The LuaTgX-ja package

The LuaTgX-ja project team

March 18, 2013

Contents

|

User’s manual

Introduction

1.1 Backgrounds e
1.2 Major Changes from pIEX e
1.3 Notations e e e
1.4 Aboutthe project o e e e e e e e

Getting Started

2.1 Installation L. e e e
2.2 Cautions e e e e e e
2.3 Usinginplain TEX o . 0 0 e e e
24 Using inI&TEX o o e e

Changing Fonts

3.1 plainTeX and IXIEX 2, o o oo o
32 fONESPEC e
33 Preset
3.4 \CID, \UTF and macros in otf package

Changing Parameters

4.1 Editingtherangeof JAchars L
4.2 kanjiskip and xkanjiskip
4.3 Insertion Setting of xkanjiskip
4.4 Shifting Baseline

II Reference

5

6

Font Metric and Japanese Font

5.1 \jEont . ..
52 Prefixpsft L e
5.3 Structure of JEM file
54 MathFontFamily 0. . e
5.5 Callbacks oL e

Parameters
6.1 \ltjsetparameter e e

6.2 Listof Parameters e e

Other Control Sequences
7.1 Control Sequences for Compatibility L o
7.2 \inhibitglue

Control Sequences for IATEX 2,
81 PatchforNFSS2 e

AN O O L A A W W W

0 o0 N

10
10
12
12
13

13

13
13
14
15
17
17

18
18
19

20
20
20

21

9

Extensions

9.1 1luatexja-fontspec.sty
9.2 luatexja-otf.sty
9.3 1luatexja-adjust.sty

III Implementations

10

11

12

13

14

15

Storing Parameters
10.1 Used Dimensions, Attributes and whatsit nodes
10.2 Stack System of LuaTgX-ja

Linebreak after Japanese Character
11.1 Reference: Behaviorin pIgX
11.2 Behaviorin LuaTgX-ja

Insertion of JFM glues, kanjiskip and xkanjiskip
12.1 Overview
12.2 definition of a ‘cluster’
12.3 Bi&/KERY 7 ADREHPEE
12.4 BEE & RG] : 2 D0 THIX Al DHE . ..
125 TofdGE ..o

psft
Patch for the 1istings package

Advanced line-adjustment for Japanese characters

References

A The category code of non-kanji characters defined in JIS X 0213

B

Package versions used in this document

22
22
22
22

22

23
23
24

25
25
25

26
26
26
28
29
31

34

35

36

36

37

40

This documentation is far from complete. It may have many grammatical (and contextual) errors. Also,
several parts (especially, Section 12) are written in Japanese only.

Part 1
User’s manual

1 Introduction

The LuaTgX-ja package is a macro package for typesetting high-quality Japanese documents when using LuaTgX.

1.1 Backgrounds

Traditionally, ASCII pIEX, an extension of TgX, and its derivatives are used to typeset Japanese documents in
TeX. pIiEX is an engine extension of TEX: so it can produce high-quality Japanese documents without using very
complicated macros. But this point is a mixed blessing: pIX is left behind from other extensions of TgX, especially
&-TgX and pdfTEX, and from changes about Japanese processing in computers (e.g., the UTF-8 encoding).

Recently extensions of pIEX, namely upIlEX (Unicode-implementation of pIiEX) and epIEX (merging of pIEX
and e-TgX extension), have developed to fill those gaps to some extent, but gaps still exist.

However, the appearance of LuaTgX changed the whole situation. With using Lua ‘callbacks’, users can cus-
tomize the internal processing of LuaTgX. So there is no need to modify sources of engines to support Japanese
typesetting: to do this, we only have to write Lua scripts for appropriate callbacks.

1.2 Major Changes from pIEX

The LuaTEX-ja package is under much influence of pIiEX engine. The initial target of development was to implement
features of pIEX. However, LuaTgX-ja is not a just porting of pIEX; unnatural specifications/behaviors of pIEX were
not adopted.

The followings are major changes from pIEX:

* A Japanese font is a tuple of a ‘real’ font, a Japanese font metric (JFM, for short), and an optional string
called ‘variation’.

* InpIEX, aline break after Japanese character is ignored (and doesn’t yield a space), since line breaks (in source
files) are permitted almost everywhere in Japanese texts. However, LuaTgX-ja doesn’t have this function
completely, because of a specification of LuaTgX.

* The insertion process of glues/kerns between two Japanese characters and between a Japanese character and
other characters (we refer glues/kerns of both kinds as JAglue) is rewritten from scratch.

— As LuaTgX’s internal character handling is ‘node-based’ (e.g., of {}fice doesn’t prevent ligatures), the
insertion process of JAglue is now ‘node-based’.

— Furthermore, nodes between two characters which have no effects in line break (e.g., \special node)
and kerns from italic correction are ignored in the insertion process.

— Caution: due to above two points, many methods which did for the dividing the process of the insertion of
JAglue in pIEX are not effective anymore. In concrete terms, the following two methods are not effective
anymore:

Li{}ok Hi\/ok
If you want to do so, please put an empty hbox between it instead:
5 & \hbox{}> &

— In the process, two Japanese fonts which only differ in their ‘real’ fonts are identified.

At the present, vertical typesetting (fategaki), is not supported in LuaTgX-ja.

For detailed information, see Part III.

1.3 Notations

In this document, the following terms and notations are used:

* Characters are divided into two types:

— JAchar: standing for Japanese characters such as Hiragana, Katakana, Kanji and other punctuation
marks for Japanese.

— ALchar: standing for all other characters like alphabets.
We say ‘alphabetic fonts’ for fonts used in ALchar, and ‘Japanese fonts’ for fonts used in JAchar.

e A word in a sans-serif font (like prebreakpenalty) means an internal parameter for Japanese typesetting,
and it is used as a key in \1tjsetparameter command.

* A word in typewriter font with underline (like fontspec) means a package or a class of IXIEX.

¢ In this document, natural numbers start from 0.

1.4 About the project

Project Wiki Project Wiki is under construction.

* http://sourceforge. jp/projects/luatex-ja/wiki/FrontPage’,28en%29 (English)
* http://sourceforge. jp/projects/luatex-ja/wiki/FrontPage (Japanese)

* http://sourceforge. jp/projects/luatex-ja/wiki/FrontPage’28zh%29 (Chinese)

This project is hosted by SourceForge.JP.

Members
o Hironori KITAGAWA o Kazuki MAEDA e Takayuki YATO
o Yusuke KUROKI e Noriyuki ABE e Munehiro YAMAMOTO
o Tomoaki HONDA e Shuzaburo SAITO e MA Qiyuan

http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28en%29
http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage
http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28zh%29

2 Getting Started

2.1 Installation
To install the LuaTgX-ja package, you will need:

e LuaTEX (version 0.65.0-beta or later) and its supporting packages.

You might need to add the following lines to lualatex.ini (just before \dump in the last line), if you are
using recent LuaTEX whose Lua is 5.2.

{\catcode™\#=12\catcode™ \~=12},
\global\everyjob\expandafter{\the\everyjob
\directlua{’,
if not table.maxn then
table.maxn = function(t)
local r =0
for i,_ in pairs(t) do
if type(i)=='number' then
if i>r then r=i end
end
end
return r
end
end
if not package.loaders then package.loaders=package.searchers end
if not string.explode then
string.explode = function (str, separator)
if not separator then separator=" +" end
local t, nexti, pos = { }, 1, 1
while true do
local st, sp = str:find (separator, pos)
if not st then break end
if pos ~= st then
t [nexti] = str:sub (pos , st - 1)
nexti = nexti + 1
end
pos = sp + 1
end
t [nexti] = str:sub (pos)
return t
end
end
Yh
Y%

* The source archive of LuaTgX-ja, of course:)

* The xunicode package, which version is just v0.981 (2011/09/09).
If you have the fontspec package, this xunicode package must be exist. But be careful about the version;
other versions may not work correctly with LuaTgX-ja.

The installation methods are as follows:
1. Download the source archive, by one of the following method. At the present, LuaTEgX-ja has no stable release.

* Copy the Git repository:
$ git clone git://git.sourceforge.jp/gitroot/luatex-ja/luatexja.git
* Download the tar. gz archive of HEAD in the master branch from

http:
//git.sourceforge. jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz.

http://git.sourceforge.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz
http://git.sourceforge.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz

* Now LuaTgX-ja is available from the following archive and distributions:
— CTAN (in the macros/luatex/generic/luatexja directory)

MiKTgX (in luatexja.tar.lzma)

TgX Live (in texmf-dist/tex/luatex/luatexja)

W32TgX (in luatexja.tar.xz)

These are based on the master branch.

Note that the master branch, and hence the archive in CTAN, are not updated frequently; the forefront of
development is not the master branch.

2. Extract the archive. You will see src/ and several other sub-directories. But only the contents in src/ are
needed to work LuaTgX-ja.

3. Copy all the contents of src/ into one of your TEXMF tree. TEXMF/tex/luatex/luatexja/ is an example
location. If you cloned entire Git repository, making a symbolic link of src/ instead copying is also good.

4. If mktexlsr is needed to update the file name database, make it so.

2.2 Cautions

* The encoding of your source file must be UTF-8. No other encodings, such as EUC-JP or Shift-JIS, are not
supported.

» LuaTgX-ja is very slower than pIEX. Using LuaJITTgXslightly improve the situation.

2.3 Using in plain TgX
To use LuaTgX-ja in plain TgX, simply put the following at the beginning of the document:
\input luatexja.sty

This does minimal settings (like ptex.tex) for typesetting Japanese documents:

* The following 6 Japanese fonts are preloaded:

classification font name ‘10 pt’ ‘7pt’ ‘Spt’
mincho Ryumin-Light \tenmin \sevenmin \fivemin
gothic GothicBBB-Medium \tengt \sevengt \fivegt

— Itis widely accepted that the font ‘Ryumin-Light’ and ‘GothicBBB-Medium’ aren’t embedded into PDF
files, and a PDF reader substitute them by some external Japanese fonts (e.g., Kozuka Mincho is used
for Ryumin-Light in Adobe Reader). We adopt this custom to the default setting.

— A character in an alphabetic font is generally smaller than a Japanese font in the same size. So actual
size specification of these Japanese fonts is in fact smaller than that of alphabetic fonts, namely scaled
by 0.962216.

* The amount of glue that are inserted between a JAchar and an ALchar (the parameter xkanjiskip) is set to

+1 pt
—1pt’

+1pt

(0.25-0.962216 - 10pt)_, pt

= 2.40554 pt

2.4 Using in BTEX

IATEX 2, Using in IXTEX 2, is basically same. To set up the minimal environment for Japanese, you only have to
load 1luatexja.sty:

\usepackage{luatexja}

It also does minimal settings (counterparts in pl&TEX are plfonts.dtx and pldefs.ltx):
6

» JY3 is the font encoding for Japanese fonts (in horizontal direction).
When vertical typesetting is supported by LuaTgX-ja in the future, JT3 will be used for vertical fonts.

