (In previous version of LuaT_EX-ja, using \DeclareFontFamily didn't cause any problem. But this no longer applies the current version.)
- Defining a Japanese font shape can be done by usual \DeclareFontShape:
- \DeclareFontShape{JY3}{mc}b}{n}<-> s*HaranoAjiMincho--Bold:jfm=ujis;-kern}{}
 % Harano Aji Mincho Bold

 $^{^{6}}$ Same effect as the BXjscls classes (by Takayuki Yato) and jsclasses. However, these classes uses only TeX code, but Itjsclasses uses Lua code.

Table 1. Commands of luatexja-fontspec

Japanese fonts	\jfontspec	\setmainjfont	\setsansjfont	\setmonojfont
Alphabetic fonts	\fontspec	\setmainfont	\setsansfont	\setmonofont
Japanese fonts	\newjfontfamily	\renewjfontfamily	\setjfontfamily	
Alphabetic fonts	\newfontfamily	\renewfontfamily	\setfontfamily	
Japanese fonts	\newjfontface	\defaultjfontfeatures	\addjfontfeatures	
Alphabetic fonts	\newfontface	\defaultfontfeatures	\addfontfeatures	

Japanese characters in math mode Since pT_EX supports Japanese characters in math mode, there are sources like the following:

1 \$f_{高温}\$~(\$f_{\text{high temperature}}\$). 2 \[y=(x-1)^2+2\quad よって\quad y>0 \] 3 \$5\in 素:=\{\,p\in\mathbb N:\text{\$p\$ is a prime}\,\}\$. $f_{高温} (f_{high temperature}).$ $y = (x-1)^2 + 2 \quad & x \to \tau \quad y > 0$ $5 \in 素 := \{ p \in \mathbb{N} : p \text{ is a prime } \}.$

We (the project members of LuaT_EX-ja) think that using Japanese characters in math mode are allowed if and only if these are used as identifiers. In this point of view,

- The lines 1 and 2 above are not correct, since "高温" in above is used as a textual label, and "よって" is used as a conjunction.
- However, the line 3 is correct, since "素" is used as an identifier.

Hence, in our opinion, the above input should be corrected as:

1 \$f_{\text{高温}}\$~% 2 (\$f_{\text{high temperature}}\$).	$f_{高温}$ ($f_{high temperature}$).
3 \[y=(x-1)^2+2 4 \mathrel{\mbox{よって}} y>0 \]	$y = (x - 1)^2 + 2$ $\& \neg \tau$ $y > 0$
5 \$5\in 素:=\{p\in\mathbb N:\text{\$p\$ is a prime}\}\$.	$5 \in 素 := \{ p \in \mathbb{N} : p \text{ is a prime } \}.$

We also believe that using Japanese characters as identifiers is rare, hence we don't describe how to change Japanese fonts in math mode in this chapter. For the method, please see Subsection 7.6.

When $LuaT_EX$ -ja is loaded with disablejfam option, one cannot write Japanese characters in math mode as $\frac{1}{2}$. At that case, one have to use $\frac{1}{2}$ (or $\frac{1}{2}$).

3.2 luatexja-fontspec package

To use the functionality of the fontspec package to Japanese fonts, it is needed to load the luatexja-fontspec package in the preamble, as follows:

\usepackage[(options)]{luatexja-fontspec}

This luatexja-fontspec package automatically loads luatexja and fontspec packages, if needed.

In the luatexja-fontspec package, several commands are defined as counterparts of original commands in the fontspec package (see Table 1):

The package option of luatexja-fontspec are the followings:

match

. .

If this option is specified, usual family-changing commands such as \rmfamily, \textrm, \sffamily, ... also change Japanese font family.

 $pass=\langle opts \rangle$

(Obsoleted) Specify options (opts) which will be passed to the fontspec package.

scale=(float)

Override the ratio of the font size of Japanese fonts to that of alphabetic fonts. The default value is determined as follows:

- The value of \Cjascale is used, if this control sequence is already defined.
- It is calculated automatically from the current Japanese font at the loading of the package, if \Cjascale is not defined.

\Cjascale is defined in Itjclasses and Itjsclasses.

All other options listed above are simply passed to the fontspec package. This means that two lines below are equivalent, for example.

\usepackage[no-math]{fontspec}\usepackage{luatexja-fontspec} \usepackage[no-math]{luatexja-fontspec}

Note that kerning information in a font is not used (that is, kern feature is set off) by default in these seven (or eight) commands. This is because of the compatibility with previous versions of LuaTFX-ja (see 7.1).

Below is an example of jfontspec.

1 \jfontspec[CJKShape=NLC]{HaranoAjiMincho-Regular}

2 JIS~X~0213:2004→辻鰺\par 3 \jfontspec[CJKShape=JIS1990]{HaranoAjiMincho-Regular} 4 JIS~X~0208-1990→辻鰺\par 5 \jfontspec[CJKShape=JIS1978]{HaranoAjiMincho-Regular} 6 JIS~C~6226-1978→辻鰺	JIS X 0213:2004 →辻鯵 JIS X 0208-1990 →辻鯵 JIS C 6226-1978 →辻鰺
--	---

3.3 Presets of Japanese fonts

With luatexja-preset package, one use one of "preset" to simplify Japanese font setting. For details of package options, and those of each presets, please see Subsection 12.6. The following presets are defined:

haranoaji, hiragino-pro, hiragino-pron, ipa, ipa-hg, ipaex, ipaex-hg, kozuka-pr6, kozuka-pr6n, kozuka-pro, moga-mobo, moga-mobo-ex, bizud, morisawa-pr6n, morisawa-pro, ms, ms-hg, noembed, noto-otc, noto-otf, sourcehan, sourcehan-jp, ume, yu-osx, yu-win, yu-win10

For example, this document loads luatexja-preset package by

\usepackage[haranoaji]{luatexja-preset}

which means that Harano Aji fonts will be used in this document.

3.4 \CID, \UTF, and macros in japanese-off package

Under plATFX, japanese-otf package (developed by Shuzaburo Saito) is used for typesetting characters which is in Adobe-Japan1-6 CID but not in JIS X 0208. Since this package is widely used, LuaTFX-ja supports some of functions in the japanese-off package, as an external package luatexja-off.

1 森\UTF{9DD7}外と\CID{13966}田百\UTF{9592}とが

- 2 \UTF{9AD9}島屋に\\
- 3 \CID{7652}飾区の\CID{13706}野家,
- 4 \CID{1481}城市,葛西駅,\\

5 高崎と\CID{8705}\UTF{FA11},濱と\ajMayuHama\\

。\aj半角{カタカナ}\ajKakko3\ajMaruYobi{2}%

7 \ajLig{令和}\ajLig{〇問}\ajJIS

森鷗外と內田百閒とが髙島屋に 葛飾区の吉野家, 葛城市, 葛西駅, 高崎と高崎, 濱と濵 カタカナ(3)(月)(間)(と)

Changing Internal Parameters 4

There are many internal parameters in LuaTeX-ja. And due to the behavior of LuaTeX, most of them are not stored as internal register of TFX, but as an original storage system in LuaTFX-ja. Hence, to assign or acquire those parameters, you have to use commands \ltjsetparameter and \ltjgetparameter.

Table 2. Characters in predefined character range 8.

§ (U+00A7)	Section Sign	" (U+00A8)	Diaeresis
° (U+00B0)	Degree sign	± (U+00B1)	Plus-minus sign
(U+00B4)	Spacing acute	¶ (U+00B6)	Paragraph sign
× (U+00D7)	Multiplication sign	÷ (U+00F7)	Division Sign

Table 3. Unicode blocks in predefined character range 1.

U+0080-U+00FF	Latin-1 Supplement	U+0100-U+017F	Latin Extended-A
U+0180-U+024F	Latin Extended-B	U+0250-U+02AF	IPA Extensions
U+02B0-U+02FF	Spacing Modifier Letters	U+0300-U+036F	Combining Diacritical Marks
U+1E00-U+1EFF	Latin Extended Additional		

4.1 Range of JAchars

LuaT_EX-ja divides the Unicode codespace U+0080-U+10FFFF into *character ranges*, numbered 1 to 217. The grouping can be (globally) customized by \ltjdefcharrange. The next line adds whole characters in Supplementary Ideographic Plane and the character "漢" to the character range 100.

\ltjdefcharrange{100}{"20000-"2FFFF,`漢}

A character can belong to only one character range. For example, whole SIP belong to the range 4 in the default setting of LuaT_EX-ja, and if one executes the above line, then SIP will belong to the range 100 and be removed from the range 4.

The distinction between **ALchar** and **JAchar** is performed by character ranges. This can be edited by setting the jacharrange parameter. For example, the code below is just the default setting of LuaT_EX-ja, and it sets

- a character which belongs character ranges 1, 4, 5, and 8 is ALchar,
- a character which belongs character ranges 2, 3, 6, 7, and 9 is JAchar.

\ltjsetparameter{jacharrange={-1, +2, +3, -4, -5, +6, +7, -8, +9}}

The argument to jacharrange parameter is a list of non-zero integer. Negative integer -n in the list means that "each character in the range *n* is an **ALchar**", and positive integer +n means that "... is a **JAchar**".

Note that characters U+0000-U+007F are always treated as an ALchar (this cannot be customized).

Default character ranges LuaT_EX-ja predefines nine character ranges for convenience. They are determined from the following data:

- Blocks in Unicode 12.0.0.
- The Adobe-Japan1-UCS2 mapping between a CID Adobe-Japan1- and Unicode.
- The PXbase bundle for upTEX by Takayuki Yato.

Now we describe these nine ranges. The superscript "J" or "A" after the number shows whether each character in the range is treated as **JAchar**s or not by default. These settings are similar to the prefercjk settings defined in PXbase bundle. Any characters equal to or above U+0080 which does not belong to these eight ranges belongs to the character range 217.

- **Range 8^A** The intersection of the upper half of ISO 8859-1 (Latin-1 Supplement) and JIS X 0208 (a basic character set for Japanese). The character list is indicated in Table 2.
- **Range 1^A** Latin characters that some of them are included in Adobe-Japan1-7. This range consists of the Unicode ranges indicated in Table 3, *except characters in the range 8 above*.
- Range 2^J Greek and Cyrillic letters. JIS X 0208 (hence most of Japanese fonts) has some of these characters.

Table 4. Unicode blocks in predefined character range 3.

U+2070-U+209F	Superscripts and Subscripts		
U+20A0-U+20CF	Currency Symbols	U+20D0-U+20FF	Comb. Diacritical Marks for Symbols
U+2100-U+214F	Letterlike Symbols	U+2150-U+218F	Number Forms
U+2190-U+21FF	Arrows	U+2200-U+22FF	Mathematical Operators
U+2300-U+23FF	Miscellaneous Technical	U+2400-U+243F	Control Pictures
U+2500-U+257F	Box Drawing	U+2580-U+259F	Block Elements
U+25A0-U+25FF	Geometric Shapes	U+2600-U+26FF	Miscellaneous Symbols
U+2700-U+27BF	Dingbats	U+2900-U+297F	Supplemental Arrows-B
U+2980-U+29FF	Misc. Math Symbols-B	U+2B00-U+2BFF	Misc. Symbols and Arrows

Table 5. Characters in predefined character range 9.

(U+2002)	En space	- (U+2010)	Hyphen
- (U+2011)	Non-breaking hyphen	- (U+2013)	En dash
— (U+2014)	Em dash	(U+2015)	Horizontal bar
(U+2016)	Double vertical line	' (U+2018)	Left single quotation mark
'(U+2019)	Right single quotation mark	, (U+201A)	Single low-9 quotation mark
" (U+201C)	Left double quotation mark	"(U+201D)	Right double quotation mark
" (U+201E)	Double low-9 quotation mark	† (U+2020)	Dagger
‡ (U+2021)	Double dagger	• (U+2022)	Bullet
·· (U+2025)	Two dot leader	··· (U+2026)	Horizontal ellipsis
‰ (U+2030)	Per mille sign	′ (U+2032)	Prime
″ (U+2033)	Double prime	< (U+2039)	Single left-pointing angle quot.
> (U+203A)	Single right-pointing angle quot.	💥 (U+203B)	Reference mark
!! (U+203C)	Double exclamation mark	(U+203E)	Overline
(U+203F)	Undertie	*** (U+2042)	Asterism
/ (U+2044)	Fraction slash	?? (U+2047)	Double question mark
<u>?!</u> (U+2048)	Question exclamation mark	!? (U+2049)	Exclamation question mark
* (U+2051)	Two asterisks aligned vertically		

• U+0370-U+03FF: Greek and Coptic

• U+1F00–U+1FFF: Greek Extended

• U+0400-U+04FF: Cyrillic

Range 3^J Miscellaneous symbols. The block list is indicated in Table 4.

- **Range 9^J** The intersection of the "General Punctuation" block (U+2000–U+206F) and Adobe-Japan1-7 character collection. This character range characters in Table 5.
- **Range 4^A** Characters usually not in Japanese fonts. This range consists of almost all Unicode blocks which are not in other predefined ranges. Hence, instead of showing the block list, we put the definition of this range itself.

```
\ltjdefcharrange{4}{%
    "500-"10FF, "1200-"1DFF, "2440-"245F, "27C0-"28FF, "2A00-"2AFF,
    "2C00-"2E7F, "4DC0-"4DFF, "A4D0-"A95F, "A980-"ABFF, "E000-"F8FF,
    "FB00-"FE0F, "FE20-"FE2F, "FE70-"FEFF, "10000-"1AFFF, "1B170-"1F0FF,
    "1F300-"1FFFF, ... (and characters in U+2000-U+206F which are not in range 9)
} % non-Japanese
```

Range 5^A Surrogates and Supplementary Private Use Areas.

Range 6^J Characters used in Japanese. The block list is indicated in Table 6.

Range 7^J Characters used in CJK languages, but not included in Adobe-Japan1-7. The block list is indicated in Table 7.

■Notes on U+0080–U+00FF You should treat characters in textttU+0080–U+00FF as ALchar, when you use traditional 8-bit fonts, such as the marvosym package.

Table 6. Unicode blocks in predefined character range 6.

U+2460-U+24FF	Enclosed Alphanumerics	U+2E80-U+2EFF	CJK Radicals Supplement
U+3000-U+303F	CJK Symbols and Punctuation	U+3040-U+309F	Hiragana
U+30A0-U+30FF	Katakana	U+3190-U+319F	Kanbun
U+31F0-U+31FF	Katakana Phonetic Extensions	U+3200-U+32FF	Enclosed CJK Letters and Months
U+3300-U+33FF	CJK Compatibility	U+3400-U+4DBF	CJK Unified Ideographs Ext-A
U+4E00-U+9FFF	CJK Unified Ideographs	U+F900-U+FAFF	CJK Compatibility Ideographs
U+FE10-U+FE1F	Vertical Forms	U+FE30-U+FE4F	CJK Compatibility Forms
U+FE50-U+FE6F	Small Form Variants	U+FF00-U+FFEF	Halfwidth and Fullwidth Forms
U+1B000-U+1B0FF	Kana Supplement	U+1B100-U+1B12F	Kana Extended-A
U+1F100-U+1F1FF	Enclosed Alphanumeric Supp.	U+1F200-U+1F2FF	Enclosed Ideographic Supp.
U+20000-U+2FFFF	(Supp. Ideographic Plane)	U+30000-U+3FFFF	(Tert. Ideographic Plane)
U+E0100-U+E01EF	Variation Selectors Supp.		

Table 7. Unicode blocks in predefined character range 7.

U+1100-U+11FF	Hangul Jamo	U+2F00-U+2FDF	Kangxi Radicals
U+2FF0-U+2FFF	Ideographic Description Characters	U+3100-U+312F	Bopomofo
U+3130-U+318F	Hangul Compatibility Jamo	U+31A0-U+31BF	Bopomofo Extended
U+31C0-U+31EF	CJK Strokes	U+A000-U+A48F	Yi Syllables
U+A490-U+A4CF	Yi Radicals	U+A960-U+A97F	Hangul Jamo Extended-A
U+AC00-U+D7AF	Hangul Syllables	U+D7B0-U+D7FF	Hangul Jamo Extended-B

For example, Frowny which is provided by the marvosym package has the same codepoint as § (U+00A7). Hence, as previous versions of LuaT_EX-ja, if these characters are treated as JAchars, then Frowny produces "§" (in a Japanese font).

To avoid such situations, the default setting of LuaT_EX-ja is changed in version 20150906.0 so that all characters U+0080-U+00FF are treated as **ALchar**.

If you want to output a character as **ALchar** and **JAchar** regardless the range setting, you can use \ltjalchar and \ltjachar respectively, as the following example.

•

1 \gtfamily\large % default, ALchar, JAchar

2	۹,	\ltjalchar`¶, \ltjjachar`¶\\		<u>∥</u> , <u>∥</u> ,	
3	α,	$ltjalchar`\alpha$, $ltjjachar`\alpha$	% default: JAchar	α,α,	α

4.2 kanjiskip and xkanjiskip

JAglue is divided into the following three categories:

- Glues/kerns specified in JFM. If \inhibitglue is issued around a **JAchar**, this glue will not be inserted at the place.
- The default glue which inserted between two JAchars (kanjiskip).
- The default glue which inserted between a JAchar and an ALchar (xkanjiskip).

The value (a skip) of <u>kanjiskip</u> or <u>xkanjiskip</u> can be changed as the following. Note that only their values *at the end of a paragraph or a hbox are adopted in the whole paragraph or the whole hbox.*

Here zw is a internal dimension which stores fullwidth of the current Japanese font. This zw can be used as the unit zw in pTeX.

The value of these parameter can be get by \ltjgetparameter. Note that the result by \ltjgetparameter is *not* the internal quantities, but *a string* (hence \the cannot be prefixed).

<pre>n kanjiskip: \ltjgetparameter{kanjiskip},\\</pre>	kanjiskip: 0.0pt plus 0.4pt minus 0.5pt,
2 xkanjiskip: \ltjgetparameter{xkanjiskip}	xkanjiskip: 2.40553pt plus 1.0pt minus 1.0pt

It may occur that JFM contains the data of "ideal width of <u>kanjiskip</u>" and/or "ideal width of <u>xkanjiskip</u>". To use these data from JFM, set the value of <u>kanjiskip</u> or <u>xkanjiskip</u> to <u>maxdimen</u> (these "ideal width" cannot be retrived by <u>ltjgetparameter</u>).