* Two font families mc and gt are defined:

classification family \mdseries \bfseries scale
mincho mc Ryumin-Light GothicBBB-Medium 0.962216
gothic gt GothicBBB-Medium GothicBBB-Medium 0.962216

Remark that the bold series in both family are same as the medium series of gothic family. This is a convention
in pI&TEX. This is a trace that there were only 2 fonts (these are Ryumin-Light and GothicBBB-Medium) in
early years of DTP.

* Japanese characters in math mode are typeset by the font family mc.

However, above settings are not sufficient for Japanese-based documents. To typeset Japanese-based docu-
ments, you are better to use class files other than article.cls, book.cls, and so on. At the present, we have the
counterparts of jclasses (standard classes in pI&IEX) and jsclasses (classes by Haruhiko Okumura), namely,
ltjclasses and 1tjsclasses.

3 Changing Fonts

3.1 plain TgX and ISTEX 2,

plain TgX To change Japanese fonts in plain TgX, you must use the control sequence \jfont. So please see
Subsection 5.1.

IXTEX 2. (NFSS2) For ISIEX 2, LuaTgX-ja adopted most of the font selection system of pIATEX 2, (inplfonts.dtx).

* Two control sequences \mcdefault and \gtdefault are used to specify the default font families for mincho
and gothic, respectively. Default values: mc for \mcdefault and gt for \gtdefault.

e Commands \fontfamily, \fontseries, \fontshape and \selectfont can be used to change attributes
of Japanese fonts.

encoding family series shape selection

alphabetic fonts \romanencoding \romanfamily \romanseries \romanshape \useroman
Japanese fonts ~ \kanjiencoding \kanjifamily \kanjiseries \kanjishape \usekanji
both — - \fontseries \fontshape —
auto select \fontencoding \fontfamily — — \usefont

\fontencoding{<encoding>} changes the encoding of alphabetic fonts or Japanese fonts depending on
the argument. For example, \fontencoding{JY3} changes the encoding of Japanese fonts to JY3 and
\fontencoding{T1} changes the encoding of alphabetic fonts to T1. \fontfamily also changes the family
of Japanese fonts, alphabetic fonts, or both. For detail, see Subsection 8.1.

* For defining a Japanese font family, use \DeclareKanjiFamily instead of \DeclareFontFamily. How-
ever, in the present implementation, using \DeclareFontFamily doesn’t cause any problem.

Remark: Japanese Characters in Math Mode Since pIEX supports Japanese characters in math mode, there
are sources like the following:

1 $f_{=Y$~ ($f_{\text{high temperature}}$). /oo (fhigh temperature)'

2 \[y=(x-1)"2+2\quad & > T\quad y>0 \]
3 $5\in #:=\{\,p\in\mathbb N:\text{p is a prime
\LATS.

y=x-1>+2 OOO y>0

S5eld:={peN: pisaprime}.
7

)

=

w

[T

w

w

We (the project members of LuaTgX-ja) think that using Japanese characters in math mode are allowed if and only
if these are used as identifiers. In this point of view,

 The lines 1 and 2 above are not correct, since ‘f=iw’ in above is used as a textual label, and ‘& > T’ is used
as a conjunction.

» However, the line 3 is correct, since ‘3%’ is used as an identifier.
Hence, in our opinion, the above input should be corrected as:

f_{FiL}~%
($f_{\text{high temperature}}$).
\[y=(x-1)"2+2\quad
\mathrel{\text{ & > T}}\quad y>0 \]

in %:=\{\,p\i hbb N: . . . ‘
$5\1r;\§\}$\.{\ p\in\mathbb N:\text{p is a prime Sell:={peN : pisaprime}.

S (f high temperature)'

y=x-1%+2 &oT y>0

We also believe that using Japanese characters as identifiers is rare, hence we don’t describe how to change Japanese
fonts in math mode in this chapter. For the method, please see Subsection 5.4.
3.2 fontspec

To coexist with the fontspec package, it is needed to load luatexja-fontspec package in the preamble. This
additional package automatically loads luatexja and fontspec package, if needed.

In luatexja-fontspec package, the following 7 commands are defined as counterparts of original commands
in the fontspec package:

Japanese fonts \jfontspec \setmainjfont \setsansjfont \newjfontfamily
alphabetic fonts \fontspec \setmainfont \setsansfont \newfontfamily

Japanese fonts \newjfontface \defaultjfontfeatures \addjfontfeatures
alphabetic fonts \newfontface \defaultfontfeatures \addfontfeatures

\fontspec [Numbers=01dStyle] {LMSans10-Regular}

\jfontspec{IPAexMincho}

JIS~X~0213:2004— 3t JIS X 0213:2004 =t
JIS X 0208:1990 =it

\addjfontfeatures{CJKShape=JI51990}

JIS~X~0208:1990— 3t

Note that there is no command named \setmonojfont, since it is popular for Japanese fonts that nearly all
Japanese glyphs have same widths. Also note that the kerning feature is set off by default in these 7 commands,
since this feature and JAglue will clash (see 5.1).

3.3 Preset

To use standard Japanese font settings easily, one can load luatexja-preset package with several options. This
package provides functions in a part of otf package and a part of PXchfon package by Takayuki Yato, and loads
luatexja-fontspec internally.

General options

deluxe Specifying this option enables us to use mincho with two weights (medium and bold), gothic with three
weights (medium, bold and heavy), and rounded gothic' . The heavy weight of gothic can be used by “chang-
ing the family” \gtebfamily. This is because fontspec package can handle only medium (\mdseries)
and bold (\bfseries).

expert Use horizontal kana alternates, and define a control sequence \rubyfamily to use kana characters
designed for ruby.

"Provided by \mgfamily, because rounded gothic is called maru gothic (3L 3> 27 in Japanese.

8

bold Use bold gothic as bold mincho.

90jis Use fonts with 90JIS glyphs if possible.

jis2004 Use fonts with JIS2004 glyphs if possible.

jis Usethe JFM jfm-jis.lua, instead of jfm-ujis.lua, which is the default JFM of LuaTgX-ja.

Kozukafonts When using single weight, we adopt Kozuka Gothic M as gothic, because we think that Kozuka Gothic R
looks thin. There is not ‘Kozuka Maru Gothic’, therefore Kozuka Gothic H is used as a substitute for rounded gothic.

kozuka4d kozuka6 kozuka6bn
mincho medium Kozuka Mincho Pro R Kozuka Mincho ProVIR Kozuka Mincho ProN R
mincho bold Kozuka Mincho Pro B Kozuka Mincho ProVI B Kozuka Mincho ProN B
gothic medium
without deluxe Kozuka Gothic ProM Kozuka Gothic ProVIM Kozuka Gothic ProN M
multiple weights ~ Kozuka Gothic Pro R Kozuka Gothic ProVIR Kozuka Gothic ProN R
gothic bold Kozuka Gothic Pro B Kozuka Gothic ProVI B Kozuka Gothic ProN B
gothic heavy Kozuka Gothic ProH Kozuka Gothic ProVIH Kozuka Gothic ProN H
(rounded gothic) Kozuka Gothic Pro H Kozuka Gothic ProVIH Kozuka Gothic ProN H
Hiragino and Morisawa Settings for Hiragino fonts:
hiragino hiraginon
mincho medium Hiragino Mincho Pro W3 Hiragino Mincho ProN W3
mincho bold Hiragino Mincho Pro W6 Hiragino Mincho ProN W6

Hiragino Kaku Gothic Pro W3
Hiragino Kaku Gothic Pro W6
Hiragino Kaku Gothic Std W8
Hiragino Maru Gothic Pro W4

Hiragino Kaku Gothic ProN W3
Hiragino Kaku Gothic ProN W6
Hiragino Kaku Gothic StdN W8
Hiragino Maru Gothic ProN W4

gothic medium
gothic bold
gothic heavy
rounded gothic

Settings for Morisawa fonts:

morisawaébn

Ryumin PréN L-KL
Futo Min A101 Pr6N Bold
Chu Gothic BBB Pr6N Med

morisawad

Ryumin Pro L-KL
Futo Min A101 Pro Bold
Chu Gothic BBB Pro Med

mincho medium
mincho bold
gothic medium

gothic bold Futo Go B101 Pro Bold Futo Go B101 Pr6N Bold
gothic heavy Midashi Go Pro MB31 Midashi Go ProN MB31
rounded gothic Jun Pro 101 Jun Pr6N 101

Settings for single weight Next, we describe settings for using only single weight. In four settings below, we use
same fonts for medium and bold (and heavy) weights. (Hence \mcfamily\bfseries and \mcfamily\mdseries
yields same Japanese fonts, if deluxe option is also specified).

noembed ipa ipaex ms
mincho Ryumin-Light (non-embedded) IPAMincho IPAexMincho MS Mincho
gothic GothicBBB-Medium (non-embedded) IPAGothic IPAexGothic MS Gothic
Using HG fonts We can use HG fonts bundled with Microsoft Office for realizing multiple weights in Japanese

fonts.

[N}

® 9 o u kW

ipa-dx ipaex-dx ms—-dx
mincho medium IPAMincho IPAexMincho MS Mincho
mincho bold HG Mincho E

Gothic medium
without deluxe IPAGothic [PAexGothic MS Gothic
with jis2004 IPAGothic ~ TPAexGothic ~ MS Gothic

otherwise HG Gothic M
gothic bold HG Gothic E
gothic heavy HG Soei Kaku Gothic UB
rounded gothic HG Maru Gothic PRO

Note that HG Mincho E, HG Gothic E, HG Soei Kaku Gothic UB and HG Maru Gothic PRO are internally specified
by:

default by font name (HGMinchoE, etc.).
90jis by filename (hgrme.ttc, hgrge.ttc, hgrsgu.ttc, hgrsmp.ttf).

jis2004 by filename (hgrmeO4.ttc, hgrgeO4.ttc, hgrsgul4.ttc, hgrsmp04.ttf).

3.4 \CID, \UTF and macros in otf package

Under pIATEX, otf package (developed by Shuzaburo Saito) is used for typesetting characters which is in Adobe-
Japan1-6 CID but not in JIS X 0208. Since this package is widely used, LuaTgX-ja supports some of functions in
otf package. If you want to use these functions, load luatexja-otf package.

\jfontspec{KozMinPr6N-Regular.otf}
#R\UTF{oDD7}4} & PN H 5 \UTF{9592} & AS\UTF{9AD9} &

Biz47 <,
I ENHER E AEERICITL
\CID{7652}fi[X (O\CID{13706} ¥ 5%, HAiX OHEER, B, SR, SikE 5
\CID{1481} i, HEVHER, RADCHRAT

IR & \CID{8705}\UTF{FA11}

\aj*BA{EANS A X 1T}

4 Changing Parameters

There are many parameters in LuaTgX-ja. And due to the behavior of LuaTgX, most of them are not stored as internal
register of TgX, but as an original storage system in LuaTgX-ja. Hence, to assign or acquire those parameters, you
have to use commands \1tjsetparameter and \1tjgetparameter.

4.1 Editing the range of JAchars

To edit the range of JAchars, you have to assign a non-zero natural number which is less than 217 to the character
range first. This can be done by using \1t jdefcharrange. For example, the next line assigns whole characters in
Supplementary Ideographic Plane and the character ‘7’ to the range number 100.

\1tjdefcharrange{100}{"20000-"2FFFF, " {4}

This assignment of numbers to ranges are always global, so you should not do this in the middle of a document.

If some character has been belonged to some non-zero numbered range, this will be overwritten by the new
setting. For example, whole SIP belong to the range 4 in the default setting of LuaTEX-ja, and if you specify the
above line, then SIP will belong to the range 100 and be removed from the range 4.

After assigning numbers to ranges, the jacharrange parameter can be used to customize which character range
will be treated as ranges of JAchars, as the following line (this is just the default setting of LuaTgX-ja):

10

U+2000-U+206F
U+20A0-U+20CF
U+2100-U+214F
U+2190-U+21FF
U+2300-U+23FF
U+2500-U+257F
U+25A0-U+25FF
U+2700-U+27BF
U+2980-U+29FF
U+E000-U+F8FF

Table 1. Unicode blocks in predefined character range 3.

General Punctuation

Currency Symbols

Letterlike Symbols

Arrows

Miscellaneous Technical

Box Drawing
Geometric Shapes
Dingbats

Misc. Mathematical Symbols-B

Private Use Area

\1ltjsetparameter{jacharrange={-1, +2, +3,

¢ Blocks in Unicode 6.0.

U+2070-U+209F
U+20D0-U+20FF
U+2150-U+218F
U+2200-U+22FF
U+2400-U+243F
U+2580-U+259F
U+2600-U+26FF
U+2900-U+297F
U+2B00-U+2BFF

Superscripts and Subscripts

Comb. Diacritical Marks for Symbols
Number Forms

Mathematical Operators

Control Pictures

Block Elements

Miscellaneous Symbols
Supplemental Arrows-B
Miscellaneous Symbols and Arrows

_4: _5: +6’ +7’ +8}}

The argument to jacharrange parameter is a list of integer. Negative integer —n in the list means that ‘the characters
that belong to range » are treated as ALchar’, and positive integer +n means that ‘the characters that belong to
range n are treated as JAchar’.

Default Setting LuaTgX-ja predefines eight character ranges for convenience. They are determined from the fol-
lowing data:

* The Adobe-Japan1-UCS2 mapping between a CID Adobe-Japanl-6 and Unicode.

* The PXbase bundle for upIigX by Takayuki Yato.

Now we describe these eight ranges. The alphabet ‘J* or ‘A’ after the number shows whether characters in the

range is treated as JAchars or not by default. These settings are similar to the prefercjk settings defined in PXbase
bundle.

Range 8! Symbols in the intersection of the upper half of ISO 8859-1 (Latin-1 Supplement) and JIS X 0208 (a

basic character set for Japanese). This character range consists of the following characters:

§ (U+00A7, Section Sign)

" (U+00A8, Diaeresis)
(U+00BO0, Degree sign)

* (U+00B1, Plus-minus sign)

L]

"~ (U+00B4, Spacing acute)
{l (U+00B6, Paragraph sign)
X (U+00D7, Multiplication sign)

e - (U+00F7, Division Sign)

Unicode ranges, except characters in the range 8 above:

* U+0080-U+OOFF: Latin-1 Supplement

e U+0100-U+017F: Latin Extended-A

e U+0180-U+024F: Latin Extended-B

e U+0250-U+02AF: IPA Extensions

» U+02BO-U+02FF: Spacing Modifier Letters

* U+0370-U+03FF: Greek and Coptic

* U+0400-U+04FF: Cyrillic

e U+0300-U+036F:
Marks

Range 1* Latin characters that some of them are included in Adobe-Japan1-6. This range consist of the following

Combining Diacritical

e U+1EO0-U+1EFF: Latin Extended Additional

Range 2) Greek and Cyrillic letters. JIS X 0208 (hence most of Japanese fonts) has some of these characters.

e U+1F00-U+1FFF: Greek Extended

11

Range 3' Punctuations and Miscellaneous symbols. The block list is indicated in Table 1.

Table 2. Unicode blocks in predefined character range 6.

U+2460-U+24FF Enclosed Alphanumerics U+2E80-U+2EFF CJK Radicals Supplement
U+3000-U+303F CJK Symbols and Punctuation = U+3040-U+309F Hiragana

U+30A0-U+30FF Katakana U+3190-U+319F Kanbun

U+31F0-U+31FF Katakana Phonetic Extensions U+3200-U+32FF Enclosed CJK Letters and Months
U+3300-U+33FF CJK Compatibility U+3400-U+4DBF CJK Unified Ideographs Extension A
U+4E00-U+9FFF CJK Unified Ideographs U+F900-U+FAFF CJK Compatibility Ideographs
U+FE10-U+FE1F Vertical Forms U+FE30-U+FE4F CJK Compatibility Forms
U+FE50-U+FE6F Small Form Variants U+20000-U+2FFFF (Supplementary Ideographic Plane)

Table 3. Unicode blocks in predefined character range 7.

U+1100-U+11FF Hangul Jamo U+2F00-U+2FDF Kangxi Radicals
U+2FFO-U+2FFF Ideographic Description Characters U+3100-U+312F Bopomofo

U+3130-U+318F Hangul Compatibility Jamo U+31A0-U+31BF Bopomofo Extended
U+31CO0-U+31EF CJK Strokes U+A000-U+A48F Yi Syllables

U+A490-U+A4CF Yi Radicals U+A830-U+A83F Common Indic Number Forms
U+ACO0-U+D7AF Hangul Syllables U+D7BO-U+D7FF Hangul Jamo Extended-B

Range 4 Characters usually not in Japanese fonts. This range consists of almost all Unicode blocks which are not
in other predefined ranges. Hence, instead of showing the block list, we put the definition of this range itself:

\1tjdefcharrange{4}{%

"500-"10FF, "1200-"1DFF, "2440-"245F, "27C0-"28FF, "2A00-"2AFF,
"2C00-"2E7F, "4DCO-"4DFF, "A4DO-"A82F, "A840-"ABFF, "FB50-"FEOF,
"FE20-"FE2F, "FE70-"FEFF, "FBOO-"FB4F, "10000-"1FFFF} % non-Japanese

Range 54 Surrogates and Supplementary Private Use Areas.

Range 67 Characters used in Japanese. The block list is indicated in Table 2.

Range 7} Characters used in CJK languages, but not included in Adobe-Japan1-6. The block list is indicated in
Table 3.

4.2 kanjiskip and xkanjiskip
JAglue is divided into the following three categories:

* Glues/kerns specified in JEM. If \inhibitglue is issued around a Japanese character, this glue will not be
inserted at the place.

¢ The default glue which inserted between two JAchars (kanjiskip).
¢ The default glue which inserted between a JAchar and an ALchar (xkanjiskip).

The value (a skip) of kanjiskip or xkanjiskip can be changed as the following.

\1ltjsetparameter{kanjiskip={Opt plus 0.4pt minus O.4pt},
xkanjiskip={0.25\zw plus 1pt minus 1pt}}

It may occur that JEM contains the data of ‘ideal width of kanjiskip’ and/or ‘ideal width of xkanjiskip’. To use
these data from JFM, set the value of kanjiskip or xkanjiskip to \maxdimen.

4.3 Insertion Setting of xkanjiskip

It is not desirable that xkanjiskip is inserted into every boundary between JAchars and ALchars. For example,
xkanjiskip should not be inserted after opening parenthesis (e.g., compare ‘(& and ‘(&). LuaTgX-ja can control
whether xkanjiskip can be inserted before/after a character, by changing jaxspmode for JAchars and alxspmode
parameters ALchars respectively.

12

1

2

[N}

L T

=N

[R

\1tjsetparameter{jaxspmode={" & ,preonly},
alxspmode={"\!,postonly}} p Hq ! D
pdhq V1S

The second argument preonly means ‘the insertion of xkanjiskip is allowed before this character, but not after’.
the other possible values are postonly, allow and inhibit.

jaxspmode and alxspmode use a same table to store the parameters on the current version. Therefore, line 1
in the code above can be rewritten as follows:

\1tjsetparameter{alxspmode={"& ,preonly}, jaxspmode={ \!,postonly}}

One can use also numbers to specify these two parameters (see Subsection 6.2).

If you want to enable/disable all insertions of kanjiskip and xkanijiskip, set autospacing and autoxspacing
parameters to true/false, respectively.

4.4 Shifting Baseline

To make a match between a Japanese font and an alphabetic font, sometimes shifting of the baseline of one of
the pair is needed. In pIEX, this is achieved by setting \ybaselineshift to a non-zero length (the baseline of
alphabetic fonts is shifted below). However, for documents whose main language is not Japanese, it is good to shift
the baseline of Japanese fonts, but not that of alphabetic fonts. Because of this, LuaTgX-ja can independently set
the shifting amount of the baseline of alphabetic fonts (yalbaselineshift parameter) and that of Japanese fonts
(yjabaselineshift parameter).

\vrule width 150pt height 0.4pt depth Opt\hskip
-120pt

\1ltjsetparameter{yjabaselineshift=0pt, he S ~
yalbaselineshift=Opt}abcdH D

\1tjsetparameter{yjabaselineshift=5pt,
yalbaselineshift=2pt}abcd D

Here the horizontal line in above is the baseline of a line.

There is an interesting side-effect: characters in different size can be vertically aligned center in a line, by setting
two parameters appropriately. The following is an example (beware the value is not well tuned):

xyziEF
{\scriptsize
\1tjsetparameter{yjabaselineshift=-1pt,
yalbaselineshift=-1pt}
XYZU 5 D38
Yabcn 7R

xyz 5 XYZ 05 abe MM

Part 11
Reference

5 Font Metric and Japanese Font

5.1 \jfont

To load a font as a Japanese font, you must use the \ jfont instead of \font, while \ jfont admits the same syntax
used in \font. LuaTgX-ja automatically loads luaotfload package, so TrueType/OpenType fonts with features
can be used for Japanese fonts:

\jfont\tradgt={file:ipaexg.ttf:script=latn;¥%

+trad;-kern; jfm=ujis} at 14pt %/%/%/E
\tradgt{}4 Kk /X

Note that the defined control sequence (\tradgt in the example above) using \ jfont is not a font_def token,
hence the input like \fontname\tradgt causes a error. We denote control sequences which are defined in \ jfont

by (jfont_cs).
13

Table 4. Differences between JFEMs shipped with LuaTgX-ja

jfm-ujis.lua jfm-jis.lua jfm-min.lua

TSR 2 2 2 2 2 2 2K 2 2 2 8 800 ottt
HEZHEELD HOHEELR HOHEEHLH®
ADBHNTE APBENTH ADBHVTE
FIIR TN X FIZRSDTH | FIZBR>TH

X7~ FU~. U7

Example 2 %J:")C‘:"fﬁj %i")(‘:"fﬁj %J:")C‘_’."fﬁj

S| S S
Bounding Box Y% Y% Y%

JFM As noted in Introduction, a JFM has measurements of characters and glues/kerns that are automatically
inserted for Japanese typesetting. The structure of JFM will be described in the next subsection. At the calling of
\jfont, you must specify which JFM will be used for this font by the following keys:

jfm=(name) Specify the name of JFM. If specified JFM has not been loaded, LuaTgX-ja search and load a file
named jfm-(name) .1lua.