4.3 Insertion setting of xkanjiskip

It is not desirable that <u>xkanjiskip</u> is inserted into every boundary between **JAchar**s and **ALchar**s. For example, <u>xkanjiskip</u> should not be inserted after opening parenthesis (*e.g.*, compare "(\mathfrak{F} " and "(\mathfrak{F} "). LuaT_EX-ja can control whether <u>xkanjiskip</u> can be inserted before/after a character, by changing <u>jaxspmode</u> for **JAchar**s and <u>alxspmode</u> parameters **ALchar**s respectively.

```
1 \ltjsetparameter{jaxspmode={`あ,preonly},
alxspmode={`\!,postonly}} pあq い!う
```

The second argument preonly means that the insertion of $\underline{xkanjiskip}$ is allowed before this character, but not after, the other possible values are postonly, allow, and inhibit.

jaxspmode and alxspmode use a same table to store the parameters on the current version. Therefore, line 1 in the code above can be rewritten as follows:

\ltjsetparameter{alxspmode={`あ,preonly}, jaxspmode={`\!,postonly}}

One can use also numbers to specify these two parameters (see Subsection 8.1).

If you want to enable/disable all insertions of <u>kanjiskip</u> and <u>xkanjiskip</u>, set <u>autospacing</u> and <u>autoxspacing</u> parameters to true/false, respectively.

4.4 Shifting the baseline

To make a match between a Japanese font and an alphabetic font, sometimes shifting of the baseline of one of the pair is needed. In pTEX, this is achieved by setting \ybaselineshift (or \tbaselineshift) to a non-zero length (the baseline of **ALchar** is shifted below). However, for documents whose main language is not Japanese, it is good to shift the baseline of Japanese fonts, but not that of alphabetic fonts. Because of this, LuaTEX-ja can independently set the shifting amount of the baseline of alphabetic fonts and that of Japanese fonts.

	Horizontal writing (yoko direction) etc.	Vertical writing(<i>tate</i> direction)
Alphabetic fonts	yalbaselineshift parameter	talbaselineshift parameter
Japanese fonts	yjabaselineshift parameter	tjabaselineshift parameter

Here the horizontal line in the below example is the baseline of a line.

```
1 \vrule width 150pt height 0.2pt depth 0.2pt \
    hskip-120pt
2 \ltjsetparameter{yjabaselineshift=0pt,
    yalbaselineshift=0pt}abcあいう
3 \ltjsetparameter{yjabaselineshift=5pt,
```

yalbaselineshift=2pt}abcあいう

There is an interesting side-effect: characters in different size can be vertically aligned center in a line, by setting two parameters appropriately. The following is an example (beware the value is not well tuned):

```
1 \vrule width 150pt height4.417pt depth-4.217pt%
2 \kern-150pt
3 \large xyz漢字
4 {\scriptsize
5 \ltjsetparameter{yjabaselineshift=-1.757pt,
6 yalbaselineshift=-1.757pt}
7 漢字xyzあいう
8 }あいうabc
```

```
xyz 漢字<sup>漢字 xyz あいう</sup>あいう abc
```

Note that setting positive <u>yalbaselineshift</u> or <u>talbaselineshift</u> parameters does not increase the depth of one-letter *syllable p* of **Alchar**, if its left-protrusion (\lpcode) and right-protrusion (\rpcode) are both non-zero. This is because

• These two parameters are implemented by setting yoffset field of a glyph node, and this does not increase the depth of the glyph.

- To cope with the above situation, LuaTEX-ja automatically supplies a rule in every syllable.
- However, we cannot use this "supplying a rule" method if a syllable comprises just one letter whose \lpcode and \rpcode are both non-zero.

This problem does not apply for <u>yjabaselineshift</u> nor <u>tjabaselineshift</u>, becuse a *JAchar* is encapsulated by a horizontal box if needed.

4.5 kinsoku parameters and OpenType features

Among parameters which related to Japanese word-wrapping process (kinsoku shori),

jaxspmode, alxspmode, prebreakpenalty, postbreakpenalty and kcatcode

are stored by each character codes.

OpenType font features are ignored in these parameters. For example, a fullwidth katakana " \mathcal{T} " on line 10 in the below input is replaced to its halfwidth variant " \mathcal{T} ", by hwid feature. However, the penalty inserted after it is 10 which is the postbreakpenalty of " \mathcal{T} ", not 20.

```
1 \ltjsetparameter{postbreakpenalty={`7, 10}}
2 \ltjsetparameter{postbreakpenalty={`7, 20}}
4 \newcommand\showpostpena[1]{%
5 \leavevmode\setbox0=\hbox{#1\hbox{}}%
6 \unhbox0\setbox0=\lastbox\the\lastpenalty}
7
```

7 10, 7 20, 7 10

 $\mathbb{R} \setminus \mathbb{P}^{\mathbb{R}},$

```
    \showpostpena{7},
```

 $_{10} \ {\addjfontfeatures{CharacterWidth=Half}\showpostpena{\mathcal{T}}}$

Part II Reference

5 \catcode in LuaT_EX-ja

5.1 Preliminaries: \kcatcode in pTEX and upTEX

In pTeX and upTeX, the value of \catcode determines whether a Japanese character can be used in a control word. For the detail, see Table 8.

\kcatcode can be set by a row of JIS X 0208 in pTEX, and generally by a Unicode block⁷ in upTEX. So characters which can be used in a control word slightly differ between pTEX and upTEX.

5.2 Case of LuaT_EX-ja

The role of \catcode in pTeX and upTeX can be divided into the following four kinds, and LuaTeX-ja can control these four kinds separately:

- Distinction between JAchar or ALchar is controlled by the character range, see Subsection 4.1.
- Whether the character can be used in a control word is controlled by setting \catcode to 11 (enabled) or 12 (disabled), as usual.
- *Whether <u>jcharwidowpenalty</u> can be inserted before the character* is controlled by the lowermost bit of the <u>kcatcode</u> parameter.
- Linebreak after a JAchar does not produce a space.

Default setting of \catcode of Unicode characters are located in

 $plain \ LuaT_EX \ luatex-unicode-letters.tex, \ which \ is \ based \ on \ unicode-letters.tex \ (for \ X_FT_EX).$

 $Lua \amalg T_E X$ now included in $\Join T_E X$ kernel as unicode-letters.def.

However, the default setting of \catcode differs between X₁T_EX and LuaT_EX, by the following reasons:

- (plain format) luatex-unicode-letters.tex is based on old unicode-letters.tex.
- The latter half of unicode-letters.tex and unicode-letters.def sets\catcode of several characters to 11, via setting \XeTeXcharclass. However, this latter half does not exist (plain case), or not executed (MTEX case) in LuaTEX.

In other words,

- **plain LuaT_EX** Kanji nor kana characters cannot be used in a control word, in the default setting of plain LuaT_EX.
- Lual^AT_EX In recent (2015-10-01 or later) Lual^AT_EX, Kanji and kana characters in a control word is supported (these catcode are 11), but not fullwidth alphanumerics and several other characters.

This would be inconvenient for pT_EX users to shifting to Lua T_EX -ja, since several control words containing Kanji or other fullwidth characters, such as \西暦 or \1年目西暦 are used in pT_EX . Hence, Lua T_EX -ja have a counterpart of unicode-letters.tex for Lua T_EX , to match the \catcode setting with that of $X_{TE}X$.

5.3 Non-kanji characters in a control word

Because the engine differ, so non-kanji JIS X 0208 characters which can be used in a control word differ in pT_EX, in upT_EX, and in LuaT_EX-ja. Table 9 shows the difference. Except for four characters "•", "[°]", "[°], "[°]", "[°], "[°], "[°]</sup>, "[°], "

Difference becomes larger, if we consider non-kanji JIS X 0213 characters. For the detail, see https://github.com/h-kitagawa/kct.

 $^{^{7}}$ upT_EX divides U+FF00–U+FFEF (Halfwidth and Fullwidth Forms) into three subblocks, and \kcatcode can be set by a subblock.

Table 8. \kcatcode in upT_FX

\kcatcode	meaning	control word	widow penalty	linebreak
15	non-cjk	(tre	eated as usual LAT _E X)	
16	kanji	Y	Y	ignored
17	kana	Y	Y	ignored
18	other	Ν	Ν	ignored
19	hangul	Y	Y	space

Table 9. Difference of the set of non-kanji JIS X 0208 characters which can be used in a control word

	row	col.	pT _E X	upT _E X	LuaT _E X-ja	-		row	col.	pT _E X	upT _E X	LuaT _E X-ja
• (U+30FB)	1	6	Ν	Y	Ν	_	(U+FF5C)	1	35	Ν	Ν	Y
о́ (U+309В)	1	11	Ν	Y	Ν		+ (U+FF0B)	1	60	Ν	Ν	Y
° (U+309C)	1	12	Ν	Y	Ν		= (U+FF1D)	1	65	Ν	Ν	Y
) (U+FF40)	1	14	Ν	Ν	Y		\leq (U+FF1C)	1	67	Ν	Ν	Y
^ (U+FF3E)	1	16	Ν	Ν	Y		\geq (U+FF1E)	1	68	Ν	Ν	Y
(U+FFE3)	1	17	Ν	Ν	Y		# (U+FF03)	1	84	Ν	Ν	Y
(U+FF3F)	1	18	Ν	Ν	Y		& (U+FF06)	1	85	Ν	Ν	Y
// (U+3003)	1	23	Ν	Ν	Y		★ (U+FF0A)	1	86	Ν	Ν	Y
仝 (U+4EDD)	1	24	Ν	Y	Y		@ (U+FF20)	1	87	Ν	Ν	Y
々 (U+3005)	1	25	Ν	Ν	Y		〒 (U+3012)	2	9	Ν	Ν	Y
📈 (U+3006)	1	26	Ν	Ν	Y		— (U+3013)	2	14	Ν	Ν	Y
(U+3007)	1	27	Ν	Ν	Y		つ (U+FFE2)	2	44	Ν	Ν	Y
— (U+30FC)	1	28	Ν	Y	Y		Å (U+212B)	2	82	Ν	Ν	Y
(U+FF0F)	1	31	Ν	Ν	Y		Greek lette	rs (row	6)	Y	Ν	Y
📉 (U+FF3C)	1	32	Ν	Ν	Y		Cyrillic lette	ers (row	7)	Ν	Ν	Y

6 Directions

LuaT_EX supports four Ω -style directions: TLT, TRT, RTT and LTL. However, neither directions are not wellsuited for typesetting Japanese vertically, hence we implemented vertical writing by rotating TLT-box by 90 degrees.

LuaT_EX-ja supports four directions, as shown in Table 10. The second column (*yoko* direction) is just horizontal writing, and the third column (*tate* direction) is vertical writing. The fourth column (*dtou* direction) is actually a hidden feature of pT_EX . We implemented this for debugging purpose. The fifth column (*utod* direction) corresponds the "tate (math) direction" of pT_EX .

Directions can be changed by \yoko, \tate, \dtou, \utod, only when the current list is null. These commands cannot be executed in unrestricted horizontal modes, nor math modes. The direction of a math formula is changed to *utod*, when the direction outside the math formula is *tate* (vertical writing).

6.1 Boxes in different direction

As in pTEX, one can use boxes of different direction in one document. The below is an example.

	horizontal (<i>yoko</i> direction)	vertical (tate direction)	dtou direction	utod direction
Commands	\yoko	\tate	\dtou	\utod
Beginning of the page	Тор	Right	Left	Right
Beginning of the line	Left	Тор	Bottom	Тор
Used Japanese font	horizontal (\jfont)	vertical (\tfont)	horizontal	(90° rotated)
Example	↓ 銀は、Ag→ ⊻	* 銀は、Ag *	★ 	* 銀は、Ag→
(Notation used in Ω)	TLT	RTR, RTT	LBL	RTR

Table 11 shows how a box is arranged when the direction inside the box and that outside the box differ.

■\wd and direction In pT_FX, \wd, \ht, \dp means the dimensions of a box register with respact to the *current direction*. This means that the value of \wd0 etc. might differ when the current direction is different, even if \box0 stores the same box. However, this no longer applies in LuaT_FX-ja.

1 \setbox0=\hbox to 20pt{foo}

<pre>1 \setbox0=\hbox to 20pt{foo}</pre>	1
<pre>2 \the\wd0,~\hbox{\tate\vrule\the\wd0}</pre>	00
3 \wd0=100pt	20.0pt, pt 100.0pt, pt
<pre>4 \the\wd0,~\hbox{\tate \the\wd0}</pre>	20.0pt, + 100.0pt, +

To access box dimensions with respect to current direction, one have to use the following commands instead of \wd wtc.

ltjgetwd(num), ltjgetht(num), ltjgetdp(num)

These commands return an internal dimension of box(num) with respect to the current direction. One can use these in \dimexpr primitive, as the followings.

YOKO

よこぐみ

9.6222pt, 19.24438pt, 19.24438pt.

38.48877pt,

8.46753pt,

1.15466pt.

38.48877pt, 0.0pt.

DTOU 9.6222pt

TATI

\dimexpr 2\ltjgetwd42-3pt\relax, \the\ltjgetwd1701

The following is an example.

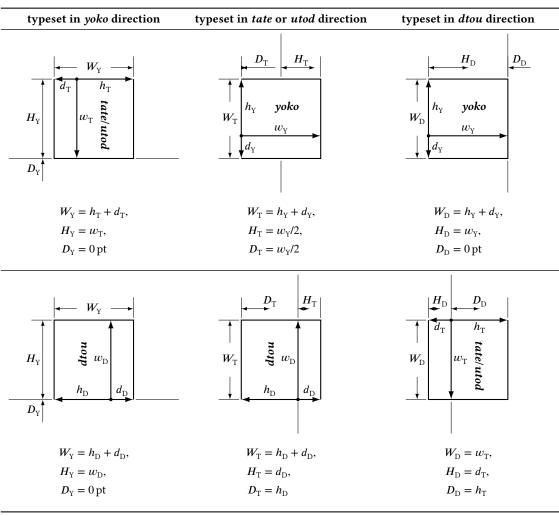
1 \parindent0pt

- 2 \setbox32767=\hbox{\yoko よこぐみ}
- 3 \fboxsep=0mm\fbox{\copy32767}
- 4 \vbox{\hsize=20mm
- 5 \yoko YOKO \the\ltjgetwd32767, \\
- \the\ltjgetht32767, \\ \the\ltjgetdp32767.}
- vbox{\hsize=20mm\raggedleft
- s \tate TATE \the\ltjgetwd32767, \\
- \the\ltjgetht32767, \\ \the\ltjgetdp32767.}

```
10 \vbox{\hsize=20mm\raggedleft
```

- 11 \dtou DTOU \the\ltjgetwd32767, \\
- \the\ltjgetht32767, \\ \the\ltjgetdp32767.} 12

ltjsetwd(num) = (dimen), ltjsetht(num) = (dimen), ltjsetdp(num) = (dimen)


These commands set the dimension of $\log \langle num \rangle$. One does not need to group the argument $\langle num \rangle$; four calls of \ltjsetwd below have the same meaning.

\ltjsetwd42 20pt, \ltjsetwd42=20pt, \ltjsetwd=42 20pt, \ltjsetwd=42=20pt

6.2 Getting current direction

The direction parameter returns the current direction, and the boxdir parameter (with the argument $\langle num \rangle$) returns the direction of a box register \box(*num*). The returned value of these parameters are a *string*:

Table 11. Boxes in different direction

		Direction	yoko	tate	dtou	utod	(empty)	
		Returned value	4	3	1	11	0	
2 3	<pre>\leavevmode\def\DIR{\lt \hbox{\yoko \DIR}, \hbo \hbox{\dtou\DIR}, \hbox \hbox{\dtou\DIR}, \hbox \tate\$\hbox{tate</pre>	x{\tate\DIR}, {\utod\DIR},	ection}	}				tate math:
5 6	\setbox2=\hbox{\tate}\1	tjgetparameter{box	xdir}{2	}			4, ω, ⊶ 3	, 11, 11

6.3 Overridden box primitives

To cope with multiple directions, the following primitives are overridden by LuaTeX-ja, using <code>\protected\def</code>.

 $\number \langle num \rangle$, $\number \langle n$

 $\operatorname{vadjust}(\operatorname{material})$

```
\lastbox
```

 $\ \langle dimen \rangle \langle box \rangle, \ \langle dimen \rangle \langle box \rangle etc., \ vcenter$

\vcenter

```
1 \ltjsetparameter{differentjfm=both}
2 \jfont\F=HaranoAjiMincho-Regular:jfm=ujis
3 \jfont\G=HaranoAjiGothic-Medium:jfm=ujis;
4 \jfont\H=HaranoAjiGothic-Medium:jfm=ujis;jfmvar=hoge
5 \F ) {\G [] } (% halfwidth space
6 ) {\H [] } (% fullwidth space
7
8 (£!f, {\G [[&!f]] } ((&!f) \par
9 (£!f, {\H [[&!f]] } ((&!f) % pTeX-like
10
```

```
)【】() 『』(
ほげ,「ほげ」(ほげ)
ほげ, 「ほげ」(ほげ)
```

Figure 1. Example of jfmvar key

7 Font Metric and Japanese Font

7.1 \jfont

To load a font as a Japanese font (for horizontal direction), you must use the jfont instead of font, while jfont admits the same syntax used in font. LuaTEX-ja automatically loads luaotfload package, so TrueType/OpenType fonts with features can be used for Japanese fonts:

1 \jfont\tradmc={IPAexMincho:script=latn;%

11 \ltjsetparameter{differentjfm=paverage}

2 +trad;-kern;jfm=ujis} at 14pt

₃ \tradmc 当/体/医/区

當/體/醫/區

It is required to specify a (horizontal) *JFM* in at each calling of \jfont. A JFM is a Lua script which contains measurements of characters and glues/kerns that are automatically inserted for Japanese typesetting. The structure of JFM will be described in the next subsection.

Note that the defined control sequence (\tradmc in the example above) using \jfont is not a $font_def$ token, but a macro. Hence the input like \fontname\tradmc causes a error. We denote control sequences which are defined in \jfont by $\langle jfont_cs \rangle$.

Specifying JFM The general scheme for specifying a JFM is the following:

 $\label{eq:linear_space} \label{eq:linear_space} \label{eq:linear_space_space} \label{eq:linear_space_space} \label{eq:linear_space_space} \label{eq:linear_space_space_space} \label{eq:linear_space_space_space_space_space} \label{eq:linear_space$

(JFM name) The name of a (horizontal) JFM. LuaT_FX-ja searches and loads jfm-(JFM name).lua.

(JFM features) An optional comma-separated list of JFM options. Enclosing braces ({}) are optional, but this does not escape any characters. The contents of this list can be accessed by a table luatexja.jfont.jfm_feature from a JFM, at its loading. See Figure 2 for an example.

Note that any JFM files which is shipped with LuaTEX-ja does not use this feature.

(identifier) An optional string.

LuaTeX-ja "does not distinguish" two Japanese fonts which uses same JFM and are the same size. Here "uses same JFM" means that all of $\langle JFM name \rangle$, $\langle JFM features \rangle$ and $\langle identifier \rangle$ of two fonts agree.

For example, The first ") " and " **[**" in Figure 1 are typeset in different real fonts. However, because they use the same JFMs and their size are same, LuaT_EX-ja inserts penalties, glues and kerns as if these two character are typeset in a same font. Namely, the glue between these characters is halfwidth, as in ") **[**". However, this does not applies with F and H in Figure 1, because their $\langle identifier \rangle$ are different.

Default horizontal JFMs The following horizontal JFMs are shipped with LuaT_EX-ja.

jfm-ujis.lua A standard horizontal JFM of LuaT_EX-ja. This file is based on upnmlminr-h.tfm, a metric for UTF/OTF package that is used in upT_EX. When you are going to use the luatexja-otf package, you should use this JFM.

\A: (nil)		\A	∖В	\C	\D
\B: [kana] = true, [kern] = "0.5", [ps] = false,	\A	あ漢イ字	あ漢 イ 字	あ漢 イ 字	あ漢 イ 字
\C: [kern] = "0.5", [down] = "0.2",	\B	あ 漢 イ字	あ 漢イ 字	あ漢イ字	あ漢イ字
\D: [kern] = "0.5", [down] = "0.2",	\C	あ 漢 イ字	あ 漢 イ 字	あ 漢イ 字	あ 漢イ 字
	\D	あ 漢 イ字	あ漢イ字	あ 漢イ 字	あ 漢イ 字

1 \small\ltjsetparameter{differentjfm=both}\tabcolsep=.5\zw

2 % \printjfmfeat is defined in the source of this document 3 \jfont\A=HaranoAjiMincho-Regular:jfm=testf at 9pt \printjfmfeat\A

4 \jfont\B=HaranoAjiMincho-Bold:jfm=testf/kern=0.5,-ps,+kana at 9pt \printjfmfeat\B

5 \jfont\C=HaranoAjiGothic-Regular:jfm=testf/kern=0.5,down=0.2 at 9pt \printjfmfeat\C

- 6 \jfont\D=HaranoAjiGothic=Bold:jfm=testf/down=0.2,kern=0.5 at 9pt \printjfmfeat\D
- / \def\TEST#1{\string#1&{#1あ漢}{\A イ字}&{#1あ漢}{\B イ字}&{#1あ漢}{\C イ字}&{#1あ漢}{\D イ字}}
- % \vspace{-4\baselineskip}\hfill\ttfamily
- 9 \begin{tabular}{11111}

```
10 &\string\A&\string\B&\string\C&\string\D\\\TEST\A\\\TEST\B\\\TEST\C\\\TEST\D\\
```

11 \end{tabular}

- 12 % No space between `` \ddot{Z} '' and `` τ '' iff two Japanese fonts uses same JFM
- 13 \ltjsetparameter{differentjfm=paverage}

Figure 2. Example of JFM features

Table 12. Differences between horizontal JFMs shipped with LuaTEX-ja

- jfm-jis.lua A counterpart for jis.tfm, "JIS font metric" which is widely used in pTEX. A major difference between jfm-ujis.lua and this jfm-jis.lua is that most characters under jfm-ujis.lua are square-shaped, while that under jfm-jis.lua are horizontal rectangles.
- jfm-min.lua A counterpart for min10.tfm, which is one of the default Japanese font metric shipped with pTpX.

The difference among these three JFMs is shown in Table 12.

Furthermore, LuaTEX-ja also ship two JFMs, namely jfm-prop.lua and jfm-propw.lua, for "proportional typesetting". Both JFMs don't have any character width information, nor glues/kerns information. jfm-prop.lua also also not have character height and depth information, while jfm-propw.lua has them.

■Using kerning information in a font Some fonts have information for inter-glyph spacing. LuaT_EXja 20140324.0 or later treats kerning spaces like an italic correction; any glue and/or kern from the JFM and a kerning space can coexist. See Figure 3 for detail.

Note that in \setmainjfont etc. which are provided by luatexja-fontspec package, kerning option is set *off* (Kerning=Off) by default, because of the compatibility with previous versions of LuaT_EX-ja.

Extend and slant The following setting can be specified as OpenType font features:

extend= $\langle extend \rangle$ expand the font horizontally by $\langle extend \rangle$.

ダイナミックダイクマ ダイナミックダイクマ ダイナミックダイクマ ダイナミックダイクマ ダイナミックダイクマ ダイナミックダイクマ ダイナミックダイクマ ダイナミックダイクマ

あ 「い」 う, あ「い」う, え

お

お

1 \newcommand\test{\vrule ダイナミックダイクマ\vrule\\}

2 \jfont\KMFW = HaranoAjiMincho-Regular:jfm=prop;-kern at 17.28pt

3 \jfont\KMFK = HaranoAjiMincho-Regular:jfm=prop at 17.28pt % kern is activated

4 \jfont\KMPW = HaranoAjiMincho-Regular:jfm=prop;script=dflt;+palt;-kern at 17.28pt

s \jfont\KMPK = HaranoAjiMincho-Regular:jfm=prop;script=dflt;+palt;+kern at 17.28pt

- 6 \begin{multicols}{2}
- 7 \ltjsetparameter{kanjiskip=0pt}
- 8 {\KMFW\test \KMFK\test \KMPW\test \KMPK\test}
- 10 \ltjsetparameter{kanjiskip=3pt}
- 11 {\KMFW\test \KMFK\test \KMPW\test \KMPK\test}
- 12 \end{multicols}

Figure 3. Kerning information and kanjiskip

1 \leavevmode

- 2 \ltjsetparameter{kanjiskip=0pt plus 3\zw}
- ₃ \vrule\hbox to 15\zw{あ「い」う,えお}\vrule\\
- 4 \jfont\G=HaranoAjiMincho-Regular%
- :jfm=ujis;-ltjksp at \zw
- 6 \G\leavevmode%
- $_7$ \vrule\hbox to 15\zw{ δ [\cup] ∂ , λ ; λ } \vrule

Figure 4. ltjksp 'feature"

slant=(slant) slant the font.

Note that LuaTFX-ja doesn't adjust JFMs by these extend and slant settings; one have to write new JFMs on purpose. For example, the following example uses the standard JFM jfm-ujis.lua, hence the letterspacing and the width of italic corrections are not correct:

i \jfont\E=HaranoAjiMincho-Regular:extend=1.5;jfm=ujis;-kern

2 \jfont\S=HaranoAjiMincho-Regular:slant=1;jfm=ujis;-kern

₃ \E あいうえお \S あいう\/ABC

Itjksp "feature" kanjiskip_natural, kanjiskip_stretch, kanjiskip_shrink keys (Page ??) makes tha LuaTFX-ja inserts not only a glue which is specified by a JFM, and also the natural width/stretch part/shrink part of kanjiskip. This functionality is disabled by -ltjksp specification, as shown in Figure 4.

7.2 \tfont

\tfont loads a font as a Japanese font for vertical direction. This command admits the same syntax as in \font and \jfont. A font defined by \tfont differs the following points from that by \jfont:

• OpenType Feature vrt2⁸ is automatically activated, unless vert and//or vrt2 features are explicitly activated or deactivated (as the second line in the example below).

あいうえおあい JABC

⁸If the font does not define the vrt2 feature, vert is used instead.

1 \jfont\X=[HaranoAjiMincho-Regular.otf]:jfm=ujis

2 \tfont\U=[HaranoAjiMincho-Regular.otf]:jfm=ujisv

- 3 \tfont\V=[HaranoAjiMincho-Regular.otf]:jfm=ujisv;jpotf
- 4 \def\TEST#1#2{\leavevmode\hbox{#1#2\string#2 "引用,と句読点."}}
- 5 \ttfamily\centering\TEST\yoko\X \quad \TEST\tate\U \quad \TEST\tate\V

Figure 5. jpotf "feature"

\tfont\S=HaranoAjiMincho-Regular:jfm=ujisv % vrt2 is automatically activated
\tfont\T=HaranoAjiMincho-Regular:jfm=ujisv;-vert % vert and vrt2 are not activated
\tfont\U=file:ipaexm.ttf:jfm=ujisv
 % vert is automatically activated, since this font does not have vrt2

Sometimes vert and/or vrt2 are not activated while one specified activation of these feature. This
is because the font does not define these features in current combination of script tag and language system identifier.

In this situation, LuaT_EX-ja performs all replacements which is defined in vert feature for *some* scripts for *some* languages.

- Furthermore, a glyph is automatically rotated 90 degrees, if it is not replaced by vert feature for *any* script for *any* language, and if it is marked as 'r" or "Tr" in UAX #50.
- \tfont uses a vertical JFM instead of a horizontal JFM. LuaTFX-ja ships following vertical JFMs:
 - jfm-ujisv.lua A standard vertical JFM in LuaT_EX-ja. This JFM is based on upnmlminr-v.tfm, a metric for UTF/OTF package that is used in upT_EX.
 - jfm-tmin.lua A counterpart for tmin10.tfm, which is one of the default Japanese font metric shipped with pTFX.
- If vert and/or vrt2 features are activated, one can specify jpotf to additional substitutions. By default, it substitutes ideographic comma/period for fullwidth comma/period, and double prime quotation marks for double quotation marks (See Figure 5). One can customize substitutions by lua function luatexja.jfont.register_vert_replace (see Japanese version of this manual).

7.3 Default Japanese fonts and JFMs

If following commands are defined at loading LuaT_EX-ja package, these change default Japanese fonts and JFMs for them:

\ltj@stdmcfont The default Japanese font for the mincho family.

\ltj@stdgtfont The default Japanese font for the gothic family.

\ltj@stdyokojfm The default JFM for horizontal direction.

\ltj@stdtatejfm The default JFM for vertical direction.

For example,

\def\ltj@stdmcfont{IPAMincho}
\def\ltj@stdgtfont{IPAGothic}

makes that IPA Mincho and IPA Gothic will be used as default Japanese fonts, instead of Harano Aji fonts.

This feature is intended for classes which use special JFMs ⁹. It is recommended to use \luatexja-preset or \luatexja-fontspec package to select standard fonts in ordinary LATEX sources.

For compatibility with earlier versions, LuaT_EX-ja reads luatexja.cfg automatically if it is found by LuaT_EX. One should not overuse this luatexja.cfg; it will overwrite the definition of ltj@stdmcfont and others.

7.4 Prefix psft

Besides "file" and "name" prefixes which are introduced in the luaotfload package, LuaT_EX-ja adds "psft" prefix in \jfont (and \font), to specify a "name-only" Japanese font which will not be embedded to PDF. Note that these non-embedded fonts under current LuaT_EX has Identity-H encoding, and this violates the standard ISO32000-1:2008 ([10]).

OpenType font features, such as "+jp90", have no meaning in name-only fonts using "psft" prefix, because we can't expect what fonts are actually used by the PDF reader. Note that extend and slant settings (see above) are supported with psft prefix, because they are only simple linear transformations.

Cid key The default font defined by using psft prefix is for Japanese typesetting; it is Adobe-Japan1-7 CID-keyed font. One can specify cid key to use other CID-keyed non-embedded fonts for Chinese or Korean typesetting.

```
1 \jfont\testJ={psft:Ryumin-Light:cid=Adobe-Japan1-7;jfm=jis} % Japanese
2 \jfont\testD={psft:Ryumin-Light:jfm=jis} % default: Adobe-Japan1-7
3 \jfont\testC={psft:AdobeMingStd-Light:cid=Adobe-CNS1-7;jfm=jis}% Traditional Chinese
4 \jfont\testG={psft:SimSun:cid=Adobe-GB1-5;jfm=jis} % Simplified Chinese
5 \jfont\testK={psft:Batang:cid=Adobe-Korea1-2;jfm=jis} % Korean
6 \jfont\testKR={psft:SourceHanSerifAKR9:cid=Adobe-KR-9;jfm=jis} % Korean
```

Note that the code above specifies jfm-jis.lua, which is for Japanese fonts, as JFM for Chinese and Korean fonts.

At present, LuaTEX-ja supports only 5 values written in the sample code above. Specifying other values, e.g.,

\jfont\test={psft:Ryumin-Light:cid=Adobe-Japan2;jfm=jis}

produces the following error:

7.5 Structure of a JFM file

A JFM file is a Lua script which has only one function call:

luatexja.jfont.define_jfm { ... }

⁹This is because commands has **Q** in their names.

Direction of JFM	'yoko' (horizontal)	'tate' (vertical)
width field	the width of the '	ʻreal" glyph
height field	the height of the "real" glyp	h 0.0
depth field	the depth of the "real" glyph	n 0.0
italic field	0.0	

Table 13. Default values of width field and other fields

Real data are stored in the table which indicated above by $\{ \dots \}$. So, the rest of this subsection are devoted to describe the structure of this table. Note that all lengths in a JFM file are floating-point numbers in design-size unit.

version=(version) (optional, default value is 1)

The version JFM. Currently 1, 2, and, 3 are supported

dir=(*direction*) (required)

The direction of JFM. 'yoko' (horizontal) or 'tate' (vertical) are supported.

 $zw = \langle length \rangle$ (required)

The amount of the length of the "full-width".

 $zh=\langle length \rangle$ (required)

The amount of the "full-height" (height + depth).

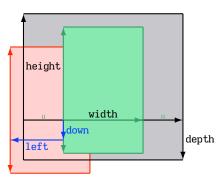
kanjiskip={(natural), (stretch), (shrink)} (optional)

This field specifies the "ideal" amount of <u>kanjiskip</u>. As noted in Subsection 4.2, if the parameter <u>kanjiskip</u> is \max is \max immediate in this field is actually used (if this field is not specified in JFM, it is regarded as 0 pt). Note that $\langle stretch \rangle$ and $\langle shrink \rangle$ fields are in design-size unit too.

xkanjiskip={(natural), (stretch), (shrink)} (optional)

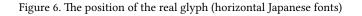
Like the kanjiskip field, this field specifies the "ideal" amount of xkanjiskip.

Character classes Besides from above fields, a JFM file have several sub-tables those indices are natural numbers. The table indexed by $i \in \omega$ stores information of *character class i*. At least, the character class 0 is always present, so each JFM file must have a sub-table whose index is [0]. Each sub-table (its numerical index is denoted by *i*) has the following fields:


chars={(*character*), ...} (required except character class 0)

This field is a list of characters which are in this character type *i*. This field is optional if i = 0, since all **JAchar** which do not belong any character classes other than 0 are in the character class 0 (hence, the character class 0 contains most of **JAchar**s). In the list, character(s) can be specified in the following form:

- a Unicode code point
- ・ the character itself (as a Lua string, like 'あ')
- ・ a string like 'あ*' (the character followed by an asterisk)
- several "imaginary" characters (We will describe these later.)


width= $\langle length \rangle$, height= $\langle length \rangle$, depth= $\langle length \rangle$, italic= $\langle length \rangle$ (required)

Specify the width of characters in character class i, the height, the depth and the amount of italic correction. All characters in character class i are regarded that its width, height, and depth are as values of these fields. The default values are shown in Table 13.

Consider a Japanese character node which belongs to a character class whose the align field is 'middle'.

- The black rectangle is the imaginary body of the node. Its width, height, and depth are specified by JFM.
- Since the align field is 'middle', the "real" glyph is centered horizontally (the green rectangle) first.
- Furthermore, the glyph is shifted according to values of fields left and down. The ultimate position of the real glyph is indicated by the red rectangle.

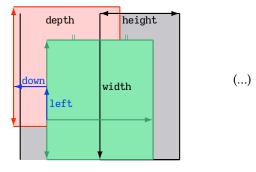


Figure 7. The position of the real glyph (vertical Japanese fonts)

left= $\langle length \rangle$, down= $\langle length \rangle$, align= $\langle align \rangle$

These fields are for adjusting the position of the "real" glyph. Legal values of align field are 'left', 'middle', and 'right'. If one of these 3 fields are omitted, left and down are treated as 0, and align field is treated as 'left'. The effects of these 3 fields are indicated in Figure 6 and Figure 7.

In most cases, left and down fields are 0, while it is not uncommon that the align field is 'middle' or 'right'. For example, setting the align field to 'right' is practically needed when the current character class is the class for opening delimiters'.

kern={[j]= $\langle kern \rangle$, [j']={ $\langle kern \rangle$, [ratio= $\langle ratio \rangle$]}, ...}

glue={[j]={ $\langle width \rangle$, $\langle stretch \rangle$, $\langle shrink \rangle$, [ratio= $\langle ratio \rangle$, ...]}, ...}

Specifies the amount of kern or glue which will be inserted between characters in character class *i* and those in character class *j*.

 $\langle ratio \rangle$ specifies how much the glue is originated in the "right" character. It is a real number between 0 and 1, and treated as 0.5 if omitted. For example, The width of a glue between an ideographic full stop " $_{\circ}$ " and a fullwidth middle dot " \cdot " is three-fourth of fullwidth, namely halfwidth from the ideographic full stop, and quarter-width from the fullwidth middle dot. In this case, we specify $\langle ratio \rangle$ to 0.25/(0.5 + 0.25) = 1/3.

In case of glue, one can specify following additional keys in each [*j*] subtable:

<pri>priority=(priority) An integer in [-4, 3] (treated as 0 if omitted), or a pair of these integers {(stretch), (shrink)} (version 2 or later). This is used only in line adjustment with priority by luatexja-adjust (see Subsection 12.3). Higher value means the glue is easy to stretch, and is also easy to shrink.

kanjiskip_natural= $\langle num \rangle$, kanjiskip_stretch= $\langle num \rangle$, kanjiskip_shrink= $\langle num \rangle$

These keys specifies the amount of the natural width of <u>kanjiskip</u> (the stretch/shrink part, respectively) which will be inserted in addition to the original JFM glue. Default values of them are all 0.

As an example, in jfm-ujis.lua, the standard JFM in horizontal writing, we have

- Between an ordinal letter "あ" and an ideographic opening bracket, we have a glue whose natural part and shrink part are both half-width, while its stretch part is zero. However, this glue also can be stretched as much as the stretch part of <u>kanjiskip</u> times the value of kanjiskip_stretch key (1 in this case).
- Between an ideographic closeing brackets (the ideographic comma ", " is included) and an ordinal letter, we have the same glue. Again, this glue also can be stretched as much as the stretch part of kanjiskip times the value of kanjiskip_stretch key (1 in this case).
- Between an ideographic opening bracket and an ordinal letter and between an ordinal letter and an ideographic closing bracket, we have a glue whose natural part and stretch part are both zero, while its shrink part as much as the shrink part of <u>kanjiskip</u>.