The following JEMs are shipped with LuaTgX-ja:

jfm-ujis.lua A standard JFM in LuaTgX-ja. This JFM is based on upnmlminr-h.tfm, a metric for

UTF/OTF package that is used in upIEX. When you use the luatexja-otf package, you should use
this JEM.

jfm-jis.lua A counterpart for jis.tfm, ‘JIS font metric’ which is widely used in pIEX. A major differ-
ence of jfm-ujis.lua and this jfm-jis.lua is that most characters under jfm-ujis.lua are
square-shaped, while that under jfm-jis.lua are horizontal rectangles.

jfm-min.lua A counterpart for min10.tfm, which is one of the default Japanese font metric shipped
with pIEX. There are notable difference between this JFM and other 2 JFMs, as shown in Table 4.

jfmvar=(string) Sometimes there is a need that

Note: kern feature Some fonts have information for inter-glyph spacing. However, this information is not well-
compatible with LuaTgX-ja. More concretely, this kerning space from this information are inserted before the in-
sertion process of JAglue, and this causes incorrect spacing between two characters when both a glue/kern from
the data in the font and it from JFM are present.

* You should specify ~kern in jfont when you want to use other font features, such as script=....

* If you want to use Japanese fonts in proportional width, and use information from this font, use jfm-prop.lua
for its JFM, and.... TODO: kanjiskip?

5.2 Prefix psft

Besides ‘file:’ and ‘name:’ prefixes, one can use ‘psft:’ prefix in \jfont (and \font), to specify a ‘name-only’
Japanese font which will not be embedded to PDF. Typical use of this prefix is to specify the ‘standard’ Japanese
fonts, namely, ‘Ryumin-Light” and ‘GothicBBB-Medium’. You should not specify any font features, such as “+jp90’,
in the definition of ‘name-only’ fonts using this ‘psft:’ prefix.

cid key The default font defined by using psft: prefix is for Japanese typesetting; it is Adobe-Japanl-6 CID-
keyed font. One can specify cid key to use other CID-keyed non-embedded fonts for Chinese or Korean typesetting.

14

1 \jfont\testJ={psft:Ryumin-Light:cid=Adobe-Japanl-6;jfm=jis} % Japanese

> \jfont\testD={psft:Ryumin-Light:jfm=jis} % default value is Adobe-Japanl-6
3 \jfont\testC={psft:AdobeMingStd-Light:cid=Adobe-CNS1-5;jfm=jis} % Traditional Chinese

4 \jfont\testG={psft:SimSun:cid=Adobe-GB1-5; jfm=jis} % Simplified Chinese

s \jfont\testK={psft:Batang:cid=Adobe-Koreal-2;jfm=jis} % Korean

Note that the code above specifies jfm-jis.lua, which is for Japanese fonts, as JFM for Chinese and Korean fonts.

At present, LuaTgX-ja supports only 4 values written in the sample code above. Specifying other values, e.g.,

\jfont\test={psft:Ryumin-Light:cid=Adobe-Japan2;jfm=jis}

occurs the following error:

1! Package luatexja Error: bad cid key “Adobe-Japan2'.

2

3 See the luatexja package documentation for explanation.
4Type H <return> for immediate help.

5 <to be read again>

6 \par

71.78

8

9?7 h

10T couldn't find any non-embedded font information for the CID
11 “Adobe-Japan2'. For now, I'll use “Adobe-Japanl-6'.

12 Please contact the LuaTeX-ja project team.
137

5.3 Structure of JFM file

A JFM file is a Lua script which has only one function call:
luatexja.jfont.define_jfm { ... }

Real data are stored in the table which indicated above by { ... }. So, the rest of this subsection are devoted to
describe the structure of this table. Note that all lengths in a JEM file are floating-point numbers in design-size unit.

dir={direction) (required)
The direction of JFM. At the present, only 'yoko' is supported.

zw=(length) (required)
The amount of the length of the ‘full-width’.

zh=(length) (required)
The amount of the length of the ‘full-height’ (height + depth).

kanjiskip={(natural), (stretch), (shrink)} (optional)

This field specifies the ‘ideal’ amount of kanjiskip. As noted in Subsection 4.2, if the parameter kanjiskip
is \maxdimen, the value specified in this field is actually used (if this field is not specified in JFM, it is
regarded as O pt). Note that (stretch) and (shrink) fields are in design-size unit too.

xkanjiskip={(natural), (stretch), (shrink)} (optional)
Like the kanjiskip field, this field specifies the ‘ideal’ amount of xkanjiskip.

Character classes Besides from above fields, a JEM file have several sub-tables those indices are natural numbers.
The table indexed by i € w stores information of ‘character class’ i. At least, the character class 0 is always present,
so each JFM file must have a sub-table whose index is [0]. Each sub-table (its numerical index is denoted by i) has
the following fields:

15

i Consider a node containing Japanese character whose value of the
i align field is 'middle’.
1) » The black rectangle is a frame of the node. Its width, height and
height depth are specified by JFM.

* Since the align field is 'middle"', the ‘real’ glyph is centered

width | horizontally (the green rectangle).

down
“ort :: depth » Furthermore, the glyph is shifted according to values of fields
T y left and down. The ultimate position of the real glyph is indi-
0 cated by the red rectangle.
Figure 1. The position of the ‘real’ glyph.
chars={(character), ...} (required except character class 0)

This field is a list of characters which are in this character type i. This field is optional if i = 0, since all
JAchar which do not belong any character classes other than 0 are in the character class O (hence, the
character class 0 contains most of JAchars). In the list, character(s) can be specified in the following form:

* a Unicode code point
» the character itself (as a Lua string, like ' % ')
¢ astring like ' d*" (the character followed by an asterisk)

* several “imaginary” characters (We will describe these later.)

width=(length), height=(length), depth=(length), italic=(length) (required)

Specify width of characters in character class i, height, depth and the amount of italic correction. All
characters in character class i are regarded that its width, height and depth are as values of these fields. But
there is one exception: if 'prop' is specified in width field, width of a character becomes that of its ‘real’
glyph

left=(length), down=(length), align=(align)

These fields are for adjusting the position of the ‘real’ glyph. Legal values of align field are 'left’,
'middle' and 'right'. If one of these 3 fields are omitted, 1eft and down are treated as 0, and align
field is treated as 'left'. The effects of these 3 fields are indicated in Figure 1.

In most cases, left and down fields are 0, while it is not uncommon that the align field is 'middle' or
'right'. For example, setting the align fieldto 'right' is practically needed when the current character
class is the class for opening delimiters’.

kern={[jl1=(kern), [j'1={(kern), [(ratio)]}, ...}

glue={[j1={(width), (stretch), (shrink), [(priority)], [(ratio)1}, ...}

end_stretch=(kern)

end_shrink=(kern)

Imaginary characters As described before, you can specify several ‘imaginary characters’ in chars field. The

most of these characters are regarded as the characters of class 0 in pIEX. As a result, LuaTgX-ja can control
typesetting finer than pIigX. The following is the list of ‘imaginary characters’:

'boxbdd' The beginning/ending of a horizontal box, and the beginning of a noindented paragraph.
'parbdd' The beginning of an (indented) paragraph.
'jcharbdd' A boundary between JAchar and anything else (such as ALchar, kern, glue, ...).

—1 The left/right boundary of an inline math formula.

16

Table 5. Control sequences for Japanese math fonts

Japanese fonts alphabetic fonts

\jfam € [0, 256) \fam

jatextfont ={(jfam), (jfont_cs)} \textfont(fum)=(font_cs)
jascriptfont ={{jfam) , (jfont_cs)} \scriptfont(fam)=(font_cs)

jascriptscriptfont ={(jfam) , (jfont_cs)} \scriptscriptfont(fam)=(font_cs)

Porting JFM from pIEX

5.4 Math Font Family

TgX handles fonts in math formulas by 16 font familiesz, and each family has three fonts: \textfont, \scriptfont
and \scriptscriptfont.

LuaTgX-ja’s handling of Japanese fonts in math formulas is similar; Table 5 shows counterparts to TgX’s prim-
itives for math font families. There is no relation between the value of \fam and that of \ jfam; with appropriate
settings, you can set both \fam and \ jfam to the same value.

5.5 Callbacks

Like LuaTgX itself, LuaTgX-ja also has callbacks. These callbacks can be accessed via luatexbase.add_to_callback
function and so on, as other callbacks.

luatexja.load_jfm callback With this callback you can overwrite JEMs. This callback is called when a new
JFM is loaded.

i function (<table> jfm_info, <string> jfm_name)
2 return <table> new_jfm_info
3 end

The argument jfm_info contains a table similar to the table in a JFM file, except this argument has chars
field which contains character codes whose character class is not 0.

An example of this callback is the 1t jarticle class, with forcefully assigning character class O to ' parbdd'
in the JFM jfm-min.lua.

luatexja.define_font callback This callback and the next callback form a pair, and you can assign letters
which don’t have fixed code points in Unicode to non-zero character classes. This luatexja.define_font
callback is called just when new Japanese font is loaded.

1 function (<table> jfont_info, <number> font_number)
2 return <table> new_jfont_info
3 end

You may assume that jfont_info has the following fields:

size_cache A table which contains the information of a JEM, and this table must not be changed. The
contents of this table are similar to that which is written is the JFM file, but the following differ:
e There is a chars table, ...

* The value in zw, zh, kanjiskip, xkanjiskip fields are now scaled by real font size, and in scaled-
pont unit.

e There is no dir field in this table.

var The value specified in jfmvar=. .. at a call of \jfont.

20mega, Aleph, LuaTgX and e<u)pIEX can handles 256 families, but an external package is needed to support this in plain TgX and IATEX.

17

The returned table new_jfont_info also should include these two fields. The font_number is a font num-
ber.

A good example of this and the next callbacks is the luatexja-otf package, supporting "AJ1-xxx" form
for Adobe-Japanl CID characters in a JEM. This callback doesn’t replace any code of LuaTgX-ja.

luatexja.find_char_class callback This callback is called just when LuaTgX-ja is trying to determine which
character class a character chr_code belongs. A function used in this callback should be in the following
form:

function (<number> char_class, <table> jfont_info, <number> chr_code)
if char_class~=0 then return char_class
else

1
2
3
4 e
5 return (<number> new_char_class or 0)

¢ end

7 end

The argument char_class is the result of LuaTgX-ja’s default routine or previous function calls in this
callback, hence this argument may not be 0. Moreover, the returned new_char_class should be as same as
char_class when char_class is not 0, otherwise you will overwrite the LuaTgX-ja’s default routine.

luatexja.set_width callback This callback iscalled when LuaTgX-jais trying to encapsule a JAchar glyph_node,
to adjust its dimension and position.