え

お

Hence we have the following result:

```
1 \leavevmode
2 \ltjsetparameter{kanjiskip=0pt plus 3\zw}
3 \vrule\hbox to 15\zw{あ「い」う,えお}\vrule
4 |あ「い」う,えお|
5 \vrule\hbox{あ「い」う,えお}\vrule\par
6 \ltjsetparameter{kanjiskip=0pt minus \zw}
7 \vrule\hbox to 6.5\zw{あ「い」う,えお}\vrule
```

end_stretch= $\langle kern \rangle$, end_shrink= $\langle kern \rangle$ (optional, version 1 only)

end_adjust={ $\langle kern \rangle$, $\langle kern \rangle$, ...} (optional, version 2 or later)

round_threshold=(*float*) (optional, version 3 or later, only available in character class 0)

Character to character classes We explain how the character class of a character is determined, using jfm-test.lua which contains the following:

```
[0] = {
    chars = { '漢' },
    align = 'left', left = 0.0, down = 0.0,
    width = 1.0, height = 0.88, depth = 0.12, italic=0.0,
},
[2000] = {
    chars = { 'o ', 't' },
    align = 'left', left = 0.0, down = 0.0,
    width = 0.5, height = 0.88, depth = 0.12, italic=0.0,
},
```

Now consider the following input/output:

1 \jfont\a=IPAexMincho:jfm=test;+hwid 15.0pt 2 \setbox0\hbox{\a ヒ漢}\the\wd0

Now we look why the above source outputs 15 pt.

- 1. The character " <code>L</code>" is converted to its half width form "<code>L</code>" by hwid feature.
- 2. According to the JFM, the character class of "t" is 2000, hence its width is halfwidth.
- 3. The character class of "漢" is zero, hence its width is fullwidth.
- 4. Hence the width of \hbox equals to 15 pt.

This example shows that the character class of a character is generally determined *after applying font features by luaotfload*.

However, if the class determined by the glyph after application of features is zero, LuaT_EX-ja adopts the class determined by the glyph *before* application of features. The following input is an example.

^{1 \}jfont\a=HaranoAjiMincho-Regular:jfm=test;+vert

^{2 \}a 漢。\inhibitglue 漢

Japanese fonts	alphabetic fonts
\jfam ∈ [0,256)	\fam
$jatextfont = \{\langle jfam \rangle, \langle jfont_cs \rangle\}$	$textfont(fam) = (font_cs)$
<pre>jascriptfont ={ (jfam), (jfont_cs) }</pre>	$\operatorname{scriptfont}(fam) = \langle font_cs \rangle$
<pre>jascriptscriptfont ={(jfam), (jfont_cs)}</pre>	$\verb scriptscriptfont (fam)=(font_cs) $

Here, the character class of the ideographic full stop \circ_{\circ} " (U+3002) is determined as follows:

- 1. As the case of " \succeq ", the ideographic full stop " $_{\circ}$ " is converted to its vertical form " $^{\circ}$ " (U+FE12) by vert feature.
- 2. The character class of "°", according to the JFM is zero.
- 3. However, LuaT_EX-ja remembers that this "[°]" is obtained from "_°" by font features. The character class of "_°" is *non-zero value*, namely, 2000.
- 4. Hence the ideographic full stop \circ_{\circ} " in above belongs the character class 2000.

■Imaginary characters As described before, one can specify several "imaginary characters" in chars field. The most of these characters are regarded as the characters of class 0 in pT_EX. As a result, LuaT_EX-ja can control typesetting finer than pT_EX. The following is the list of imaginary characters:

'boxbdd'

The beginning/ending of a hbox, and the beginning of a noindented (i.e., began by \noindent) paragraph. If a hbox *b* begins (resp. ends) a glue or kern between this "charater" and a **JAchar**, **JAglue** won't be inserted before(resp. after) the hbox *b*. kanjiskip and xkanjiskip around a hbox.

'parbdd'

The beginning of an (indented) paragraph.

'jcharbdd'

A boundary between JAchar and anything else.

'alchar', 'nox_alchar'

(version 3 or later) A boundary between JAchar and ALchar.

'glue'

(version 3 or later) A boundary between JAchar, and, a glue or kern.

-1 The left/right boundary of an inline math formula.

Porting JFM from pT_EX See Japanese version of this manual.

7.6 Math font family

 T_{EX} handles fonts in math formulas by 16 font families¹⁰, and each family has three fonts: \textfont, \scriptfont and \scriptscriptfont.

LuaT_EX-ja's handling of Japanese fonts in math formulas is similar; Table 14 shows counterparts to T_EX's primitives for math font families. There is no relation between the value of fam and that of jfam; with appropriate settings, one can set both fam and jfam to the same value. Here $(jfont_cs)$ in the argument of jatextfont etc. is a control sequence which is defined by jfont, i.e., a *horizontal* Japanese font.

 $^{^{10}}$ Omega, Aleph, LuaTEX and ϵ (u)pTEX can handles 256 families, but an external package is needed to support this in plain TEX and &TEX.

7.7 Callbacks

LuaT_EX-ja also has several callbacks. These callbacks can be accessed via luatexbase.add_to_callback function and so on, as other callbacks.

luatexja.load_jfm callback

With this callback, one can overwrite JFMs. This callback is called when a new JFM is loaded.

```
1 function ( jfm_info, <string> jfm_name)
2 return  new_jfm_info
3 end
```

The argument jfm_info contains a table similar to the table in a JFM file, except this argument has chars field which contains character codes whose character class is not 0.

An example of this callback is the ltjarticle class, with forcefully assigning character class 0 to 'parbdd' in the JFM jfm-min.lua.

luatexja.define_jfont callback

This callback and the next callback form a pair, and you can assign characters which do not have fixed code points in Unicode to non-zero character classes. This luatexja.define_font callback is called just when new Japanese font is loaded.

```
1 function ( jfont_info, <number> font_number)
```

```
2 return  new_jfont_info
```

3 end

jfont_info has the following fields, which may not overwritten by a user:

- **size** The font size specified at \jfont in scaled points ($1 \text{ sp} = 2^{-16} \text{ pt}$).
- zw, zh, kanjiskip, xkanjiskip These are scaled value of those specified by the JFM, by the font size.
- jfm The internal number of the JFM.
- var The value of jfmvar key, which is specified at \jfont. The default value is the empty string.
- **chars** The mapping table from character codes to its character classes. The specification [i].chars={*character*, ...} in the JFM will be stored in this field as

chars= $\{[character\rangle]=i, \ldots\}$.

- **char_type** For $i \in \omega$, char_type[i] is information of characters whose class is *i*, and has the following fields:
 - width, height, depth, italic, down, left are just scaled value of those specified by the JFM, by the font size.
 - align is a number which is determined from align field in the JFM:

 $\begin{cases} 1 & (\texttt{'right' in JFM}), \\ 0.5 & (\texttt{'middle' in JFM}), \\ 0 & (otherwise). \end{cases}$

For $i, j \in \omega$, char_type[i][j] stores a kern or a glue which will be inserted between character class *i* and class *j*.

The returned table new_jfont_info also should include these fields, but you are free to add more fields (to use them in the luatexja.find_char_class callback). The font_number is a font number.

A good example of this and the next callbacks is the luatexja-otf package, supporting "AJ1-xxx" form for Adobe-Japan1 CID characters in a JFM. This callback doesn't replace any code of LuaT_EX-ja.

luatexja.find_char_class callback

This callback is called just when LuaT_EX-ja is trying to determine which character class a character chr_code belongs. A function used in this callback should be in the following form:

```
1 function (<number> char_class,  jfont_info, <number> chr_code)
2 if char_class~=0 then return char_class
3 else
4 ....
5 return (<number> new_char_class or 0)
6 end
7 end
7
```

The argument char_class is the result of LuaTEX-ja's default routine or previous function calls in this callback, hence this argument may not be 0. Moreover, the returned new_char_class should be as same as char_class when char_class is not 0, otherwise you will overwrite the LuaTEX-ja's default routine.

luatexja.set_width callback

This callback is called when LuaT_EX-ja is trying to encapsule a **JAchar** *glyph_node*, to adjust its dimension and position.

```
1 function ( shift_info,  jfont_info,  char_type)
```

3 end

The argument shift_info and the returned new_shift_info have down and left fields, which are the amount of shifting down/left the character in a scaled point.

A good example is test/valign.lua. After loading this file, the vertical position of glyphs is automatically adjusted; the ratio (height : depth) of glyphs is adjusted to be that of letters in the character class 0. For example, suppose that

- The setting of the JFM: (height) = 88x, (depth) = 12x (the standard values of Japanese Open-Type fonts);
- The value of the real font: (height) = 28y, (depth) = 5y (the standard values of Japanese TrueType fonts).

Then, the position of glyphs is shifted up by

$$\frac{88x}{88x+12x}(28y+5y) - 28y = \frac{26}{25}y = 1.04y.$$

8 Parameters

8.1 \ltjsetparameter

As described before, \ltjsetparameter and \ltjgetparameter are commands for accessing most parameters of LuaTEX-ja. One of the main reason that LuaTEX-ja didn't adopted the syntax similar to that of pTEX (*e.g.*, \prebreakpenalty`) =10000) is the position of hpack_filter callback in the source of LuaTEX, see Section 13.

\ltjsetparameter and \ltjglobalsetparameter are commands for assigning parameters. These take one argument which is a key-value list. The difference between these two commands is the scope of assignment; \ltjsetparameter does a local assignment and \ltjglobalsetparameter does a global one by default. They also obey the value of \globaldefs, like other assignments.

The following is the list of parameters which can be specified by the \ltjsetparameter command. [\cs] indicates the counterpart in pT_EX, and symbols beside each parameter has the following meaning:

- "*" : values at the end of a paragraph or a hbox are adopted in the whole paragraph or the whole hbox.
- "†": assignments are always global.

 $jcharwidowpenalty = \langle penalty \rangle^* [\jcharwidowpenalty]$

Penalty value for suppressing orphans. This penalty is inserted just after the last **JAchar** which is not regarded as a (Japanese) punctuation mark.

² return new_shift_info

kcatcode ={(chr_code), (natural number)}*

An additional attributes which each character whose character code is $\langle chr_code \rangle$ has. At version 20120506.0 or later, the lowermost bit of $\langle natural number \rangle$ indicates whether the character is considered as a punctuation mark (see the description of jcharwidowpenalty above).

<u>prebreakpenalty</u> ={ $\langle chr_code \rangle$, $\langle penalty \rangle$ }* [\prebreakpenalty]

Set a penalty which is inserted automatically before the character $\langle chr_code \rangle$, to prevent a line starts from this character. For example, a line cannot started with one of closing brackets "] ", so LuaT_EX-ja sets

\ltjsetparameter{prebreakpenalty={`],10000}}

by default.

pTEX has following restrictions on \prebreakpenalty and \postbreakpenalty, but they don't exist in LuaTEX-ja:

- Both \prebreakpenalty and \postbreakpenalty cannot be set for the same character.
- We can set \prebreakpenalty and \postbreakpenalty up to 256 characters.

 $postbreakpenalty = \{ \langle chr_code \rangle, \langle penalty \rangle \}^* [postbreakpenalty]$

Set a penalty which is inserted automatically after the character $\langle chr_code \rangle$, to prevent a line ends with this character.

<u>jatextfont</u> ={ $\langle jfam \rangle$, $\langle jfont_cs \rangle$ }* [\textfont in T_EX]

jascriptfont ={(jfam), (jfont_cs)}* [\scriptfont in TEX]

jascriptscriptfont ={(jfam), (jfont_cs)}* [\scriptscriptfont in T_EX]

yjabaselineshift = $\langle dimen \rangle$

yalbaselineshift =(dimen) [\ybaselineshift]

tjabaselineshift = $\langle dimen \rangle$

talbaselineshift = (dimen) [\tbaselineshift]

 $jaxspmode = \{ \langle chr_code \rangle, \langle mode \rangle \}^*$

Set whether inserting <u>xkanjiskip</u> is allowed before/after a **JAchar** whose character code is $\langle chr_code \rangle$. The followings are allowed for $\langle mode \rangle$:

0, **inhibit** Insertion of <u>xkanjiskip</u> is inhibited before the character, nor after the character.

1, **preonly** Insertion of <u>xkanjiskip</u> is allowed before the character, but not after.

2, **postonly** Insertion of <u>kkanjiskip</u> is allowed after the character, but not before.

3, **allow** Insertion of <u>xkanjiskip</u> is allowed both before the character and after the character. This is the default value.

This parameter is similar to the \inhibitxspcode primitive of pT_EX , but not compatible with \inhibitxspcode .

<u>alxspmode</u> = { $\langle chr_code \rangle$, $\langle mode \rangle$ }* [\xspcode]

Set whether inserting <u>xkanjiskip</u> is allowed before/after a **ALchar** whose character code is $\langle chr_code \rangle$. The followings are allowed for $\langle mode \rangle$:

0, **inhibit** Insertion of <u>xkanjiskip</u> is inhibited before the character, nor after the character.

1, **preonly** Insertion of <u>xkanjiskip</u> is allowed before the character, but not after.

2, **postonly** Insertion of **xkanjiskip** is allowed after the character, but not before.

3, **allow** Insertion of <u>xkanjiskip</u> is allowed before the character and after the character. This is the default value.

Note that parameters <u>jaxspmode</u> and <u>alxspmode</u> share a common table, hence these two parameters are synonyms of each other.

 $autospacing = \langle bool \rangle$ [\autospacing]

<u>autoxspacing = $\langle bool \rangle$ [\autoxspacing]</u>

kanjiskip = $\langle skip \rangle^*$ [\kanjiskip]

The default glue which inserted between two **JAchar**s. Changing current Japanese font does not alter this parameter, as pT_EX .

If the natural width of this parameter is \maxdimen, LuaT_EX-ja uses the value which is specified in the JFM for current Japanese font (See Subsection 7.5).

xkanjiskip = $\langle skip \rangle^*$ [\xkanjiskip]

The default glue which inserted between a **JAchar** and an **ALchar**. Changing current font does not alter this parameter, as pT_EX .

As <u>kanjiskip</u>, if the natural width of this parameter is \max uses the value which is specified in the JFM for current Japanese font (See Subsection 7.5).

 $\underline{\text{differentjfm}} = \langle mode \rangle^{\dagger}$

Specify how glues/kerns between two **JAchar**s whose JFM (or size) are different. The allowed arguments are the followings:

average, both, large, small, pleft, pright, paverage

The default value is paverage. ...

jacharrange = (ranges)

<u>kansujichar</u> ={ $\langle digit \rangle$, $\langle chr_code \rangle$ }* [\kansujichar]

direction = $\langle dir \rangle$ (always local)

Assigning to this parameter has the same effect as $\forall o (if \langle dir \rangle = 4)$, $\forall tate (if \langle dir \rangle = 3)$, $\forall tou (if \langle dir \rangle = 1)$ or $\forall tou (if \langle dir \rangle = 11)$. If the argument $\langle dir \rangle$ is not one of 4, 3, 1 nor 11, the behavior of this assignment is undefined.

8.2 \ltjgetparameter

\ltjgetparameter is a control sequence for acquiring parameters. It always takes a parameter name as first argument.

1 \ltjgetparameter{differentjfm},

2 \ltjgetparameter{autospacing},

```
3 \ltjgetparameter{kanjiskip},
```

```
4 \ltjgetparameter{prebreakpenalty}{`) }.
```

paverage, 1, 0.0pt plus 0.4pt minus 0.5pt, 10000.

The return value of \ltjgetparameter *is always a string*, which is outputted by tex.write(). Hence any character other than space " "(U+0020) has the category code 12 (other), while the space has 10 (space).

• If first argument is one of the following, no additional argument is needed.

jcharwidowpenalty, yjabaselineshift, yalbaselineshift, autospacing, autoxspacing, kanjiskip, xkanjiskip, differentjfm, direction

Note that \ltjgetparameter{autospacing} and \ltjgetparameter{autospacing} returns 1 or 0, not true nor false.

• If first argument is one of the following, an additional argument—a character code, for example—is needed.

kcatcode, prebreakpenalty, postbreakpenalty, jaxspmode, alxspmode

\ltjgetparameter{jaxspmode}{...} and \ltjgetparameter{alxspmode}{...} returns 0, 1,
2, or 3, instead of preonly etc.

- \ltjgetparameter{jacharrange}{(range)} returns 0 if "characters which belong to the character range (range) are JAchar", 1 if "... are ALchar". Although there is no character range -1, specifying -1 to (range) does not cause an error (returns 1).
- For an integer (*digit*) between 0 and 9, \ltjgetparameter{kansujichar}{(*digit*)} returns the character code of the result of \kansuji(*digit*).
- \ltjgetparameter{adjustdir} returns a integer which represents the direction of the surrounding vertical list. As <u>direction</u>, the return value 1 means *dtou* direction, 3 means *tate* direction (vertical typesetting), and 4 means *yoko* direction (horizontal typesetting).
- For an integer (*reg_num*) between 0 and 65535, \ltjgetparameter{boxdir}{(*reg_num*)} returns the direction of \box(*reg_num*). If this box register is void, the returned value is zero.
- The following parameter names cannot be specified in \ltjgetparameter.

jatextfont, jascriptfont, jascriptscriptfont, jacharrange

• \ltjgetparameter{chartorange}{(*chr_code*)} returns the range number which (*chr_code*) belongs to (although there is no parameter named "chartorange").

If $\langle chr_code \rangle$ is between 0 and 127, this $\langle chr_code \rangle$ does not belong to any character range. In this case, $ltjgetparameter{chartorange}{\langle chr_code \rangle}$ returns -1.

Hence, one can know whether (*chr_code*) is **JAchar** or not by the following:

\ltjgetparameter{jacharrange}{\ltjgetparameter{chartorange}{\chr_code}}}
% 0 if JAchar, 1 if ALchar

• Because the returned value is string, the following conditionals do not work if <u>kanjiskip</u> (or <u>xkanjiskip</u>) has the stretch part or the shrink part.

\ifdim\ltjgetparameter{kanjiskip}>\z0 ... \fi \ifdim\ltjgetparameter{xkanjiskip}>\z0 ... \fi

The correct way is using a temporary register.

```
\@tempskipa=\ltjgetparameter{kanjiskip} \ifdim\@tempskipa>\z@ ... \fi
\@tempskipa=\ltjgetparameter{xkanjiskip}\ifdim\@tempskipa>\z@ ... \fi
```

8.3 Alternative Commands to \ltjsetparameter

The basic method to set parameters of LuaT_EX-ja is to use \ltjsetparameter or \ltjglobalsetparameter. However, these commands are slow, because they parse a key-value list, so several alternative commands are used in LuaT_EX-ja. *This subsection is not for general LuaT_EX-ja users*.