1 function (<table> shift_info, <table> jfont_info, <number> char_class)
2 return <table> new_shift_info
3 end

The argument shift_info and the returned new_shift_info have down and left fields, which are the
amount of shifting down/left the character in a scaled-point.

A good example is test/valign.lua. After loading this file, the vertical position of glyphs is automatically
adjusted; the ratio (height : depth) of glyphs is adjusted to be that of letters in the character class 0. For
example, suppose that

* The setting of the JFM: (height) = 88x, (depth) = 12x (the standard values of Japanese OpenType
fonts);

* The value of the real font: (height) = 28y, (depth) = 5y (the standard values of Japanese TrueType
fonts).

Then, the position of glyphs is shifted up by

88x 26
__O9X 0844 5y)— 28y = 22y = 1.04y.
S8x 1 1ox 2oy + 30— 28y =35y Y

6 Parameters

6.1 \ltjsetparameter

As noted before, \1t jsetparameter and \1tjgetparameter are control sequences for accessing most param-
eters of LuaTgX-ja. One of the main reason that LuaTgX-ja didn’t adopted the syntax similar to that of pIEX
(e.g., \prebreakpenalty~) =10000) is the position of hpack_filter callback in the source of LuaTiX, see
Section 10.

\1tjsetparameter and \1tjglobalsetparameter are control sequences for assigning parameters. These
take one argument which is a (key)=(value) list. Allowed keys are described in the next subsection. The difference
between \1t jsetparameter and \1t jglobalsetparameter is only the scope of assignment; \1t jsetparameter
does alocal assignment and \1t jglobalsetparameter does a global one. They also obey the value of \globaldefs,
like other assignment.

\1tjgetparameter is for acquiring parameters. It always takes a parameter name as first argument, and also
takes the additional argument—a character code, for example—in some cases.

18

1 \ltjgetparameter{differentjfm},
> \1ltjgetparameter{autospacing}, paverage, 1, 10000.
3 \1tjgetparameter{prebreakpenalty}{-) }.

The return value of \1tjgetparameter is always a string. This is outputted by tex.write (), so any character
other than space ¢ ’ (U+0020) has the category code 12 (other), while the space has 10 (space).

6.2 List of Parameters

The following is the list of parameters which can be specified by the \1t jsetparameter command. [\cs] indicates
the counterpart in pIEX, and symbols beside each parameter has the following meaning:

* No mark: values at the end of the paragraph or the hbox are adopted in the whole paragraph/hbox.
* ‘&’ : local parameters, which can change everywhere inside a paragraph/hbox.

e ‘§’: assignments are always global.

jcharwidowpenalty =(penalty) [\jcharwidowpenalty] Penalty value for suppressing orphans. This penalty
is inserted just after the last JAchar which is not regarded as a (Japanese) punctuation mark.

kcatcode ={(chr_code) ,{natural number)} An additional attributes which each character whose character
code is (chr_code) has. At the present version, the lowermost bit of {(natural number) indicates whether
the character is considered as a punctuation mark (see the description of jcharwidowpenalty above).

prebreakpenalty ={{chr_code) , {penalry)} [\prebreakpenalty]
postbreakpenalty ={(chr_code) ,{penalty)} [\postbreakpenalty]
jatextfont ={(jfam) , (jfont_cs)} [\textfont in TEX]

jascriptfont ={(jfam), {jfont_cs)} [\scriptfont in TEX]
jascriptscriptfont ={{jfam) , (jfont_cs)} [\scriptscriptfont in TX]
yjabaselineshift =(dimen)*

yalbaselineshift =(dimen)* [\ybaselineshift]

jaxspmode ={(chr_code) ,(mode)} Setting whether inserting xkanjiskip is allowed before/after a JAchar whose
character code is (chr_code). The followings are allowed for (mode):
0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
1, preonly Insertion of xkanjiskip is allowed before the character, but not after.
2, postonly Insertion of xkanjiskip is allowed after the character, but not before.
3,allow Insertion of xkanjiskip is allowed both before the character and after the character. This is the
default value.

This parameter is similar to the \inhibitxspcode primitive of pIEX, but not compatible with \inhibitxspcode.

alxspmode ={(chr_code) ,(mode)} [\xspcode]
Setting whether inserting xkanjiskip is allowed before/after a ALchar whose character code is {chr_code).
The followings are allowed for (mode):
0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
1, preonly Insertion of xkanjiskip is allowed before the character, but not after.
2, postonly Insertion of xkanjiskip is allowed after the character, but not before.
3, allow Insertion of xkanjiskip is allowed before the character and after the character. This is the default
value.
Note that parameters jaxspmode and alxspmode use a common table, hence these two parameters are
synonyms of each other.
19

I Y T S O

autospacing =(bool)* [\autospacing]
autoxspacing =(bool)* [\autoxspacing]
kanjiskip =(skip) [\kanjiskip]
xkanjiskip =(skip) [\xkanjiskip]

differentjfm =(mode)’ Specify how glues/kerns between two JAchars whose JEM (or size) are different. The
allowed arguments are the followings:

average
both
large
small
pleft
pright

paverage
jacharrange =(ranges)*

kansujichar ={(digit), {(chr_code)} [\kansujichar]

7 Other Control Sequences

7.1 Control Sequences for Compatibility

The following control sequences are implemented for compatibility with piX. Note that these don’t support JIS X 0213,
but only JIS X 0208.

\kuten
\jis
\euc
\sjis
\ucs

\kansuji

7.2 \inhibitglue

\inhibitglue suppresses the insertion of JAglue. The following is an example, using a special JFM that there
will be a glue between the beginning of a box and ‘&’, and also between ‘%’ and ‘7.

\jfont\g=name:IPAMincho: jfm=test \g
\fbox{\hbox{d 7 H\inhibitglue 7 }} » UHY

\inhibitglue\par\noindent &1 »H 1
\par\inhibitglue\noindent &?2 »H 2
\par\noindent\inhibitglue 3 » 3
\par\hrule\noindent dHoff\inhibitglue ice & office

With the help of this example, we remark the specification of \inhibitglue:

* The call of \inhibitglue in the (internal) vertical mode is simply ignored.

* The call of \inhibitglue in the (restricted) horizontal mode is only effective on the spot; does not get over
boundary of paragraphs. Moreover, \inhibitglue cancels ligatures and kernings, as shown in the last line
of above example.

* The call of \inhibitglue in math mode is just ignored.

20

[R

8 Control Sequences for BTEX 2,

8.1 Patch for NFSS2

As described in Subsection 2.4, LuaTgX-ja simply adopted plfonts.dtx in pl&TEX 2, for the Japanese patch for
NFSS2. For an convenience, we will describe control sequences which are not described in Subsection 3.1.
\DeclareYokoKanjiEncoding{({encoding)}{{text-settings)}{{math-settings)}

In NFSS2 under LuaTgX-ja, distinction between alphabetic font families and Japanese font families are only
made by their encodings. For example, encodings OT1 and T1 are for alphabetic font families, and a Japanese
font family cannot have these encodings. This command defines a new encoding scheme for Japanese font
family (in horizontal direction).

\DeclareKanjiEncodingDefaults{(text-settings)}{{math-settings)}
\DeclareKanjiSubstitution{({encoding)}{{family)}{(series)}{(shape)?}

\DeclareErrorKanjiFont{({encoding)}{{family)}{(series)}{(shape)}{(size)}

The above 3 commands are just the counterparts for DeclareFontEncodingDefaults and others.
\reDeclareMathAlphabet{(unified-cmd)}{{al-cmd)}{{ja-cmd)}
\DeclareRelationFont{(ja-encoding)}{(ja-family)}{{ja-series)}{{ja-shape)}

{(al-encoding)}{{al-family)}{{al-series) }{{al-shape)}

This command sets the ‘accompanied’ alphabetic font family (given by the latter 4 arguments) with respect to
a Japanese font family given by the former 4 arguments.

\SetRelationFont

This command is almost same as \DeclareRelationFont, except that this command does a local assignment,
where \DeclareRelationFont does a global assignment.

\userelfont

Change current alphabetic font encoding/family/... to the ‘accompanied’ alphabetic font family with respect
to current Japanese font family, which was set by \DeclareRelationFont or \SetRelationFont. Like
\fontfamily, \selectfont is required to take an effect.

\adjustbaseline

\fontfamily{{family)}

As in ISTEX 2, this command changes current font family (alphabetic, Japanese, or both) to (family). Which
family will be changed is determined as follows:

¢ Let current encoding scheme for Japanese fonts be (ja-enc). Current Japanese font family will be changed to
{family), if one of the following two conditions is met:
— The family (family) under the encoding {ja-enc) has been already defined by \DeclareKanijFamily.
— A font definition named {ja-enc){family) . £d (the file name is all lowercase) exists.

* Let current encoding scheme for alphabetic fonts be (al-enc). For alphabetic font family, the criterion as
above is used.

¢ There is a case which none of the above applies, that is, the font family named (family) doesn’t seem to
be defined neither under the encoding (ja-enc), nor under {al-enc). In this case, the default family for font
substitution is used for alphabetic and Japanese fonts. Note that current encoding will not be set to {family),
unlike the original implementation in I&TEX.

As closing this subsection, we shall introduce an example of \SetRelationFont and \userelfont:
\kanjifamily{gt}\selectfont &\ I xyz

\SetRelationFont{JY3}{gt}H{m}{n}{0T1}{pagt{m}{n} 000 xyz OO0 abce
\userelfont\selectfont &\ abc

21

no adjustment L)U:O)},?@Ci, F@,B,%EIEJ C\.’_ J: < H? Ci?’bé ﬂi‘
without priority L\/LJ:@)EEEG—\, F@AB{%}E‘EEJ & c]: < n?di?h/é 7:))1
with priority U\J:O))Efiii, r@ﬁ//‘ﬁﬁfﬂj & J: < ﬂ? Cij/l/é 7351

+1/5em
—1/5em

Note: the value of kanjiskip is 0 pt in this figure, for making the difference obvious.

Figure 2. Line adjustment

9 Extensions

9.1 1luatexja-fontspec.sty

As described in Subsection 3.2, this optional package provides the counterparts for several commands defined
in the fontspec package. In addition to ‘font features’ in the original fontspec, the following ‘font features’
specifications are allowed for the commands of Japanese version:

CID=(name)
JFM=(name)

JFM-var=(name)

These 3 font features correspond to cid, jfm and jfmvar keys for \ jfont respectively. CID is effective
only when with NoEmbed described below. See Subsections 5.1 and 5.2 for details.

NoEmbed By specifying this font feature, one can use ‘name-only’ Japanese font which will not be embedded in
the output PDF file. See Subsection 5.2.
9.2 1luatexja-otf.sty

This optional package supports typesetting characters in Adobe-Japanl. luatexja-otf.sty offers the following
2 low-level commands:

\CID{(number)} Typeset a character whose CID number is {number).

\UTF{(hex_number)} Typeset a character whose character code is (hex_number) (in hexadecimal). This com-
mand is similar to \char" (hex_number), but please remind remarks below.

Remarks Characters by \CID and \UTF commands are different from ordinary characters in the following points:

* Always treated as JAchars.

* Processing codes for supporting OpenType features (e.g., glyph replacement and kerning) by the luaotfload
package is not performed to these characters.

Additional Syntax of JFM 1luatexja-otf.sty extends the syntax of JFM; the entries of chars table in JFM
now allows a string in the form 'AJ1-xxx', which stands for the character whose CID number in Adobe-Japanl is
XXX.

9.3 luatexja-adjust.sty

22

Part I11
Implementations

10 Storing Parameters

10.1 Used Dimensions, Attributes and whatsit nodes

Here the following is the list of dimensions and attributes which are used in LuaTgX-ja.

\jQ (dimension) \jQ is equal to 1 Q = 0.25 mm, where ‘Q’ (also called ‘#%’) is a unit used in Japanese photo-
typesetting. So one should not change the value of this dimension.

LBy

\jH (dimension) There is also a unit called ‘P&’ which equals to 0.25 mm and used in Japanese phototypesetting.
This \jH is a synonym of \ jQ.

\1tj@zw (dimension) A temporal register for the ‘full-width’ of current Japanese font.

\1tj@zh (dimension) A temporal register for the ‘full-height’ (usually the sum of height of imaginary body
and its depth) of current Japanese font.

\jfam (attribute) Current number of Japanese font family for math formulas.

\1ltj@curjfnt (attribute) The fontindex of current Japanese font.

\1tj@charclass (attribute) The character class of Japanese glyph_node.

\1tj@yablshift (attribute) The amount of shifting the baseline of alphabetic fonts in scaled point 2710 pt).
\1tj@ykblshift (attribute) The amount of shifting the baseline of Japanese fonts in scaled point 27 1% pt).
\1tj@autospc (attribute) Whether the auto insertion of kanjiskip is allowed at the node.

\1tj@autoxspc (attribute) Whether the auto insertion of xkanjiskip is allowed at the node.

\1ltj@icflag (attribute) An attribute for distinguishing ‘kinds’ of a node. One of the following value is as-
signed to this attribute:

italic (1) Glues from an italic correction (\/). This distinction of origins of glues (from explicit \kern, or
from \/) is needed in the insertion process of xkanjiskip.

packed (2)

kinsoku (3) Penalties inserted for the word-wrapping process of Japanese characters (kinsoku).

Jrom_jfm (6) Glues/kerns from JFEM.

kanji_skip (9) Glues for kanjiskip.

xkanji_skip (10) Glues for xkanjiskip.

processed (11) Nodes which is already processed by

ic_processed (12) Glues from an italic correction, but also already processed.

boxbdd (15) Glues/kerns that inserted just the beginning or the ending of an hbox or a paragraph.

\1tj@kcati (attribute) Where i is a natural number which is less than 7. These 7 attributes store bit vectors
indicating which character block is regarded as a block of JAchars.

Furthermore, LuaTgX-ja uses several ‘user-defined’ whatsit nodes for inrernal processing. All those nodes store
a natural number (hence the node’s type is 100). The following user_ids are used:

30111 Nodes for indicating that \inhibitglue is specified. The value field of these nodes doesn’t matter.

30112 Nodes for LuaTgX-ja’s stack system (see the next subsection). The value field of these nodes is current
group.

23

S

w

30113 Nodes for Japanese Characters which the callback process of luaotfload won’t be applied, and the char-
acter code is stored in the value field. Each node having this user_id is converted to a ‘glyph_node’ after
the callback process of Iuaotfload. This user_id is only used by the luatexja-otf package.

30114 Nodes for indicating beginning of a paragraph. A paragraph which is started by \itemn in list-like environ-
ments has a horizontal box for its label before the actual contents. So ...

These whatsits will be removed during the process of inserting JAglues.

10.2 Stack System of LuaTgX-ja

Background LuaTgX-ja has its own stack system, and most parameters of LuaTgX-ja are stored in it. To clarify
the reason, imagine the parameter kanjiskip is stored by a skip, and consider the following source:

\1tjsetparameter{kanjiskip=0pt}5 A .5 A3, %

\setbﬁg{éj;%box{\ltjsetparameter{ka.njiskip=5pt}ii SASDIE T IE I L O

\box0. U} & Uf & \par

As described in Subsection 6.2, the only effective value of kanjiskip in an hbox is the latest value, so the value
of kanjiskip which applied in the entire hbox should be 5 pt. However, by the implementation method of LuaTgX,
this ‘5 pt’ cannot be known from any callbacks. In the tex/packaging.w (which is a file in the source of LuaTEX),
there are the following codes:

void package(int c)

{
scaled h; /* height of box */
halfword p; /* first node in a box */
scaled d; /* max depth */
int grp;

grp = cur_group;
d = box_max_depth;
unsave() ;
save_ptr -= 4;
if (cur_list.mode_field == -hmode) {
cur_box = filtered_hpack(cur_list.head_field,
cur_list.tail_field, saved_value(l),
saved_level(1), grp, saved_level(2));
subtype(cur_box) = HLIST_SUBTYPE_HBOX;

Notice that unsave is executed before filtered_hpack (this is where hpack_filter callback is executed): so
‘5pt’ in the above source is orphaned at unsave, and hence it can’t be accessed from hpack_filter callback.

The method The code of stack system is based on that in a post of Dev-luatex mailing list®.

These are two TgX count registers for maintaining information: \1t j@@stack for the stack level, and \1t j@@group@level
for the TgX’s group level when the last assignment was done. Parameters are stored in one big table named charprop_stack_table,

where charprop_stack_table [i] stores data of stack level i. If a new stack level is created by \1t jsetparameter,
all data of the previous level is copied.

To resolve the problem mentioned in ‘Background’ above, LuaTEX-ja uses another thing: When a new stack
level is about to be created, a whatsit node whose type, subtype and value are 44 (user_defined), 30112, and current
group level respectively is appended to the current list (we refer this node by stack_flag). This enables us to know
whether assignment is done just inside a hbox. Suppose that the stack level is s and the TgX’s group level is ¢ just
after the hbox group, then:

* If there is no stack_flag node in the list of the hbox, then no assignment was occurred inside the hbox. Hence
values of parameters at the end of the hbox are stored in the stack level s.

« If there is a stack_flag node whose value is f + 1, then an assignment was occurred just inside the hbox group.
Hence values of parameters at the end of the hbox are stored in the stack level s + 1.

3 [Dev-luatex] tex.currentgrouplevel, a post at 2008/8/19 by Jonathan Sauer.

24

G Beginning of group (usually {)
and ending of group (usually }).

J Japanese characters.
5 end-of-line (usually ~~J).
10 space (usually).

O other characters, whose category code is in
{3,4,6,7,8,11,12,13}.

[ul, [\par] emits a space, or \par.

* We omitted about category codes 9 (ignored), 14 (comment) and 15 (invalid) from the above diagram. We also ignored
the input like ‘~~A’ or ‘“~~df’.

* When a character whose category code is 0 (escape character) is seen by TgX, the input processor scans a control sequence
(scan a c.s.). These paths are not shown in the above diagram.

After that, the state is changed to State .S (skipping blanks) in most cases, but to State M (middle of line) sometimes.

Figure 3. State transitions of pIigX’s input processor.

* If there are stack_flag nodes but all of their values are more than ¢ + 1, then an assignment was occurred in
the box, but it is done is ‘more internal’ group. Hence values of parameters at the end of the hbox are stored
in the stack level s.

Note that to work this trick correctly, assignments to \1t j@@stack and \1tj@@group@level have to be local
always, regardless the value of \globaldefs. This problem is resolved by using \directlua{tex.globaldefs=0}
(this assignment is local).

11 Linebreak after Japanese Character

11.1 Reference: Behavior in pIgX

In PIEX, a line break after a Japanese character doesn’t emit a space, since words are not separated by spaces in
Japanese writings. However, this feature isn’t fully implemented in LuaTgX-ja due to the specification of callbacks
in LuaTEX. To clarify the difference between pIEX and LuaTgX, We briefly describe the handling of a line break
in pIEX, in this subsection.

pIEX’s input processor can be described in terms of a finite state automaton, as that of TgX in Section 2.5 of [1].
The internal states are as follows:

e State N: new line

« State .S skipping spaces

 State M: middle of line

 State K: after a Japanese character

The first three states—N, S and M —are as same as TEX’s input processor. State K is similar to state M, and is
entered after Japanese characters. The diagram of state transitions are indicated in Figure 3. Note that pIEX doesn’t
leave state K after ‘beginning/ending of a group’ characters.

11.2 Behavior in LuaTgX-ja

States in the input processor of LuaTgX is the same as that of TEX, and they can’t be customized by any callbacks.
Hence, we can only use process_input_buffer and token_filter callbacks for to suppress a space by a line
break which is after Japanese characters.

25

However, token_filter callback cannot be used either, since a character in category code 5 (end-of-line) is
converted into an space token in the input processor. So we can use only the process_input_buffer callback.
This means that suppressing a space must be done just before an input line is read.

Considering these situations, handling of an end-of-line in LuaTgX-ja are as follows:

A character U+FFFFF (its category code is set to 14 (comment) by LuaTgX-ja) is appended to an input
line, before LuaTgX actually process it, if and only if the following three conditions are satisfied:

1. The category code of \endlinechar” is 5 (end-of-line).

2. The category code of U+FFFFF itself is 14 (comment).

3. The input line matches the following ‘regular expression’:

(any char)*(JAchar) ({catcode = 1} U {catcode = 2}) *

Remark The following example shows the major difference from the behavior of pIEX:

\1ltjsetparameter{autoxspacing=false}
\1ltjsetparameter{jacharrange={-6}}xd
y\ltjsetparameter{jacharrange={+6}}zd
u

xyzd u

* There is no space between ‘x’ and ‘y’, since the line 2 ends with a JAchar ‘&’ (this ‘@’ considered as an
JAchar at the ending of line 1).

* There is no space between ‘@’ (in the line 3) and ‘u’, since the line 3 ends with an ALchar (the letter ‘3’
considered as an ALchar at the ending of line 2).

12 Insertion of JFM glues, kanjiskip and xkanjiskip

12.1 Overview
LuaTgX-ja (28 1) % JAglue DFF A LI, plpX DZ N IZ2 <R S, PIRX TIERD &S B TH > 7 ¢

o JEM 7V —DfF AL, FIXXXFERT b —27 V%R FTITIKFEY A NI (XF%RKT) (char_node) % &
e %#EfETirhnsg.

« xkanjiskip D AIL, IKFERY 7 ANDIY r—T v 7435 EENIiThbhb.
e kanjiskip I&/ — R & UTIHFAI N, S =YY FR47 0 30 BRIC TRIXXCIF %2 KT 2D
D {char_node) DIZIX kanjiskip 232] LD E AR IND.

U2 U, LuaTgX-ja Tl&, KERY 7 AANDINY r—3 v 7453 SR 2T O JAglue, HIH JFM 7))L — -
xkanijiskip - kanjiskip ® 3 flilE% AT 2 LIZR->TW5. ZHiE, LuaTgX ICBW T D AT -
==V TRER) — RR—=AZ B> Z L IZIET2EHTH 5.