Setting <u>kanjiskip</u> or <u>xkanjiskip</u> In Itjsclasses, every size-changing command such as \Large changes \kanjiskip and \xkanjiskip. But a simple implementation, as the code below, is slow since two key-value lists are parsed by \ltjsetparameter:

```
\ltjsetparameter{kanjiskip=0\zw plus .1\zw minus .01\zw}
\@tempskipa=\ltjgetparameter{xkanjiskip}
\ifdim\@tempskipa>\z@
   \if@slide
    \ltjsetparameter{xkanjiskip=0.1em}
   \else
        \ltjsetparameter{xkanjiskip=0.25em plus 0.15em minus 0.06em}
   \fi
   \fi
```

Hence, LuaTEX-ja defines more primitive commands, namely \ltj@setpar@global, \ltjsetkanjiskip, and \ltjsetxkanjiskip. Here

\ltj@setpar@global\ltjsetkanjiskip 10pt

and \ltjsetparameter{kanjiskip=10pt} has the same effect. The actual code of ltjsclasses is shown below:

```
\ltj@setpar@global
\ltjsetkanjiskip{\z@ plus .1\zw minus .01\zw}
\@tempskipa=\ltjgetparameter{xkanjiskip}
\ifdim\@tempskipa>\z@
\if@slide
\ltjsetxkanjiskip.1em
\else
\ltjsetxkanjiskip.25em plus .15em minus .06em
\fi
```

Note that using \ltjsetkanjiskip or \ltjsetxkanjiskip alone, that is, without executing \ltj@setpar@global in advance, is *not* supported.

9 Other Commands for plain T_EX and μ T_EX 2_{ϵ}

9.1 Commands for compatibility with pTEX

The following commands are implemented for compatibility with pTEX. Note that the former five commands don't support JIS X 0213, but only JIS X 0208. The last \kansuji converts an integer into its Chinese numerals.

\kuten, \jis, \euc, \sjis, \ucs, \kansuji

These six commands takes an internal integer, and returns a string.

1 \newcount\hoge	
2 \hoge="2423 %"	9251, 九二五一
<pre>3 \the\hoge, \kansuji\hoge\\</pre>	12355, い
4 \jis\hoge, \char\jis\hoge\\	
5 \kansuji1701	

To change characters of Chinese numerals for each digit, set kansujichar parameter:

1	\ltjsetparameter{kansujichar={1,`壹}}	
2	\ltjsetparameter{kansujichar={7,`漆}}	壹漆零壹
3	\ltjsetparameter{kansujichar={0,`零}}	豆像夸豆

4 \kansuji1701

9.2 \inhibitglue

\inhibitglue suppresses the insertion of **JAglue**. The following is an example, using a special JFM that there will be a glue between the beginning of a box and " \mathfrak{F} ", and also between " \mathfrak{F} " and " \mathfrak{P} ".

ı \jfont\g=HaranoAjiMincho-Regular:jfm=test \g 2 \fbox{\hbox{あウあ\inhibitglue ウ}}	あ ウあウ
₃ \inhibitglue\par\noindent あ1	あ 1
₄ \par\inhibitglue\noindent あ2	あ 2
₅ \par\noindent\inhibitglue あ3	あ 3
。\par\hrule\noindent あoff\inhibitglue ice	あ office

With the help of this example, we remark the specification of \inhibitglue:

- The call of \inhibitglue in the (internal) vertical mode is simply ignored.
- The call of \inhibitglue in the (restricted) horizontal mode is only effective on the spot; does not get over boundary of paragraphs. Moreover, \inhibitglue cancels ligatures and kernings, as shown in the last line of above example.
- The call of \inhibitglue in math mode is just ignored.

9.3 \ltjfakeboxbdd, \ltjfakeparbegin

Sometimes 'parbdd' and 'boxbdd' specifications look like "fail", especially in paragraphs inside list environments. This is because \everypar inserts some nodes such as boxes and kerns, so the "first letter" in a paragraph is in fact not the first letter.

1 \parindent1\zw 2 \noindent あああああああ\par 3 「ああああああ \par	% for comparison % normal paragraph	ああああああああ 「あああああああ
₄ ₅ \everypar{\null} ₅ 「あああああぁ \par	% ???	「ああああああ

\ltjfakeboxbdd and \ltjfakeparbegin primitives resolve this situation.

- \ltjfakeparbegin creates a node which indicates "beginning of an indented paragraph" to the insertion process of JAglue.
- \ltjfakeboxbdd creates a node which indicates "beginning/ending of a box" to the insertion process of **JAglue**.

As an example, the example above can be improved as follows:

9.4 \ltjdeclarealtfont

Using \ltjdeclarealtfont, one can "compose" more than one Japanese fonts. This \ltjdeclarealtfont uses in the following form:

```
ltjdeclarealtfont(base_font_cs)(alt_font_cs){(range)}
```

where (*base_font_cs*) and (*alt_font_cs*) are defined by \jfont. Its meaning is

If the current Japanese font is $(base_font_cs)$, characters which belong to (range) is typeset by another Japanese font (alt_font_cs) , instead of $(base_font_cs)$.

Here $\langle range \rangle$ is a comma-separated list of character codes, but also accepts negative integers: $-n \ (n \ge 1)$ means that all characters of character classes n, with respect to JFM used by $\langle base_font_cs \rangle$. Note that characters which do not exist in $\langle alt_font_cs \rangle$ are ignored.

For example, if \hoge uses jfm-ujis.lua, the standard JFM of LuaTEX-ja, then

\ltjdeclarealtfont\hoge\piyo{"3000-"30FF, {-1}-{-1}}

does

If the current Japanese font is \hoge, U+3000–U+30FF and characters in class 1 (ideographic opening brackets) are typeset by \piyo.

Note that specifying negative numbers needs specification like $\{-1\}-\{-1\}$, because simple "-1" is treated as the range between 0 and 1.

1	\gtfamily\large			¶,¶,¶, ¶
2	¶,\char`¶,\ltjalchar`¶,\ltjjachar`¶\\	%	default: ALchar	
3	α ,\char` α ,\ltjalchar` α ,\ltjjachar` α \\	%	default: JAchar	α, α,α, α
4	g,\char`g,\ltjalchar`g,\ltjjachar`g	%	ALchar unless \ltjjachar	g,g,g, g

10 Commands for $IAT_EX 2_{\varepsilon}$

10.1 Loading Japanese fonts in $IAT_EX 2_{\varepsilon}$

From version 20190107, *LuaT_EX-ja does not load Japanese fonts for horizontal direction and that for vertical direction at same time*, to reduce the number of loaded fonts. This will save time for typesetting and memory consumption of Lua side ([11]).

- \selectfont loads (and chooses) only the Japanese font for the current direction, and does not load the Japanese font for other direction (LuaTEX-ja only detects its size and JFM, to calculate the amount of shifting the baseline).
- Direction changing commands (\yoko, \tate, \dtou, \utod) are patched to include the following process:

If the Japanese font for new direction is not loaded, LuaTEX-ja loads it automatically.

Original commands are saved as \ltj@@orig@yoko etc.

• Specifying Japanese font command which is defined by \jfont, \tfont, or \DeclareFixedFont directly actually loads (and selects) the Japanese font. For example, **JAchar**s in \box0 will be typeset in \HOGE, in the following code:

```
% in horizontal direction (\yoko)
\DeclareFixedFont\HOGE{JT3}{gt}{m}{12} % JT3: for vertical direction
\HOGE
\setbox0=\hbox{\tate あいう}
```

10.2 Patch for NFSS2

Japanese patch for NFSS2 in LuaT_EX-ja is based on plfonts.dtx which plays the same role in plaT_EX 2_{ε} . We will describe commands which are not described in Subsection 3.1.

additonal dimensions

Like pLATEX 2_e, LuaTEX-ja defines the following dimensions for information of current Japanese font:

\cht (height), \cdp (depth), \cHT (sum of former two), \cwd (width), \cvs (lineskip), \chs (equals to \cwd)

and its \normalsize version:

\Cht (height), \Cdp (depth), \Cwd (width), \Cvs (equals to \baselineskip), \Chs (equals to \cwd).

Note that \cwd and \cHT may differ from \zw and \zh respectively. On the one hand the former dimensions are determined from a character whose character class is zero, but on the other hand \zw and \zh are specified by JFM.

\DeclareYokoKanjiEncoding{\encoding}}{\text-settings}}{\mathbf{math-settings}}

\DeclareTateKanjiEncoding{\encoding}}{\text-settings}}{\mathbf{math-settings}}

In NFSS2 under LuaTEX-ja, distinction between alphabetic fonts and Japanese fonts are only made by their encodings. For example, encodings OT1 and T1 are encodings for alphabetic fonts, and Japanese fonts cannot have these encodings. These command define a new encoding scheme for Japanese font families.

\DeclareKanjiEncodingDefaults{\langletext-settings\}}\langletext-settings\langlet

\DeclareKanjiSubstitution{\encoding}}{\family}}{\series}}{\shape}

\DeclareErrorKanjiFont{(encoding)}{(family)}{(series)}{(slape)}{(size)}

The above 3 commands are just the counterparts for \DeclareFontEncodingDefaults and others.

 $\label{eq:laremathAlphabet{(unified-cmd)}{(al-cmd)}} \\$

\DeclareRelationFont{\(ja-encoding\)}{\(ja-family\)}{\(ja-series\)}{\(ja-shape\)}

 ${\langle al-encoding \rangle} {\langle al-family \rangle} {\langle al-series \rangle} {\langle al-shape \rangle}$

あいう abc

This command sets the "accompanied" alphabetic font (given by the latter 4 arguments) with respect to a Japanese font given by the former 4 arguments.

\SetRelationFont

This command is almost same as \DeclareRelationFont, except that this command does a local assignment, where \DeclareRelationFont does a global assignment.

\userelfont

(Only) at the next call of \selectfont, change current alphabetic font encoding/family/... to the 'accompanied' alphabetic font family with respect to current Japanese font family, which was set by \DeclareRelationFont or \SetRelationFont.

The following is an example of \SetRelationFont and \userelfont:

1 \makeatletter

3 % \k@family: current Japanese font family

4 \userelfont\selectfont あいうabc

\adjustbaseline

In pLATEX 2_{ε} , \adjustbaseline sets \tbaselineshift to match the vertical center of "M" and that of " $\ddot{\mu}$ " in vertical typesetting:

$$\texttt{tbaselineshift} \leftarrow \frac{(h_{\mathrm{M}} + d_{\mathrm{M}}) - (h_{\ddot{\mathbb{R}}} + d_{\ddot{\mathbb{R}}})}{2} + d_{\ddot{\mathbb{R}}} - d_{\mathrm{M}},$$

where h_a and d_a denote the height of "a" and the depth, respectively. In LuaT_EX-ja, this \adjustbaseline does similar task, namely setting the <u>talbaselineshift</u> parameter (a Japanese character whose character class is zero is used, instead of '漢').

 $fontfamily{(family)}$

As in LATEX 2_{ε} , this command changes current font family (alphabetic, Japanese, *or both*) to $\langle family \rangle$. See Subsection 10.3 for detail.

 $fontshape{\langle shape \rangle}, fontshapeforce{\langle shape \rangle}$

As in $\mathbb{E}_{E} X 2_{\varepsilon}$, this command changes current alphabetic font shape according to shape change rules.

Traditionally, \fontshape changes also current Japanese font shape always. However, this leads a lot of LATEX font warning like

Font shape `JY3/mc/m/it' undefined using `JY3/mc/m/n' instead on

when \itshape is called, because almost all Japanese fonts only have shape "n", and \itshape calls \fontshape.

LuaT_EX-ja 20200323.0 change the behavior. Namely, $fontshape{\langle shape \rangle}$ and $fontshapeforce{\langle shape \rangle}$ change current Japanese font shape, only if the required shape (according to shape changing rules) or $\langle shape \rangle$ is avaliable in current Japanese font family/series. When this is not the case, an info such as

Kanji font shape JY3/mc/m/it' undefined No change on ...

is issued instead of a warning.

\kanjishape{(shape)}, \kanjishapeforce{(shape)}

\kanjishape{(shape)} changes current Japanese font shape according to shape change rules, and \kanjishapeforce{(shape)} changes current Japanese font shape to (shape), regardless of the rules. Hence \kanjishape{it} produces a warning 1 \DeclareKanjiFamily{JY3}{edm}{}

3 \DeclareFontShape{JY3}{edm}{m}{fb} {<-> s*HaranoAjiGothic-Regular:jfm=ujis;color=003FFF}{}

- 4 \DeclareFontShape{JY3}{edm}{m}{fb2} {<-> s*HaranoAjiGothic-Regular:jfm=ujis;color=FF1900}{}
- 5 \DeclareAlternateKanjiFont{JY3}{edm}{m}{D}{ "4E00-"67FF, {-2}-{-2}}
- 6 \DeclareAlternateKanjiFont{JY3}{edm}{m}{n}{JY3}{edm}{m}{fb2}{"6800-"9FFF}

。日本国民は、正当に選挙された国会における代表者を通じて行動し、……}

日本国民は、正当に選挙された国会における代表者を通じて行動し、……

Figure 8. An example of \DeclareAlternateKanjiFont

Font shape `JY3/mc/m/it' undefined using `JY3/mc/m/n' instead on

which is not produced by \fontshape{it}.

 $\{ \langle alt-encoding \rangle \} \{ \langle alt-family \rangle \} \{ \langle alt-series \rangle \} \{ \langle alt-shape \rangle \} \{ \langle range \rangle \} \} \} \\$ As \ltjdeclarealtfont (Subsection 9.4), characters in $\langle range \rangle$ of the Japanese font (we say the *base font*) which specified by first 4 arguments are typeset by the Japanese font which specified by fifth to eighth arguments (we say the *alternate font*). An example is shown in Figure 8.

- In \ltjdeclarealtfont, the base font and the alternate font must be already defined. But this \DeclareAlternateKanjiFont is not so. In other words, \DeclareAlternateKanjiFont is effective only after current Japanese font is changed, or only after \selectfont is executed.
- ...

Furthermore, LuaT_EX-ja applies patches which enables NFSS2 commands, such as \DeclareSymbolFont and \SetSymbolFont, to specify Japanee fonts as math fonts.

Specifying disablejfam option in \usepackage prevents applying these patches. Hence one cannot write Japanese Characters in math mode directly if disablejfam option is specified. The code below does not work either:

\DeclareSymbolFont{mincho}{JY3}{mc}{m}{n} \DeclareSymbolFontAlphabet{\mathmc}{mincho}

10.3 Detail of \fontfamily command

In this subsection, we describe when fontfamily(family) changes current Japanese/alphabetic font family. Basically, current Japanese fotn family is changed to (family) if it is recognized as a Japanese font family, and similar with alphabetic font family. There is a case that current Japanese/alphabetic font family are both changed to (family), and another case that (family) isn't recognized as a Japanese/alphabetic font family is changed to family is changed to (family), and another case that (family) isn't recognized as a Japanese/alphabetic font family either.

Recognition as Japanese font family First, Whether Japanese font family will be changed is determined in following order. This order is very similar to \fontfamily in pLATEX 2_{ε} , but we re-implemented in Lua. We use an auxiliary list N_{I} .

- 1. If the family $\langle family \rangle$ has been defined already by \DeclareKanjiFamily, $\langle family \rangle$ is recognized as a Japanese font family. Note that $\langle family \rangle$ need not be defined under *current* Japanese font encoding.
- 2. If the family $\langle family \rangle$ has been listed in a list $N_{\rm J}$, this means that $\langle family \rangle$ is not a Japanese font family.

^{7 {\}kanjifamily{edm}\selectfont

Table	15.	strut	
-------	-----	-------	--

box	direction	width	height	depth	user command
\ystrutbox	yoko	0	0.7\baselineskip	0.3\baselineskip	\ystrut
\tstrutbox	tate, utod	0	0.5\baselineskip	0.5\baselineskip	\tstrut
\dstrutbox	dtou	0	0.7\baselineskip	0.3\baselineskip	\dstrut
\zstrutbox	_	0	0.7\baselineskip	0.3\baselineskip	\zstrut

3. If the luatexja-fontspec package is loaded, we stop here, and (*family*) is not recognized as a Japanese font family.

If the luatexja-fontspec package is *not* loaded, now LuaT_EX-ja looks whether there exists a Japanese font encoding $\langle enc \rangle$ such that a font definition named $\langle enc \rangle \langle family \rangle$.fd (the file name is all lower-case) exists. If so, $\langle family \rangle$ is recognized as a Japanese font family (the font definition file won't be loaded here). If not, $\langle family \rangle$ is not a Japanese font family, and $\langle family \rangle$ is appended to the list $N_{\rm I}$.

Recognition as alphabetic font family Next, whether alphabetic font family will be changed is determined in following order. We use auxiliary lists F_A and N_A ,

- 1. If the family $\langle family \rangle$ has been listed in a list F_A , $\langle family \rangle$ is recognized as an alphabetic font family.
- If the family (*family*) has been listed in a list N_A, this means that (*family*) is not an alphabetic font family.
- 3. If there exists an alphabetic font encoding such that the family $\langle family \rangle$ has been defined under it, $\langle family \rangle$ is recognized as an alphabetic font family, and to memorize this, $\langle family \rangle$ is appended to the list F_A .
- 4. Now LuaT_EX-ja looks whether there exists an alphabetic font encoding ⟨*enc*⟩ such that a font definition named ⟨*enc*⟩⟨*family*⟩.fd (the file name is all lowercase) exists. If so, current alphabetic font family will be changed to ⟨*family*⟩ (the font definition file won't be loaded here). If not, current alphabetic font family won't be changed, and ⟨*family*⟩ is appended to the list N_A.

Also, each call of \DeclareFontFamily *after* loading of LuaTEX-ja makes the second argument (family) is appended to the list F_A .

The above order is very similar to fontfamily in pATEX 2_{ε} , but more complicated (clause 3.). This is because pATEX 2_{ε} is a *format* however LuaTEX-ja is not, hence LuaTEX-ja does not know calls of DeclareFontFamily before itself is loaded.

Remarks Of course, there is a case that $\langle family \rangle$ is not recognized as a Japanese font family, nor an alphabetic font family. In this case, LuaT_EX-ja treats "the argument $\langle family \rangle$ is wrong", so set both current alphabetic and Japanese font family to $\langle family \rangle$, to use the default family for font substitution.