LuaTgX-ja (235 1) % JAglue ffi AMLEETIE, RETTERT D [V 7 A&] Z2BAIZLTITONS. K
ZWo e, 724] BXFLZTNIIMMETE /) —RE (T 72y MIEMEHOI—VX, 1 2Y w0
fiiE) 2E2LDZELDOTHY, 22007 7 AZDMICIE, RFIVT 1, \vadjust, whatsit 2% &, FFfIZ
R LAEVEDNHD.

12.2 definition of a ‘cluster’
Definition 1. A cluster is a list of consecutive nodes in one of the following forms, with the id of it:

1. Nodes whose value of \1tj@icflagisin [3, 15). These nodes come from a hbox which is already packaged,
by unpackaging (\unhbox). The id is id_pbox.

2. A inline math formula, including two math_nodes at the boundary of it. The id is id_math.

#Usually, it is (return) (whose character code is 13).

26

3. A glyph_node p with nodes which relate with it:

(1) A kern for the italic correction of p.

(2) An accent attached to p by \accent.

(i)
r N
(b)
glyph G
accent
kern kern glyph kern
subtype =2 ’ Fhox > |subtype =2 > p > litalic corr.

accent (shifted vert.)

The id is id_jglyph or id_glyph, according to whether the glyph_node represents a Japanese character or not.

4. An box-like node, that is, an hbox, a vbox, a rule (\vrule) and an unset_node. The id is id_hlist if the node
is an hbox which is not shifted vertically, or id_box_like otherwise.

5. A glue, a kern whose subtype is not 2 (accent), and a discretionary break. The id is id_glue, id_kern and
id_disc, respectively.

Let Np, Ng and Nr denote a cluster.

id DEBK Np.id DEKRZBRND L L7, TEEOXT] 2%KT glyph_node Np.head &, [HED LT]
%39 glyph_node Np.tail XD & S IZEET D, EEMNIZE D &, Npld Np.head Tl Y Np.tail TH
DBEOREE CRAMTIENTES. TIN5 Np.head, Np.tail \$SHPARIZHERL Z8&TH-T, E
BXOD Lua 3 — RAFIZZD LS IZEMNT VS DI TIEARW Z LICHER.

id_jglyph RIS
Np.head, Np.tail 1, TORXXLF2RKUTWD glyph_node TDOEDTHS.
id_glyph F13CXF%FK LU TWR glyph_node p.

% DIGE, p I FE2EMUTNED, B REDEFIZL > TESLNT glyph_node TH 5]
BEMEE HD. HIEDYE, Nphead, Nptail=p TH2. —1H, BEDEE,

» Np.head I%, EFDORRBERDILTE— (ZD glyph_node (ZH1T2) GF O ERD I TH— -
EHIRITHREBL TWo TR E Y H\W = glyph_node TH 5.
e Nplastid, FFRIZKESRKE-SEMEKEL THLEYH W glyph_node TH .
id_math > 71 VER.
B FINZ, Np.head, Np.tail £ £17 [XFI—R -1 DX F] 5L,
id_hlist Y7 B INTOWBRWVIKERY 7 A,
Z D%, Np.head, Np.tail ZZTNTN p DNEEKRTVAND, i - RKED/ —RTHD.
o MIMICE->TIE, TRX Y —ATED &
\hbox{\hbox{abc}. . .\hbox{\loweript\hbox{xyz}}}
D&, p ODNBEMRIOKERY 7 AT - T UTWSAREEE +aH)EE. TDOX
574354, Np.head, Np.tail DRI, BEARICS 7 NINTWRWKERY 7 2D5E7
R A IR T 5. HIRIE EOHITIX, Nphead 1337 Tal 2K$ /) —RTHY, —

Fi Np.tail IZEEFMIZY 7 NINZKERY 7 A, \loweript\hbox{xyzHIMtnd s/ — R
Thd.

© Fz, BEIZT 7Y MIEOXFRELY, REICA XV Y IHIEMDOAI—V kS It dh
D135, ZOBEIR, VIARDEZEDE IAIZEH--EDI, TNLHIXEMRLUTERZTS.

o It - WED) — RPETIZE > TES N glyph_node D & X%, TNENIZX U T id_glyph
AR E R 2 - &> T <.

id_pbox THRIZMUEINAZ] J—ROVANTHY, TNHD) — RPZFBUREZZF 20N 20IEFLHT
1 DD T ARELUTHEIEKS ZIITHS. id hlist L [F U }ET Np.head, Np.tail & 8HHT 3,

27

id_disc discretionary break (\discretionary{pre}{post}{nobreak}).
id_hlist £ AU /55T Np.head, Np.tail # 5H T 25, &3 518D nobreak (74 EHDFHONZRVEF
DHE) 2>, SN, I THAEDPREEL ZRORIIZE S EBIZANZ .

id_box_like id_hlist £ 7% 5732\ box X, rule.
Z D&, Np.head, Nptail DT — R IIFHAINBZNDT, 2 O00FBIIMERTHD. A TH
R DH5IX, Np.head, Nptail 1332 nil fETH 3.

i DL EZRW id 1IZ3 U TH, Np.head, N p.tail DE HIZHEEIE.
VSR DRDORE I 51T, JFM VI —Fi A O FEEEOFIIZ &K D EFZR X D1, id LiEMD s F A
ADDE=T>TEL. FHANHETIE2 DOBY 527/ 7 AXDMIZEAEDERDOAZITD Z &k

HHZE WA, T2 TOHHATIE, MEICLTWE 7 I AZ Npld 1AMl OV A2 THL LTS, THi
i) DU FAZIZDONTIX, ANDOFHT head 73 last (ZEESHHD I LITERTLH I L.

XA VANUZEZHEL TWSHISCCE. id 7Y id_jglyph TH 2D,
id H id_pbox Td > C Np.head » JAchar TH 3 & X,

FXB VA RNFOKFERY 7 2D UTHE L ZFSUF. HISCA L OEWIE, ZHORTIC
JEM 2OV — D A THh R (xkanjiskip, kanjiskip id AN 1H5d) Z&Thb.
id 7 id_hlist * id_disc Td > T Np.head » JAchar ThH 5 & .

BR3C U A HIZESEKERY 72 A0S UTHEBEL TO ST, RD 3 DDHENEY :

e id DN id_glyph TH 5.
o id D id_math TH 5.
e id D id_pbox W id_hlist H* id_disc T3 > T, Np.head »* ALchar.

8 box, ELIXFNIZELTEED. RD2DOHFHY .

e id 2% id_pbox % id_hlist * id_disc T3® > T, Np.head »* glyph_node T\ .
e id H id_box_like TH 5.

123 EB% KERY U RDOEEYKE

SEEEDMIE 9, BYEKERY 7 AD—FBHRUNIH DT T AR Np 2 ERT D, KERY 7 ADGE
I DOREE RVH, BEEDBETIRUTO) — REEZ HNCHARIEL THL

\parindent FIRDKFRY 27 A (subtype = 3), KU subtype M 44 (user_defined) T3\ & 5 7% whatsit.

2%, \parindent HIEDKTRY 7 22 5 2R ERHEKLAENES 1252 -DTH 5.
KIZ, Np DHERTIZZEE ¢ % BERLFHATS
1. ZOMEAE < &> 7% Np B A THS.

2. MDY A NP EFTHY OBY& (\parindent HERDIKERY 7 ZAH 1Y) OBEIE, ZDZ%EH gld
(X5 3— R 'parbdd' DXFE] & Np DEIZAS IN—/"T1—VThb.

3. TOTRWE E (noindent THIAI NAZEREXAERY 7 A) 1, gld [XFI— N 'boxbdd' DX
F] & Np DENIABTN—/"H—VTH?.

27U, BL gdglue THo856E, ZOHAIZE ST Np IZXDIT0EPH 72 I BEIZ R DN ETIEA
V. TIT, DANDEEIZIE, g DIERTIC\penalty10000 Z AT 5 :

o FBEIZLTWVWE U ARREETHY, D
o Np DHIZIEFORFINT 1 B2 <, glid glue.

28

RKEDWIE RKEOWHIE, FEDY A NPEEDEDPKERY ZADEDNIE>TERLS. BED
LBERED BmBEDT T ARE Ng B L, Ng& 37— K 'boxbdd' DXF| ORIZAS T IN—/
N—2%, Ng DEZIZFATDEIOATHS.

—Ji. i (BE) O5ElE, VA NOKREIXEIZ\penaltyl10000 &, \parfillskip HRD 7LV —7%
FETD. £oT, gDV T A& Np &I D\parfillskip HEKD T I —&), EEN LT EHDOEREKIT
ZD1DHDY5AR NG L55.

1. £3° Ng OHEHIZ (BIZER2) line-end [E] 12k > TEE 2[4 HAT 5.

2. R, BEDTBED NBE OFSCT: + Al AL U 72178 85 D % B < 7212, jecharwidowpenalty
DAED 53 72T WY B G DRIV T« 2T,

RFINT 4 BZ2 XTI, head 73 JAchar TH Y, N DOZFDLFED keatcode WEMTH D LS
BEBOV I ARDERIZHBEDELTH DB,
124 #ERE BRI : 2 DD TFIXX Al DB

HATBAR7ZE DI, 2 DD G722 F A&, Ng & Np DREIIZIX, _FIVT 1, \vadjust, whatsit 72 &,
FRBICIZBERLRNEDRH B, BEAWIZERT L,

(@

r N

cluster penalty whatsit cluster
Ng — » —_— e — — Np

DEDITE>TWD. D (a) YT ZHIZIE, MO —REBWEEEELAAHVED. TH5LT,
JEM 7V —$A12121E, D275 AZMIFEROEDIEDS :

@:3
r Y
cluster kern penalty whatsit glue or kern cluster’
Ng > |2 p+x > T > | AZEE Np

Dk, BBMERHIE LT, V53R Ng & Np BRICHIXATHZHEEZRTWI D, ZO5EMRET
DLGEDERLRD.

TEZH] OBH F9, GEA] IHh-2E2EHTDI. BEIZING, BYE -2 2 DORMXCFM
IZADEHEL RS,

JFM BH3E [M] JFM OXF Y 5 AEIZE DT ABZEAZUTIZE2TRDZ. ZORMTEAEIRE
CRIE) 7Zo72%4, 774V M Kkanjiskip ZBAT 2 Z & &R 5DT, R,

1. £ UiliZ 7 A& D T\inhibitglue RFEFTINT WA (GEL U T whatsit / — NAYH Bjff
AXN D), I kanjiskip WA IND Z & &85, KA.