10.4 Notes on \DeclareTextSymbol

From LATEX 2017/01/01, the standard encoding of LuaLATEX is changed to the TU encoding. This menas that symbols defined by T1 and TS1 encodings can be used without loading any package. To produces these symbols in alphabetic fonts in LuaTEX-ja, LuaTEX-ja patches \DeclareTextSymbol, and reloads tuenc.def.

Under original definition of \DeclareTextSymbol, internal commands which is defined by \DeclareTextSymbol (such as \T1\textquotedblleft) are *chardef* tokens. However, this no longer holds in LuaT_EX-ja; for example, the meaning of \TU\textquotedblleft is \ltjalchar8220_.

10.5 \strutbox

As pIATEX (2017/04/08 or later), \strutbox is *a macro* which is expanded to one of \ystrutbox, \tstrutbox, and \dstrutbox (all of them are shown in Table 15), according to the current direction. Similarly, \strut now uses one of these boxes.

11 expl3 interface

This section describes expl3 interfaces provided by LuaT_EX-ja. All of them belong to te platex module, since they are provided for compatibility with Japanese pLaT_EX. Note that commands which are marked with dagger (" \dagger ") are additions by LuaT_EX-ja.

\platex_direction_yoko:, \platex_direction_tate:, \platex_direction_dtou: Synonyms for \yoko, \tate and \dtou, respectively. \platex_if_direction_yoko_p: \platex_if_direction_yoko:TF {(true code)}{(false code)} Tests if the current direction is *yoko* (horizontal writing). \platex_if_direction_tate_nomath_p:[†] $platex_if_direction_tate_nomath: TF^{\dagger} \{\langle true \ code \rangle\} \{\langle false \ code \rangle\}$ Tests if the current direction is *tate* (vertical writing). \platex_if_direction_tate_math_p:[†] $\rho_{\rm rection_tate_math:}TF^{\dagger} \{\langle true \ code \rangle\} \{\langle false \ code \rangle\}$ Tests if the current direction is utod. \platex_if_direction_tate_p: \platex_if_direction_tate: <u>TF</u> {(true code)}{(false code)} Tests if the current direction is tate or utod. \platex_if_direction_dtou_p: \platex_if_direction_dtou: <u>TF</u> {{true code}}{{false code}} Tests if the current direction is dtou. $platex_if_box_yoko_p:N \langle box \rangle$ \platex_if_box_yoko:NTF (box) {(true code)}{(false code)} Tests if the direction of (box) is yoko. $\rho_{\rm platex_if_box_tate_nomath_p:N^{\dagger} \langle box \rangle$ $\rho_{i,j} = \frac{1}{2} \left(\frac{1}{2} - \frac{1$ Tests if the direction of $\langle box \rangle$ is *tate*. $\rho_{\rm platex_if_box_tate_math_p:N^{\dagger}}$ $\rho_{\rm Late_if_box_tate_math:NTF^{\dagger}(box) {(true code)}}{(false code)}$ Tests if the direction of $\langle box \rangle$ is *utod*. $platex_if_box_tate_p:N \langle box \rangle$ $\frac{NTF}{\delta v}$ { $\langle true \ code \rangle$ } { $\langle false \ code \rangle$ } Tests if the direction of (box) is *tate* or *utod*. \platex_if_box_dtou_p:N (box) \platex_if_box_dtou:NTF (box) {(true code)}{(false code)} Tests if the direction of $\langle box \rangle$ is *dtou*.

12 Addon packages

LuaTEX-ja has several addon packages. These addons are written as LATEX packages, but luatexja-otf and luatexja-adjust can be loaded in plain LuaTEX by \input.

 i \jfontspec[
 横組のテスト

 2 YokoFeatures={Color=FF1900}, TateFeatures={Color=003FFF},
 組

 3 TateFont=HaranoAjiGothic-Regular
 0

 4]{HaranoAjiMincho-Regular}
 ス

 5 \hbox{\yoko 横組のテスト}\hbox{\tate 縦組のテスト}
 ト

 6 \addjfontfeatures{Color=00AF00}
 横組

 7 \hbox{\yoko 横組}\hbox{\tate 縦組}
 描

 Figure 9. An example of TateFeatures etc.
 Figure 9. An example of TateFeatures etc.

```
    \jfontspec[
    AltFont={
    {Range="4E00-"67FF, Font=HaranoAjiGothic-Regular, Color=003FFF},
    {Range="6800-"9EFF, Color=FF1900},
    {Range="3040-"306F, Font=HaranoAjiGothic-Regular, Color=35A16B},
    }
    ]{HaranoAjiMincho-Regular}
    日本国民は、正当に選挙された国会における代表者を通じて行動し、われらとわれらの子孫のために、
    諸国民との協和による成果と、わが国全土にわたつて自由のもたらす恵沢を確保し、……
```

日本国民は、正当に選挙された国会における代表者を通じて行動し、われらとわれらの子孫のため に、諸国民との協和による成果と、わが国全土にわたつて自由のもたらす恵沢を確保し、……

Figure 10. An example of AltFont

12.1 luatexja-fontspec

As described in Subsection 3.2, this optional package provides the counterparts for several commands defined in the fontspec package (requires fontspec v2.4). In addition to OpenType font features in the original fontspec, the following "font features" specifications are allowed for the commands of Japanese version:

CID=(*name*), JFM=(*name*), JFM-var=(*name*)

These 3 keys correspond to cid, jfm and jfmvar keys for \jfont and \tfont respectively. See Subsections 7.1 and 7.4 for details of cid, jfm and jfmvar keys.

The CID key is effective only when with NoEmbed described below. The same JFM cannot be used in both horizontal Japanese fonts and vertical Japanese fonts, hence the JFM key will be actually used in YokoFeatures and TateFeatures keys.

NoEmbed

By specifying this key, one can use "name-only" Japanese font which will not be embedded in the output PDF file. See Subsection 7.4.

Kanjiskip=(*bool*)

 $TateFeatures = \{ \langle features \rangle \}, TateFont = \langle font \rangle$

The TateFeatures key specifies font features which are only turned on in vertical writing, such as Style=VerticalKana (vkna feature). Similarly, the TateFont key specifies the Japanese font which will be used only in vertical writing. A demonstrarion is shown in Figure 9.

YokoFeatures={(*features*)}

The YokoFeatures key specifies font features which are only turned on in horizontal writing, A demonstrarion is shown in Figure 9.

AltFont

As \ltjdeclarealtfont (Subsection 9.4) and \DeclareAlternateKanjiFont (Subsection 10.2), with

this key, one can typeset some Japanese characters by a different font and/or using different features. The AltFont feature takes a comma-separated list of comma-separated lists, as the following:

```
AltFont = {
    ...
    { Range=(range), (features)},
    { Range=(range), Font=(font name), (features) },
    { Range=(range), Font=(font name) },
    ...
}
```

Each sublist should have the Range key (sublist which does not contain Range key is simply ignored). A demonstration is shown in Figure 10.

Remark on AltFont, YokoFeatures, TateFeatures keys

In AltFont, YokoFeatures, TateFeatures keys, one cannot specify per-shape settings such as BoldFeatures. For example,

```
AltFont = {
    { Font=HogeraMin-Light, BoldFont=HogeraMin-Bold,
    Range="3000-"30FF, BoldFeatures={Color=FF1900} }
}
```

does not work. Instead, one have to write

```
UprightFeatures = {
   AltFont = { { Font=HogeraMin-Light, Range="3000-"30FF, } },
},
BoldFeatures = {
   AltFont = { { Font=HogeraMin-Bold, Range="3000-"30FF, Color=FF1900 } },
}
```

On the other hand, YokoFeatures, TateFeatures and TateFont keys can be specified in each list in the AltFont key. Also, one can specify AltFont inside YokoFeatures, TateFeatures.

Note that features which are specified in YokoFeatures and TateFeatures are always interpreted *after* other "direction-independent" features. This explains why \addjfontfeatures at line 6 in Figure 9 has no effect, because a color specification is already done in YokoFeatures and TateFeatures keys.

12.2 luatexja-otf

This optional package supports typesetting glyphs by specifying a CID number. The package luatexja-otf offers the following 2 low-level commands:

\CID{(number)}

Typeset a glyph whose CID number is $\langle number \rangle$. If the Japanese font is neither Adobe-Japan1, Adobe-GB1, Adobe-CNS1, Adobe-Korea1, nor Adobe-KR CID-keyed font, LuaT_EX-ja treats that $\langle number \rangle$ is a CID number of Adobe-Japan1 character collection, and tries to typeset a "most suitable glyph".

Note that if the Japanese font is loaded using the HarfBuzz library, this \CID command does not work.

\UTF{(*hex_number*)}

Typeset a character whose character code is $\langle hex_number \rangle$ (in hexadecimal). This command is similar to \char" $\langle hex_number \rangle$, but please remind remarks below.

This package automatically loads luatexja-ajmacros.sty, which is slightly modified version of ajmacros.sty¹¹. Hence one can use macros which sre defined in ajmacros.sty, such as \aj半角.

¹¹Useful macros by iNOUE Koich!, for the japanese-otf package.

no adjustment	以上の原理は,「包除原理」とよく呼ばれるが
without priority	以上の原理は、「包除原理」とよく呼ばれるが
with priority	以上の原理は、「包除原理」とよく呼ばれるが

The value of kanjiskip is $0 \text{ pt}_{-1/5 \text{ em}}^{+1/5 \text{ em}}$ in this figure, for making the difference obvious.

Figure 11. Line adjustment

Remarks Characters by \CID and \UTF commands are different from ordinary characters in the following points:

- Always treated as JAchars.
- In vertical direction, vert/vrt2 feature are automatically applied to characters by \UTF, regardless these feature are not activated in current Japanese font.
- Processes for supporting other OpenType features (for example, glyph replacement and kerning) by the luaotfload package is not performed to these characters.

■Additional syntax of JFM The package luatexja-otf extends the syntax of JFM; the entries of chars table in JFM now allows a string in the form 'AJ1-xxx', which stands for the character whose CID number in Adobe-Japan1 is xxx.

This extended notation is used in the standard JFM jfm-ujis.lua to typeset halfwidth Hiragana glyphs (CID 516–598) in halfwidth.

12.3 luatexja-adjust

(see Japanese version of this manual)

12.4 luatexja-ruby

This addon package provides functionality of "ruby" (*furigana*) annotations using callbacks of LuaT_EXja. There is no detailed manual of luatexja-ruby.sty in English. (Japanese manual is another PDF file, luatexja-ruby.pdf.)

Group-ruby By default, ruby characters (the second argument of \ruby) are attached to base characters (the first argument), as one object. This type of ruby is called *group-ruby*.

 東西線\ruby{妙典}{みようでん}駅は\\ 東西線の\ruby{妙典}{みようでん}駅は\\ 東西線の\ruby{妙典}{みようでん}という駅\\ 東西線\ruby{葛西}{かさい}駅は 	東西線妙典駅は 東西線の妙典駅は 東西線の妙典駅は 東西線の妙典という駅 東西線営西駅は
4 泉四線\ruby{曷四}{かさい}駅は	東西線葛西駅は

As the above example, ruby hangover is allowed on the Hiragana before/after its base characters.

Mono-ruby To attach ruby characters to each base characters (*mono-ruby*), one should use \ruby multiple times:

¹ 東西線の\ruby{妙}{みよう}\ruby{典}{でん}駅は……

東西線の妙典駅は……

Jukugo-ruby Vertical bar | denotes a boundary of groups.

- ı \ruby{妙|典}{みよう|でん}\
- ² \ruby{葛|西}{か|さい}\

```
妙典葛西神楽坂
```

₃ \ruby{神楽|坂}{かぐら|ざか}

If there are multiple groups in one \ruby call, A linebreak between two groups is allowed.

₄ \hbox to 3\ruby{京 急 蒲 田}{けい きゆう かま た}	田 京急	うきか家
---	------	------

If the width of ruby characters are longer than that of base characters, \ruby automatically selects the appropriate form among the line-head form, the line-middle form, and the line-end form.

^{うけたまわ} ・・・・・を 承 る ・・・・・を承る

うけたまわ 承るな

```
    \vbox{\hsize=8\zw\noindent
    \null\kern3\zw ……を\ruby{承}{うけたまわ}る
    \kern1\zw ……を\ruby{承}{うけたまわ}る\\
    \null\kern5\zw ……を\ruby{承}{うけたまわ}る
```

12.5 lltjext.sty

plaTEX supplies additional macros for vertical writing in the plext package. The Iltjext package which we want to describe here is the LuaTEX-ja counterpart of the plext package.

tabular, array, minipage environments

These environments are extended by <dir>, which specifies the direction, as follows:

```
\begin{tabular}<dir>[pos]{table spec} ... \end{tabular}
\begin{array}<dir>[pos]{table spec} ... \end{array}
\begin{minipage}<dir>[pos]{width} ... \end{minipage}
```

This option permits one of the following five values. If none of them is specified, the direction inside the environment is same as that outside the environment.

y *yoko* direction (horizontal writing)

t *tate* direction (vertical writing)

z utod direction if direction outside the env. is tate.

- d dtou direction
- u utod direction

```
\parbox < (dir) > [\langle pos \rangle] {\langle width \rangle} {\langle contents \rangle} 
\parbox command is also extended by < (dir) >.
```

This commands typeset $\langle contents \rangle$ in LR-mode, in $\langle dir \rangle$ direction. If $\langle width \rangle$ is positive, the width of the box becomes this $\langle width \rangle$. In this case, $\langle contents \rangle$ will be aligned to left (when $\langle pos \rangle$ is 1), center (c), or right (r).

picture environment

picture environment also extended by $\langle dir \rangle$, as follows:

\begin{picture}<dir>(x_size, y_size)(x_offset,y_offset)

\end{picture}

. . .

\rensuji[(pos)]{(contents)}, \rensujiskip

\Kanji{(counter_name)}

 $\lambda = \{(contents)\}, \bou\{(contents)\}, \boutenchar$

参照番号

12.6 luatexja-preset

As described in Subsection 3.3, One can load the luatexja-preset package to use several "presets" of Japanese fonts. This package provides functions in a part of japanese-otf package (changing fonts) and a part of PXchfon package (presets) by Takayuki Yato.

Options which are given in \spackage but not described in this subsection are simply passed to the luatexja-fontspec¹². For example, the line 5 in below example is equivalent to lines 1–3.

\usepackage[no-math]{fontspec} \usepackage[match]{luatexja-fontspec} \usepackage[kozuka-pr6n]{luatexja-preset} %%------\usepackage[no-math,match,kozuka-pr6n]{luatexja-preset}

12.6.1 General Options

fontspec (enabled by default)

With this option, Japanese fonts are selected using functionality of the luatexja-fontspec package. This means that the fontspec package is automatically loaded by this package.

If you need to pass some options to fontspec, you can load fontspec manually before luatexja-preset:

\usepackage[no-math]{fontspec}
\usepackage[...]{luatexja-preset}

nfssonly

With this option, selecting Japanese fonts won't be performed using the functionality of the fontspec package, but only standard NFSS2 (hence without \addjfontfeatures etc.). This option is ignored when luatexja-fontspec package is loaded.

When this option is specified, fontspec and luatexja-fontspec are *not* loaded by default. Nevertheless, the packagefontspec can coexist with the option, as the following:

\usepackage{fontspec}
\usepackage[hiragino-pron,nfssonly]{luatexja-preset}

In this case, one can use \setmainfont etc. to select *alphabetic* fonts.

match

If this option is specified, usual family-changing commands such as \rmfamily, \textrm, \sffamily, ... also change Japanese font family. This option is passed to luatexja-fontspec, if fontspec option is specifed.

nodeluxe (enabled by default)

The nagation of deluxe option. Use one-weighted *mincho* and *gothic* font families. This means that \mcfamily\bfseries, \gtfamily\bfseries and \gtfamily\mdseries use the same font.

deluxe

Use the mincho family with three weights (light, medium, and bold), the gothic family with three weights (medium, bold, and extra bold), and *rounded gothic*¹³. Mincho light and gothic extra bold can be by \mcfamily\ltseries and \gtfamily\ebseries, respectively.

- Some presets do not have the light weight of mincho. In this case, we substitute the medium weight for the light weight.
- luatexja-preset does not produce an error (only produces a warning), even if (one of) fonts for \mcfamily\ltseries, \gtfamily\ebseries, \mgfamily do not exist.

expert

Use horizontal/vertical kana alternates, and define a command \rubyfamily to use kana characters designed for ruby.

¹²if nfssonly option is *not* specified; in this case these options are simply ignored.

¹³Provided by \mgfamily and \textmg, because "rounded gothic" is called *maru gothic* $(\ddagger \exists \flat \lor \neg \land)$ in Japanese.

bold

Substitute bold series of gothic for bold series of mincho. If nodeluxe option is enabled, medium series of gothic is also changed, since we use same font for both series of gothic.

```
jis90,90jis
```

Use JIS X 0208:1990 glyph variants if possible.

```
jis2004,2004jis
```

Use JIS X 0213:2004 glyph variants if possible.

```
jfm_yoko=\langle jfm \rangle
```

Use the JFM jfm-(*jfm*).lua for horizontal direction, instead of jfm-ujis.lua (default JFM).

```
jfm_tate = \langle jfm \rangle
```

Use the JFM jfm-(*jfm*).lua for vertical direction, instead of jfm-ujisv.lua (default JFM).

```
jis Same as jfm_yoko=jis.
```

Note that jis90, 90jis, jis2004 and 2004jis only affect with mincho, gothic (and, possibly rounded gothic) families defined by this package. We didn't taken account of when more than one options among them are specified.

12.6.2 Presets which support multi weights

Besides bizud, haranoaji, morisawa-pro, and morisawa-pr6n presets, fonts are specified by font name, not by file name. In following tables, starred fonts (e.g. KozGo...-Regular) are used for medium series of gothic, if and only if deluxe option is specified.

kozuka-pro Kozuka Pro (Adobe-Japan1-4) fonts. kozuka-pr6 Kozuka Pr6 (Adobe-Japan1-6) fonts. kozuka-pr6n Kozuka Pr6N (Adobe-Japan1-6, JIS04-savvy) fonts.

Kozuka Pro/Pr6N fonts are bundled with Adobe's software, such as Adobe InDesign. There is not rounded gothic family in Kozuka fonts.

family	series	kozuka-pro	kozuka-pr6	kozuka-pr6n
mincho	light medium bold	KozMinPro-Light KozMinPro-Regular KozMinPro-Bold	KozMinProVI-Light KozMinProVI-Regular KozMinProVI-Bold	KozMinPr6N-Light KozMinPr6N-Regular KozMinPr6N-Bold
.7 .	medium	KozGoPro-Regular* KozGoPro-Medium	KozGoProVI-Regular* KozGoProVI-Medium	KozGoPr6N-Regular* KozGoPr6N-Medium
gothic	bold extra bold	KozGoPro-Bold KozGoPro-Heavy	KozGoProVI-Bold KozGoProVI-Heavy	KozGoPr6N-Bold KozGoPr6N-Heavy
rounded gothic		KozGoPro-Heavy	KozGoProVI-Heavy	KozGoPr6N-Heavy

hiragino-pro Hiragino Pro (Adobe-Japan1-5) fonts.

hiragino-pron Hiragino ProN (Adobe-Japan1-5, JIS04-savvy) fonts.

Hiragino fonts (except Hiragino Mincho W2) are bundled with Mac OS X 10.5 or later. Note that fonts for gothic extra bold (HiraKakuStd[N]-W8) only contains characters in Adobe-Japan1-3 character collection, while others contains those in Adobe-Japan1-5 character collection.

family	series	hiragino-pro	hiragino-pron
mincho	light medium bold	Hiragino Mincho Pro W2 Hiragino Mincho Pro W3 Hiragino Mincho Pro W6	Hiragino Mincho ProN W2 Hiragino Mincho ProN W3 Hiragino Mincho ProN W6
mathia	medium	Hiragino Kaku Gothic Pro W3* Hiragino Kaku Gothic Pro W6	Hiragino Kaku Gothic ProN W3* Hiragino Kaku Gothic ProN W6
gothic	bold extra bold	Hiragino Kaku Gothic Pro W6 Hiragino Kaku Gothic Std W8	Hiragino Kaku Gothic ProN W6 Hiragino Kaku Gothic StdN W8
rounded gothic		Hiragino Maru Gothic Pro W4	Hiragino Maru Gothic ProN W4

family	series	
mincho		BIZ-UDMinchoM.ttc
	medium	BIZ-UDGothicR.ttc
gothic	bold extra bold	BIZ-UDGothicB.ttc BIZ-UDGothicB.ttc
rounded gothic		BIZ-UDGothicB.ttc

bizud BIZ UD fonts (by Morisawa Inc.) bundled with Windows 10 October 2018 Update.

morisawa-pro Morisawa Pro (Adobe-Japan1-4) fonts. morisawa-pr6n Morisawa Pr6N (Adobe-Japan1-6, JIS04-savvy) fonts.

family	series	morisawa-pro	morisawa-pr6n
mincho	medium	A-OTF-RyuminPro-Light.otf	A-OTF-RyuminPr6N-Light.otf
	bold	A-OTF-FutoMinA101Pro-Bold.otf	A-OTF-FutoMinA101Pr6N-Bold.otf
gothic	medium	A-OTF-GothicBBBPro-Medium.otf	A-OTF-GothicBBBPr6N-Medium.otf
	bold	A-OTF-FutoGoB101Pro-Bold.otf	A-OTF-FutoGoB101Pr6N-Bold.otf
	extra bold	A-OTF-MidashiGoPro-MB31.otf	A-OTF-MidashiGoPr6N-MB31.otf
rounded gothic		A-OTF-Jun101Pro-Light.otf	A-OTF-ShinMGoPr6N-Light.otf

yu-win Yu fonts bundled with Windows 8.1.

yu-win10 $\,$ Yu fonts bundled with Windows 10.

yu-osx Yu fonts bundled with OSX Mavericks.

family	series	yu-win	yu-win10	yu-osx
mincho	light medium bold	YuMincho-Light YuMincho-Regular YuMincho-Demibold	YuMincho-Light YuMincho-Regular YuMincho-Demibold	(YuMincho Medium) YuMincho Medium YuMincho Demibold
	medium	YuGothic-Regular* YuGothic-Regular	YuGothic-Regular* YuGothic-Medium	YuGothic Medium* YuGothic Medium
gothic	bold extra bold	YuGothic-Bold YuGothic-Bold	YuGothic-Bold YuGothic-Bold	YuGothic Bold YuGothic Bold
rounded gothic		YuGothic-Bold	YuGothic-Bold	YuGothic Bold

moga-mobo MogaMincho, MogaGothic, and MoboGothic.

moga-mobo-ex MogaExMincho, MogaExGothic, and MoboExGothic.

These fonts can be downloaded from http://yozvox.web.fc2.com/.

family	series	default, 90jis option	jis2004 option
mincho	medium	Moga90Mincho	MogaMincho
	bold	Moga90Mincho Bold	MogaMincho Bold
gothic	medium	Moga90Gothic	MogaGothic
	bold	Moga90Gothic Bold	MogaGothic Bold
	extra bold	Moga90Gothic Bold	MogaGothic Bold
rounded gothic		Mobo90Gothic	MoboGothic

When moga-mobo-ex is specified, the font "MogaEx90Mincho" etc. are used.

ume Ume Mincho and Ume Gothic.

These fonts can be downloaded from

https://ja.osdn.net/projects/ume-font/wiki/FrontPage.

family	series	default
mincho	medium bold	Ume Mincho Ume Mincho
	medium	Ume Gothic* Ume Gothic O5
gothic	bold extra bold	Ume Gothic O5 Ume Gothic O5
rounded gothic		Ume Gothic O5

family	series	sourcehan	sourcehan-jp
mincho	light medium bold	Source Han Serif Light Source Han Serif Regular Source Han Serif Bold	Source Han Serif JP Light Source Han Serif JP Regular Source Han Serif JP Bold
	medium	Source Han Sans Regular* Source Han Sans Medium	Source Han Sans JP Regular* Source Han Sans JP Medium
gothic	bold extra bold	Source Han Sans Bold Source Han Sans Heavy	Source Han Sans JP Bold Source Han Sans JP Heavy
rounded gothic		Source Han Sans Medium	Source Han Sans JP Medium

sourcehan Source Han Serif and Source Han Sans fonts (Language-specific OTF *or* OTC) sourcehan-jp Source Han Serif JP and Source Han Sans JP fonts (Region-specific Subset OTF)

noto-otc Noto Serif CJK and Noto Sans CJK fonts (OTC)

noto-otf Noto Serif CJK and Noto Sans CJK fonts (Language-specific OTF)

family	series	noto-otc	noto-otf
mincho	light medium bold	Noto Serif CJK Light Noto Serif CJK Regular Noto Serif CJK Bold	Noto Serif CJK JP Light Noto Serif CJK JP Regular Noto Serif CJK JP Bold
	medium	Noto Sans CJK Regular* Noto Sans CJK Medium	Noto Sans CJK JP Regular* Noto Sans CJK JP Medium
gothic	bold extra bold	Noto Sans CJK Bold Noto Sans CJK Black	Noto Sans CJK JP Bold Noto Sans CJK JP Black
rounded gothic		Noto Sans CJK Medium	Noto Sans CJK JP Medium

haranoaji Harano Aji Fonts.

These fonts can be downloaded from

https://github.com/trueroad/HaranoAjiFonts. There is not rounded gothic family in Harano Aji Fonts.

family	series	haranoaji
mincho	light medium bold	HaranoAjiMincho-Light.otf HaranoAjiMincho-Regular.otf HaranoAjiMincho-Bold.otf
	medium	HaranoAjiGothic-Regular.otf* HaranoAjiGothic-Medium.otf
gothic	bold extra bold	HaranoAjiGothic-Bold.otf HaranoAjiGothic-Heavy.otf
rounded gothic		HaranoAjiGothic-Medium.otf

12.6.3 Presets which do not support multi weights

Next, we describe settings for using only single weight.

	noembed	ipa	ipaex	ms
mincho	Ryumin-Light (non-embedded)	IPA Mincho	IPAex Mincho	MS Mincho
gothic	GothicBBB-Medium (non-embedded)	IPA Gothic	IPAex Gothic	MS Gothic

12.6.4 Presets which use HG fonts

We can use HG fonts bundled with Microsoft Office for realizing multiple weights. In the table below,
starred fonts (e.g., IPA Gothic [*]) are used only if jis2004 or nodeluxe option is spefified.

family	series	ipa-hg	ipaex-hg	ms-hg
mincho	medium bold	IPA Mincho HG Mincho E	IPAex Mincho HG Mincho E	MS Mincho HG Mincho E
	medium	IPA Gothic* HG Gothic M	IPAex Gothic* HG Gothic M	MS Gothic* HG Gothic M
gothic	bold	HG Gothic E	HG Gothic E	HG Gothic E
	extra bold	HG Soei Kaku Gothic UB	HG Soei Kaku Gothic UB	HG Soei Kaku Gothic UB
rounded gothic		HG MaruGothic M PRO	HG MaruGothic M PRO	HG MaruGothic M PRO

Note that HG Mincho E, HG Gothic E, HG Soei Kaku Gothic UB, and HG Maru Gothic PRO are internally specified by:

default by font name (HGMinchoE, etc.).

jis90, 90jis by file name (hgrme.ttc, hgrge.ttc, hgrsgu.ttc, hgrsmp.ttf).

jis2004, 2004jis by file name (hgrme04.ttc, hgrge04.ttc, hgrsgu04.ttc, hgrsmp04.ttf).

12.6.5 Define/Use Custom Presets

From version 20170904.0, one can define new presets using \ltjnewpreset, and use them by \ltjapplypreset. These two commands can only be used in the preamble.

\ltjnewpreset{(name)}{(specification)}

Define new preset $\langle name \rangle$. This $\langle name \rangle$ cannot be same as other presets, options described in Subsubsection 12.6.1, nor following 11 strings:

mc mc-l mc-m mc-b mc-bx gt gt-m gt-b gt-bx gt-eb mg-m

(specification) is a comma-separated list which consists of other presets and/or the following keys:

 $mc-1=\langle font \rangle$ mincho light

 $mc-m=\langle font \rangle$ mincho medium

- $mc-b=\langle font \rangle$ mincho bold
- $mc-bx=\langle font \rangle$ synonym for $mc-b=\langle font \rangle$
- **gt-m**=(*font*) gothic medium
- **gt-b=** $\langle font \rangle$ gothic bold

gt-bx= $\langle font \rangle$ synonym for gt-b= $\langle font \rangle$

gt-eb=(*font*) gothic extra bold

 $mg-m=\langle font \rangle$ rounded gothic

 $mc = \langle font \rangle$ Same as

 $mc-l=\langle font \rangle$, $mc-m=\langle font \rangle$, $mc-b=\langle font \rangle$

gt=(font) Same as

$$gt-m=\langle font \rangle$$
, $gt-b=\langle font \rangle$, $gt-eb=\langle font \rangle$

If deluxe is not specified at loading the package, only mc and gt keys (among above 11 keys) have a meaning.

\ltjnewpreset*{(name)}{(specification)}

Almost same as ltjnewpreset. However, if (*name*) matches a preset which already defined, this command simply overwrite it.

 $ltjapplypreset{\langle name \rangle}$

Set Japanese font families using preset (*name*).

Note that \ltjnewpreset does not "expand" the definition to define a preset. This means that one can write as the following:

```
\ltjnewpreset{hoge}{piyo,mc-b=HiraMinProN-W6}
\ltjnewpreset{piyo}{mg-m=HiraMaruProN-W4}
\ltjapplypreset{hoge}
```

Restrictions Presets which are defined by \ltjnewpreset have following restrictions:

- One cannot specify non-embedded fonts (such as Ryumin-Light).
- Some presets, such as ipa-hg, have a feature that fonts are changed according to whether 90jis or jis2004 is speified. This feature is not usable in presets which are defined by \ltjnewpreset.

Part III Implementations

13 Storing Parameters

13.1 Used dimensions, attributes and whatsit nodes

Here the following is the list of dimensions and attributes which are used in LuaTEX-ja.

- \jQ (dimension) \jQ is equal to 1 Q = 0.25 mm, where "Q" (also called "級") is a unit used in Japanese phototypesetting. So one should not change the value of this dimension.
- \jH (dimension) There is also a unit called "歯" which equals to 0.25 mm and used in Japanese phototypesetting. This \jH is the same \dimen register as \jQ.
- \ltj@dimen@zw (dimension) A temporal register for the "full-width" of current Japanese font. The command \zw sets this register to the correct value, and "return" this register itself.
- \ltj@dimen@zh (dimension) A temporal register for the "full-height" (usually the sum of height of imaginary body and its depth) of current Japanese font. The command \zh sets this register to the correct value, and "return" this register itself.
- \jfam (attribute) Current number of Japanese font family for math formulas.
- \ltj@curjfnt (attribute) If this attribute is a positive number, it stores the font number of current Japanese font for horizontal direction. If this attribute is negative, it means that the Japanese font for horizontal direction is not loaded—LuaTEX-ja only knows its size and JFM.
- \ltj@curtfnt (attribute) Similar to \ltj@curjfnt, but with current Japanese font for vertical direction.
- \ltj@charclass (attribute) The character class of a **JAchar**. This attribute is only set on a *glyph_node* which contains a **JAchar**.
- <code>\ltj@yablshift</code> (attribute) The amount of shifting the baseline of alphabetic fonts in scaled point (2^{-16} pt) .
- ltj@ykblshift (attribute) The amount of shifting the baseline of Japanese fonts in scaled point (2^{-16} pt) .
- \ltj@tablshift (attribute)
- \ltj@tkblshift (attribute)
- \ltj@autospc (attribute) Whether the auto insertion of kanjiskip is allowed at the node.
- \ltj@autoxspc (attribute) Whether the auto insertion of <u>xkanjiskip</u> is allowed at the node.
- - *italic* (1) Kerns from italic correction (\/), or from kerning information of a Japanese font. These kerns are "ignored" in the insertion process of **JAglue**, unlike explicit \kern.

packed (2)

- *kinsoku* (3) Penalties inserted for the word-wrapping process (*kinsoku shori*) of Japanese characters.
- from_jfm-(from_jfm + 63) (4-67) Glues/kerns from JFM.
- kanji_skip (68), kanji_skip_jfm (69) Glues from kanjiskip.
- xkanji_skip (70), xkanji_skip_jfm (71) Glues from xkanjiskip.

processed (73) Nodes which is already processed by

- *ic_processed* (74) Glues from an italic correction, but already processed in the insertion process of **JAglues**.
- **boxbdd** (75) Glues/kerns that inserted just the beginning or the ending of an hbox or a paragraph.
- \ltj@kcati (attribute) Where i is a natural number which is less than 7. These 7 attributes store bit vectors indicating which character block is regarded as a block of JAchars.

\ltj@dir (attribute) dir_node_auto (128)

dir_node_manual (256)

\ltjlineendcomment (counter)

Furthermore, LuaT_EX-ja uses several user-defined whatsit nodes for internal processing. All those nodes except *direction* whatsits store a natural number (hence its type is 100). *direction* whatsits store a node list, hence its type is 110. Their user_id (used for distinguish user-defined whatsits) are allocated by luatexbase.newuserwhatsitid.

- *inhibitglue* Nodes for indicating that \inhibitglue is specified. The value field of these nodes doesn't matter.
- stack_marker Nodes for LuaT_EX-ja's stack system (see the next subsection). The value field of these
 nodes is current group level.
- *char_by_cid* Nodes for **JAchar** which processes by luaotfload won't be applied, and the character code is stored in the value field. Each node of this type are converted to a *glyph_node after* processes by luaotfload. Nodes of this type is used in \CID and \UTF.
- *replace_vs* Similar to *char_by_cid* whatsits above. These nodes are for **ALchar** which the callback process of luaotfload won't be applied.
- *begin_par* Nodes for indicating beginning of a paragraph. A paragraph which is started by \item in list-like environments has a horizontal box for its label before the actual contents. So ...

direction

These whatsits will be removed during the process of inserting JAglues.

13.2 Stack system of LuaT_EX-ja

Background LuaT_EX-ja has its own stack system, and most parameters of LuaT_EX-ja are stored in it. To clarify the reason, imagine the parameter <u>kanjiskip</u> is stored by a skip, and consider the following source:

```
1 \ltjsetparameter{kanjiskip=0pt}ふがふが.%
```

```
2 \setbox0=\hbox{%
```

、Section (Minux and Section and Section

```
4 \box0.ぴよぴよ\par
```

As described in Subsection 8.1, the only effective value of <u>kanjiskip</u> in an hbox is the latest value, so the value of <u>kanjiskip</u> which applied in the entire hbox should be 5 pt. However, by the implementation method of LuaT_EX, this "5 pt" cannot be known from any callbacks. In the tex/packaging.w, which is a file in the source of LuaT_EX, there are the following codes:

```
1226 void package(int c)
```

```
1227 {
                                       /* height of box */
1228
       scaled h:
       halfword p;
                                       /* first node in a box */
1229
       scaled d;
                                       /* max depth */
1230
       int grp;
1231
       grp = cur_group;
1232
       d = box_max_depth;
1233
       unsave();
1234
```

```
1235 save_ptr -= 4;
1236 if (cur_list.mode_field == -hmode) {
1237 cur_box = filtered_hpack(cur_list.head_field,
1238 cur_list.tail_field, saved_value(1),
1239 saved_level(1), grp, saved_level(2));
1240 subtype(cur_box) = HLIST_SUBTYPE_HBOX;
```

Notice that unsave() is executed *before* filtered_hpack(), where hpack_filter callback is executed) here. So "5pt" in the above source is orphaned at unsave(), and hence it can't be accessed from hpack_filter callback.

Implementation The code of stack system is based on that in a post of Dev-luatex mailing list¹⁴.

These are two T_EX count registers for maintaining information: \ltj@@stack for the stack level, and \ltj@@group@level for the T_EX's group level when the last assignment was done. Parameters are stored in one big table named charprop_stack_table, where charprop_stack_table[*i*] stores data of stack level *i*. If a new stack level is created by \ltjsetparameter, all data of the previous level is copied.

To resolve the problem mentioned in above paragraph "Background", LuaT_EX-ja uses another trick. When the stack level is about to be increased, a whatsit node whose type, subtype and value are 44 (*user_defined*), *stack_marker* and the current group level respectively is appended to the current list (we refer this node by *stack_flag*). This enables us to know whether assignment is done just inside a hbox. Suppose that the stack level is *s* and the T_EX's group level is *t* just after the hbox group, then:

- If there is no *stack_flag* node in the list of the contents of the hbox, then no assignment was occurred inside the hbox. Hence values of parameters at the end of the hbox are stored in the stack level *s*.
- If there is a *stack_flag* node whose value is t + 1, then an assignment was occurred just inside the hbox group. Hence values of parameters at the end of the hbox are stored in the stack level s + 1.
- If there are *stack_flag* nodes but all of their values are more than *t* + 1, then an assignment was occurred in the box, but it is done in more internal group. Hence values of parameters at the end of the hbox are stored in the stack level *s*.

Note that to work this trick correctly, assignments to \ltj@@stack and \ltj@@group@level have to be local always, regardless the value of \globaldefs. To solve this problem, we use another trick: the assignment \directlua{tex.globaldefs=0} is always local.

13.3 Lua functions of the stack system

In this subsection, we will see how a user use LuaTEX-ja's stack system to store some data which obeys the grouping of TEX.

The following function can be used to store data into a stack:

luatexja.stack.set_stack_table(index, <any> data)

Any values which except nil and NaN are usable as *index*. However, a user should use only negative integers or strings as *index*, since natural numbers are used by LuaT_EX-ja itself. Also, whether *data* is stored locally or globally is determined by luatexja.isglobal (stored globally if and only if luatexja.isglobal = 'global').

Stored data can be obtained as the return value of

luatexja.stack.get_stack_table(index, <any> default, <number> level)

where *level* is the stack level, which is usually the value of \ltjQstack, and *default* is the default value which will be returned if no values are stored in the stack table whose level is *level*.

13.4 Extending Parameters

Keys for \ltjsetparameter and \ltjgetparameter can be extended, as in luatexja-adjust.

¹⁴[Dev-luatex] tex.currentgrouplevel, a post at 2008/8/19 by Jonathan Sauer.

```
3s0 \protected\def\ltj@setpar@global{%
3s1 \relax\ifnum\globaldefs>0\directlua{luatexja.isglobal='global'}%
3s2 \else\directlua{luatexja.isglobal=''}\fi
3s3 }
3s4 \protected\def\ltjsetparameter#1{%
3s5 \ltj@setpar@global\setkeys[ltj]{japaram}{#1}\ignorespaces}
3s6 \protected\def\ltjglobalsetparameter#1{%
3s7 \relax\ifnum\globaldefs<0\directlua{luatexja.isglobal=''}%
3s8 \else\directlua{luatexja.isglobal='global'}\fi%</pre>
```

```
389 \setkeys[ltj]{japaram}{#1}\ignorespaces}
```

Figure 12. Definiton of parameter setting commands

Setting parameters Figure 12 shows the *most outer* definition of two commands, \ltjsetparameter and \ltjglobalsetparameter. Most important part is the last \setkeys, which is offered by the xkeyval package.

Hence, to add a key in \ltjsetparameter, one only have to add a key whose prefix is ltj and whose family is japaram, as the following.

\define@key[ltj]{japaram}{...}

\ltjsetparameter and \ltjglobalsetparameter automatically sets luatexja.isglobal. Its meaning is the following.

$$luatexja.isglobal = \begin{cases} 'global' & (global assignment), \\ ' & (local assignment). \end{cases}$$
(1)

This is determined not only by command name (\ltjsetparameter or \ltjglobalsetparameter), but also by the value of \globaldefs.

Getting parameters \ltjgetparameter is implemented by a Lua script.

For parameters that do not need additional arguments, one only have to define a function in the table luatexja.unary_pars. For example, with the following function, \ltjgetparameter{hoge} returns a *string* 42.

```
1 function luatexja.unary_pars.hoge (t)
2 return 42
3 end
```

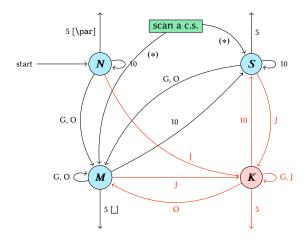
Here the argument of luatexja.unary_pars.hoge is the stack level of LuaT_EX-ja's stack system (see Subsection 13.2).

On the other hand, for parameters that need an additional argument (this must be an integer), one have to define a function in luatexja.binary_pars first. For example,

```
1 function luatexja.binary_pars.fuga (c, t)
2 return tostring(c) .. ', ' .. tostring(42)
3 end
```

Here the first argument t is the stack level, as before. The second argument c is just the second argument of \ltjgetparameter.

For parameters that need an additional argument, one also have to execute the TEX code like


```
\ltj00decl0array0param{fuga}
```

to indicate that "the parameter fuga needs an additional argument".

14 Linebreak after a Japanese Character

14.1 Reference: behavior in pT_EX

In pT_EX, a line break after a Japanese character doesn't emit a space, since words are not separated by spaces in Japanese writings. However, this feature isn't fully implemented in LuaT_EX-ja due to the specification of

- G Beginning of group (usually {) and ending of group (usually }).
- J Japanese characters.
- 5 end-of-line (usually ^^J).
- 10 space (usually]).
- O other characters, whose category code is in $\{3, 4, 6, 7, 8, 11, 12, 13\}$.
- [], [\par] emits a space, or \par.
- We omitted about category codes 9 (*ignored*), 14 (*comment*), and 15 (*invalid*) from the above diagram. We also ignored the input like "^^A" or "^^df".
- When a character whose category code is 0 (*escape character*) is seen by TEX, the input processor scans a control sequence (scan a c.s.). These paths are not shown in the above diagram.

After that, the state is changed to State S (skipping blanks) in most cases, but to State M (middle of line) sometimes.

Figure 13. State transitions of pTEX's input processor

callbacks in LuaT_EX. To clarify the difference between pT_EX and LuaT_EX, We briefly describe the handling of a line break in pT_FX, in this subsection.

pTEX's input processor can be described in terms of a finite state automaton, as that of TEX in Section 2.5 of [1]. The internal states are as follows:

- State N: new line
- State S: skipping spaces
- State M: middle of line
- State K: after a Japanese character

The first three states—N, S, and M—are as same as TEX's input processor. State K is similar to state M, and is entered after Japanese characters. The diagram of state transitions are indicated in Figure 13. Note that pTEX doesn't leave state K after "beginning/ending of a group" characters.

14.2 Behavior in LuaT_EX-ja

States in the input processor of LuaT_EX is the same as that of T_EX, and they can't be customized by any callbacks. Hence, we can only use process_input_buffer and token_filter callbacks for to suppress a space by a line break which is after Japanese characters.

However, token_filter callback cannot be used either, since a character in category code 5 (*end-of-line*) is converted into an space token *in the input processor*. So we can use only the process_input_buffer callback. This means that suppressing a space must be done *just before* an input line is read.

Considering these situations, handling of an end-of-line in LuaT_FX-ja are as follows:

A character whose character code is $ltjlineendcomment^{15}$ is appended to an input line, *before LuaTEX actually process it*, if and only if the following three conditions are satisfied:

- 1. The category code of \endlinechar¹⁶ is 5 (*end-of-line*).
- 2. The category code of \ltjlineendcomment itself is 14 (comment).

¹⁵Its default value is "FFFFF, so U+FFFFF is used. The category code of U+FFFFF is set to 14 (*comment*) by LuaTEX-ja. ¹⁶Usually, it is $\langle return \rangle$ (whose character code is 13).

3. The input line matches the following "regular expression":

 $(any char)^* (JAchar) (\{ catcode = 1 \} \cup \{ catcode = 2 \})^*$

Remark The following example shows the major difference from the behavior of pT_EX.

```
1 \fontspec[Ligatures=TeX]{Linux Libertine 0}
```

```
2 \ltjsetparameter{autoxspacing=false}
```

```
3 \ltjsetparameter{jacharrange={-6}}xあ x⊠yz\\u
4 y\ltjsetparameter{jacharrange={+6}}zい
```

```
5 U
```

It is not strange that " \mathfrak{F} " does not printed in the above output. This is because TEX Gyre Termes does not contain " \mathfrak{F} ", and because " \mathfrak{F} " in line 3 is considered as an **ALchar**.

Note that there is no space before "y" in the output, but there is a space before "u". This follows from following reasons:

- When line 3 is processed by process_input_buffer callback, "あ" is considered as an **JAchar**. Since line 3 ends with an **JAchar**, the comment character (whose character code is \ltjlineendcomment) is appended to this line, and hence the linebreak immediately after this line is ignored.
- When line 4 is processed by process_input_buffer callback, "\" is considered as an **ALchar**. Since line 4 ends with an **ALchar**, the linebreak immediately after this line emits a space.

15 Patch for the listings Package

It is well-known that the listings package outputs weird results for Japanese input. The listings package makes most of letters active and assigns output command for each letter ([2]). But Japanese characters are not included in these activated letters. For pTEX series, there is no method to make Japanese characters active; a patch jlisting.sty ([4]) resolves the problem forcibly.

In LuaTEX-ja, the problem is resolved by using the process_input_buffer callback. The callback function inserts the output command (active character \ltjlineendcomment) before each letter above U+0080. This method can omits the process to make all Japanese characters active (most of the activated characters are not used in many cases).

If the listings package and LuaTEX-ja were loaded, then the patch <code>lltjp-listings</code> is loaded automatically at <code>begin{document}</code>.

15.1 Notes and additional keys

■Variation selectors Iltip-listings add two keys, namely vsraw and vscmd, which specify how variation selectors are treated in lstlisting or other environments. Note that these additional keys are not usable in the preamble, since Iltip-listings is loaded at \begin{document}.

vsraw is a key which takes a boolean value, and its default value is false.

• If the vsraw key is true, then variation selectors are "combined" with the previous character.

1	ls	tlisting}[vsraw=true]	
	首應抗古	首照船区	首而	

2 曷鬥城市,曷鬥師区,曷西

3 \end{lstlisting}

• If the vsraw key is false, then variation selectors are typeset by an appropriate command, which is specified by the vscmd key. The default setting of the vscmd key produces the following.

1 葛城市,葛飾区,葛西

```
    1 \begin{lstlisting}[vsraw=false,
    vscmd=\ltjlistingsvsstdcmd]
    3 葛圖城市,葛圖飾区,葛西
    4 \end{lstlisting}
```

For example, the following code is the setting of the vscmd key in this document.

```
1 \def\IVSA#1#2#3#4#5{%
2 \hbox to1em{\hss\textcolor{blue}{\raisebox{3.5pt}{\normalfont\ttfamily%
3 \fboxsep=0.5pt\fbox{\hbox to0.75em{\hss\tiny \oalign{0#1#2\crcr#3#4#5\crcr}\hss}}}\hss}
%
4 }
5 {\catcode`\%=11
6 \gdef\IVSB#1{\expandafter\IVSA\directlua{
7 local cat_str = luatexbase.catcodetables['string']
8 tex.sprint(cat_str, string.format('%X', 0xE00EF+#1))
9 }}
10 \lstet{vscmd=\IVSB}
```

The default output command of variation selectors is stored in \ltjlistingsvsstdcmd.

■ The doubleletterspace key Even the column format is [c]fixed, sometimes characters are not vertically aligned. The following example is typeset with basewidth=2em, and you'll see the leftmost "H" are not vertically aligned.

```
1 : H :
2 : H H H H :
```

lltjp-listing adds the doubleletterspace key (not activated by default, for compatibility) to improve the situation, namely doubles inter-character space in each output unit. With this key, the above input now produces better output.

1 : H : 2 : H H H H :

15.2 Class of characters

Roughly speaking, the listings package processes input as follows:

- 1. Collects letters and digits, which can be used for the name of identifiers.
- 2. When reading an other, outputs the collected character string (with modification, if needed).
- 3. Collects others.
- 4. When reading a *letter* or a *digit*, outputs the collected character string.
- 5. Turns back to 1.

By the above process, line breaks inside of an identifier are blocked. A flag \lst@ifletter indicates whether the previous character can be used for the name of identifiers or not.

For Japanese characters, line breaks are permitted on both sides except for brackets, dashes, etc. Hence the patch lltjp-listings introduces a new flag \lst@ifkanji, which indicates whether the previous character is a Japanese character or not. For illustration, we introduce following classes of characters:

	Letter	Other	
\lst@ifletter	Т	F	
\lst@ifkanji	F	F	
Meaning	char in an identifier	other alphabet	
	Kanji	Open	Close
\lst@ifletter	Т	F	Т
\lst@ifkanji	Т	Т	F
Meaning	most of Japanese char	opening brackets	closing brackets

Note that *digits* in the listings package can be Letter or Other according to circumstances.

For example, let us consider the case an Open comes after a Letter. Since an Open represents Japanese open brackets, it is preferred to be permitted to insert line break after the Letter. Therefore, the collected character string is output in this case.

		Next				
		Letter	Other	Kanji	Open	Close
	Letter Other	collects outputs		I I I I I I I I I I I I I I I I I I I		
Prev	Kanji Open		outputs collects outputs			collects
	Close					collects

The following table summarizes $5 \times 5 = 25$ cases:

In the above table,

- "outputs" means to output the collected character string (i.e., line breaking is permitted there).
- "collects" means to append the next character to the collected character string (i.e., line breaking is prohibited there).

Characters above or equal to U+0080 *except Variation Selectors* are classified into above 5 classes by the following rules:

- ALchars above or equal to U+0080 are classified as Letter.
- JAchars are classified in the order as follows:
 - 1. Characters whose prebreakpenalty is greater than or equal to 0 are classified as Open.
 - 2. Characters whose postbreakpenalty is greater than or equal to 0 are classified as Close.
 - 3. Characters that don't satisfy the above two conditions are classified as Kanji.

The width of halfwidth kana (U+FF61–U+FF9F) is same as the width of **ALchar**; the width of the other **JAchar**s is double the width of **ALchar**.

This classification process is executed every time a character appears in the lstlisting environment or other environments/commands.

16 Cache Management of LuaT_EX-ja

LuaTFX-ja creates some cache files to reduce the loading time. in a similar way to the luaotfload package:

- Cache files are usually stored in (and loaded from) \$TEXMFVAR/luatexja/.
- In addition to caches of the text form (the extension is ".lua.gz", because they are compressed by gzip), caches of the *binary* (bytecode) form are supported.
 - In loading a cache, the binary cache precedes the text form.
 - When LuaT_EX-ja updates a compressed text cache hoge.lua.gz, its binary version is also updated.

16.1 Use of cache

LuaT_FX-ja uses the following cache:

ltj-cid-auto-adobe-japan1.{lua.gz,luc}

The font table of a CID-keyed non-embedded Japanese font. This is loaded in every run. It is created from three CMaps, UniJIS2004-UTF32-{H,V} and Adobe-Japan1-UCS2, and this is why these two CMaps are needed in the first run of LuaT_EX-ja.

Similar caches are created as Table 16, if you specified cid key in \jfont to use other CID-keyed non-embedded fonts for Chinese or Korean, as in Page 26.

Table 16. cid key and corresponding files

cid key name of the cache		used CMaps		
Adobe-Japan1-*	ltj-cid-auto-adobe-japan1.{lua.gz,luc}	UniJIS2004-UTF32-*	Adobe-Japan1-UCS2	
Adobe-Korea1-*	ltj-cid-auto-adobe-korea1.{lua.gz,luc}	UniKS-UTF32-*	Adobe-Korea1-UCS2	
Adobe-KR-*	ltj-cid-auto-adobe-kr.{lua.gz,luc}	UniAKR-UTF32-*	Adobe-KR-UCS2	
Adobe-GB1-*	ltj-cid-auto-adobe-gb1.{lua.gz,luc}	UniGB-UTF32-*	Adobe-GB1-UCS2	
Adobe-CNS1-*	ltj-cid-auto-adobe-cns1.{lua.gz,luc}	UniCNS-UTF32-*	Adobe-CNS1-UCS2	

ltj-kinsoku.luc

The bytecode cache which default kinsoku parameters are stored.

ltj-jisx0208.luc

The bytecode version of ltj-jisx0208.lua. This is the conversion table between JIS X 0208 and Unicode which is used in Kanji-code conversion commands for compatibility with pT_FX.

ltj-ivd_aj1.luc

The bytecode version of ltj-ivd_aj1.lua.

extra_***.{lua.gz,luc}

This file conains some information (especially for vertical typesetting) about the font '***".

16.2 Internal

Cache management system of LuaT_EX-ja is stored in luatexja.base (ltj-base.lua). There are four public functions for cache management in luatexja.base, where *(filename)* stands for the file name *without suffix*:

save_cache($\langle filename \rangle$, $\langle data \rangle$)

Save a non-nil table $\langle data \rangle$ into a cache $\langle filename \rangle$. Both the compressed text form $\langle filename \rangle$.lua.gz and its binary version are created or updated.

```
save_cache_luc(\langle filename \rangle, \langle data \rangle[, \langle serialized_data \rangle])
```

Same as save_cache, except that only the binary cache is updated. The third argument $\langle serial-ized_data \rangle$ is not usually given. But if this is given, it is treated as a string representation of $\langle data \rangle$.

load_cache((filename), (outdate))

Load the cache $\langle filename \rangle$. $\langle outdate \rangle$ is a function which takes one argument (the contents of the cache), and its return value is whether the cache is outdated.

load_cache first tries to read the binary cache (*filename*).luc. If its contents is up-to-date, load_cache returns the contents. If the binary cache is not found or its contents is outdated, load_cache tries to read the compressed text form (*filename*).lua.gz. Hence, the return value of load_cache is non-nil, if and only if the updated cache is found.

```
remove\_cache(\langle filename \rangle)
```

Remove the cahce $\langle filename \rangle$.

References

- [1] Victor Eijkhout. TeX by Topic, A TeXnician's Reference, Addison-Wesley, 1992.
- [2] C. Heinz, B. Moses. The Listings Package.
- [3] Takuji Tanaka. upTeX—Unicode version of pTeX with CJK extensions, TUG 2013, October 2013. http://tug.org/tug2013/slides/TUG2013_upTeX.pdf
- [4] Thor Watanabe. Listings MyTeXpert.http://mytexpert.osdn.jp/index.php?Listings
- [5] W3C Japanese Layout Task Force (ed). Requirements for Japanese Text Layout (W3C Working Group Note), 2011, 2012. http://www.w3.org/TR/jlreq/
- [6] 乙部厳己.「min10 フォントについて」http://argent.shinshu-u.ac.jp/~otobe/tex/files/ min10.pdf
- [7] 日本工業規格 (Japanese Industrial Standard). 「JIS X 4051, 日本語文書の組版方法 (Formatting rules for Japanese documents)」, 1993, 1995, 2004.
- [8] 濱野尚人,田村明史, 倉沢良一.「TEX の出版への応用 縦組み機能の組み込み 」.../texmfdist/doc/ptex/base/ptexdoc.pdf
- [9] Hisato Hamano. Vertical Typesetting with TEX, TUGBoat 11(3), 346-352, 1990.
- [10] International Organization for Standardization. ISO 32000-1:2008, Document management Portable document format – Part 1: PDF 1.7, 2008. http://www.iso.org/iso/iso_catalogue/catalogue_tc/ catalogue_detail.htm?csnumber=51502
- [11] 北川弘典.「LuaT_EX-ja の近況」, T<u>E</u>XConf 2018. https://osdn.net/projects/luatex-ja/wiki/ Documentation/attach/tc18ltja.pdf