2. Ng & Np AU JFM - AU jfmvar ¥— - AUH A ZOHL T 4 Y N Tho/-A 51, HEIC
ffioTWE IFM N TIHAINDZE (ZIh—2Hh—) BRESTVENHANR, RES>THN
TN % B,

3. . TH 2. THRWVEAIEX, Ng & Np &> JFM/jfnvar/Y 1 ATH 5. ZDEHE, £7

gh:=WNg & THHZ7 4>V NP Ng DZTNEFRUT,
XFA— KRB Np DENDXF] EDORIIAD TIN— /=)
ga: =742 N Np DENEEUT,
XFA— KRB Ng DZENDXT] & Np EDRUIAD T IV—/"F1—)

& UT, BillDOXXED JFM & {#io 28Dl (FIV—/"h—) &, BIUOXFED JFM % {fi->
I-RDZENERDD.

gb, ga TNTNIIKT B (ratio) D% dy, d, £ T 5.

SKMEHIZE 21, keatcode WHTH S & > & JAchar 2 E LTHEATVWSH I &Itk b. keatcode DIk FALE Y MEI D
jcharwidowpenalty FHIZDARAI N5.

29

s gal gh DM iNRKEHRTHDAHIE, JFM HERD 7V —IdiF A I NG, kanjiskip % FEFH
TOILLBD. ELONFTIDANKRERTHOEHIE, ROATY TTEDRERD S
IZET 0D kern T, (ratio) DEIZ 0 TH 21D &S IZHhbhd.

« diffrentjfm DfEAS pleft, pright, paverage D & X, (ratio) DIEIHE> TLHHIEL %2175 .
JEM HSRD 70V —/ F1— VIR DL 755 -

l—dbb+1+d,, l—dab+1+da
f 78 788 5 &

ZZT. f(x,p) &

X if diffrentjfm = pleft;
fx,) =9y if diffrentjfm = pright;
(x +)2 if diffrentjfm = paverage;

« differentmet 23 NS DIEDFEIE, (ratio) DIEIFIER X 4, JEM KD 7V — /" H— ik
UTFDOEE RS
f(gb.ga)

ZZT. f(x,y) ik

min(x,y) if diffrentjfm = small;
max(x, y) if diffrentjffm = large;

(x +)2 if diffrentjfm = average;
x+y if diffrentjfm = both;

fx,y) =

Bl 2,

\jfont\foo=psft:Ryumin-Light:jfm=ujis
\jfont\bar=psft:GothicBBB-Medium: jfm=ujis
\jfont\baz=psft:GothicBBB-Medium: jfm=ujis;jfmvar=piyo

WD 3 THXVNEEZ,

p q r
glyph glyph glyph_

\foo, ‘®’ \bar, ‘\’ \baz, ‘>’

EWVWH3) —REEZDE (FNTNHEMTI I AZERT). ZOEE, p& qDEIE, E74V 6
MEBDIZEPPDET 2) DR RDZ—FHT, gL rDE (E74Y MBELADIZ) jfmvar
F—DONBENELDDT (3) DRIMEL RS,

kanjiskip [K] ED [M] IZBWTEAWNEZ LB 250, UFTED-E 1540 L UTRHET .
ZDEREIZEWTIE, \inhibitglue I8N &£\ 720, FERE LT, 2 DOHMSCCFRITIEE
W SDDITN— /=W AIND Z R85,

1. W72 AR (B#EIZIE Ng.tail, Np.head) DHEDIF 11— RIZxd % autospacing /37 A &
WAL false Z o725 E1E, EI 0D glue &9 5.

2. —HfIH 5 7= kanjiskip /85 A X D ERED \maxdimen = (2°° — 1) sp T IFHUZ, kanijiskip
INT AZRDfERFD glue 2T 5.

3. 2. THWEAIX, Ng, Np THEDLIN TS JFM IZHE XT3 Kkanjiskip Dfiz A5, &5
SMF DT T AR EZFRR T (FIXA-FIXB) OLXE, TH6DI T AR THEDNT
W2 JFM HEDMEZ 1T 2 AVWS. & LlE THEDLNT WD JFM BEZ - 2561k, ED [M] 3.
ERBRD HEEHNTHHET 5.

MEZH] OERETNICHIBE [HEEA] IFBEON—-YVa Yy TEERLTWAED, ZON—Yay
TIIAAR—UTbzy (BEREEEEIRL TWE). L, ERRIZRENTH Y, FREET 25 mnelk
CHZ7D, ¥ZaTIVHORRIESDE ZAMIZEEL R,

30

Table 6. Summary of JEM glues.

Npl | HIXXA M B WRSC Fit] glue kern
E M—-K — O4,—K — 0,—X — O, — O, — On
AICA PN PN PN PA PN PS
E Og—K — K — X
AIX B PA PS PS
E Og—X — X
X
X PA PS
" E Og
M PA
E Og
glue | —py—
E Og
k
ern 55
E M-—-K
Here AN means that

1. To determine the ‘right-space’, LuaTgX-ja first attempts by the method ‘JFM-origin [M]". If this
attempt fails, LuaTgX-ja use the method ‘kanjiskip [K]'.

2. The ‘left space’ between Ng and Np is determined by the method ‘line-end [E]".

3. LuaTgX-ja adopts the method ‘P-normal [PN]’ to adjust the penalty between two clusters for
kinsoku shori.

ZRRARFILT 1 DEA T,

a 1= (Ng® DFIZx Y % postbreakpenalty D) + (Np” D FIZxEd % prebreakpenalty D)

B RFPNVT 1 IFEE [-10000, 10000] DEEfEE L V), F7/2 +10000 IZIEEDER K% EERT L &

ZRHSTWSA, 20 a DR TIREMRBEDOMBREZTS.
a \FEEHIEEFHIZ Ng & Np ORIZINA 5N RERFIVT L ETH 5.

P-normal [PN] Ng & Np DD (a) #5312 F)T 1 (penalty_node) D> HIUFNERIXHHTH D : THhHD
B —RIZBWT, RPNV T1fE%E (£10000 2 fER KL UTHRNDD) a ZFHEMIENIEL V. £

7z, 10000 + (—10000) =0 & LT\ 5.

DaRBDIE, (@) IR FIVT 4 BIEFEELUTHRWGEETH D, EENIZ, fEITRIEGHN0T

BNE X, TOME%E L D penalty_node #E>T THEH] O (5 UREZRLS Np D) BERETIZHA
EWND T LITARDD, ERITIHMENI I NIV EHTHD.

o [HZEH] BH—VvThd L, ZThid [Ng & Np ORI TBITEII NN Z 22 ERLT

Wb, TDRD, ZOEEIFa#E0TH>TERFILT 2 DFAIXL L.

o [HEZEH] BA—VEULTEobDERINTVDHE (ZDLE, [HEA] -V TRV,
ZD TEZER] OBEBTOTREHEZHFRELRNEWVTRNDT, a=0TH>TE penalty_node

ZESOTHATS.
s LEDENTERNE XX, a#0 7851 penalty_node E>THAT 3.

125 Z0fDBE
AHONEIER 6 ILELDOTH .

TREEZIZ T NE N Ng.tail, Np.head.

31

FISLA ERRIDE Ng BHIXA T, Np BRXDE4, JEM 7V —H#ALBLIZRD & 512U THibhb.
o THZEA] b\’C &, FTUUFITEAS Boundary-B [Og] I & W EHEZREL &5 LidAad. Th
b‘#&ﬁ&(bt A%, xkanjiskip [X] I2&>TEDS.
o [EZEH] IZDWTIE, BRI line-end [E] # T D E FHHTD. TIIED THEH] OHIE
EHU.
o ATV T 1 E, PRz P-normal [PN] EEIUTH 5.
Boundary-B [Og] FI3C3C7 e TRIXTRVWED] LDORIZAZEHEZLATIZE > TRD, RKEZETRITN

Xehz TH2EH] L UTRATS. JFM-origin [M] O£ ZX TRV, ZHIE>TEEDEH
DA, FIXOEA U & X FZOMIZAZD AT FTHS.

LB UMY 7 AZ O/ T\inhibitglue BEITINT WA fE& U T whatsit / — RAYH B
ATIND), R,

2. THOTHRIINIE, Ng & 73— KM jcharbdd' DXF] L DRIIAD I N—/H1—> &L
TEXS.

xkanjiskip [X] Z DOBHETI, Kanjiskip [K]D& S &E U &S1Z, AN TEDZEE [H%2E1) L UTHRA
T5. ZOBRET\inhibitglue IR 2R 0DERUTHS.

1. AFOWIN»DHEIE, xkanjiskip DFFAFHIEI NS, UL, EBRICIITHE 2 HET S
12, BEX 00D glue RT3 :
e M7 T ARIIBNT, TNHDOHEDXFI— RIS autoxspacing /37 A & H3Ek(Z
false TH 5.
o Ng DFEDXTFI— RIZDWT, NEEAD xkanjiskip DFFA] BEEIEIN TS (DF Y,
jaxspmode (or alxspmode) /85 X 32 DL L).
o Np D EDOXFI— RIZDOWT, TERIANOD xkanjiskip Dffi A 25 EIN TS (DF Y,
jaxspmode (or alxspmode) /3F A & HMEE).
2. —YIm 5 7z xkanijiskip /85 A & D EREA \maxdimen = (2°°—1) sp T# 31U, xkanjiskip
INT ARDEEFFD glue Z AT 5.
3. 2. TRWGAI, Ng, Np (RIS AFIX B AEDIZF D) THEDLITWS JEM IZEEEI T
% xkanjiskip OfE %z AV

R &FIX A DB Ng AT, Np BRI A DB, JEM 2V — AL EOB L IBIER U TH 5.
FIXXA DT T AZNHIZ%%5DT, Boundary-A [Op] DEBD 2D D 21T .

o THZEH] IZDWTIE, £ILAFIRAS Boundary-A[Oa] IC& D EBHEZREL LS LiRkAD. ThH
MR U 72354 1%, xkanjiskip [X] IZ&>TEDD.
o Ng WHIXXTHRWOT, EZEH] XBEHI RN,
o ZERIHANF IV T 1 1F, LARiTdR N7z P-normal [PN] &R U TH 5.
Boundary-A [Oa] [FIXTRWED| EHXXFEDMIZAZZEAZUTNICE>TRD, REZBTHRITN

FehE TH%EH] L UTRATS. JFM-origin [M] DZfEE ZE X TRV, ZHIZE>TEEDZEH
DTN, W F E XD S FEIRE DEIZAD AT FTHS.

1. £ U7 7 AZ DR T\inhibitglue NWFE/TINT W2 HE (REL U T whatsit / — RASHBFH
AIND), KA.

2. FHTRIFNE, TXXFI— KM jcharbdd' DXF | & Np LDFIIAS N —/"H—> & LT
EED.

32

MXAEFHE-TI—-"H—2VDE Ng WHISCAT, Np B - J)v— - =2 DTN TH - 2545, i
FEOBNZHFAINDG JFM Z NV —IZOWTIEECMETH D, LU, TITOFDENINT 2 HEENER
B5NDT, RFNVT A4 OFAMBIIHE FRBESZEDELRD>TWVD,

o THZ%EE] IZOWTIE, BEZH A Boundary-B [Og] 12 & W ZEHZ2WEL &5 LA 5. THHLIK
UG aid, THZEA]D AT RN,

o TAEZEH] IZDOWTI, BEIZ@RAR/ line-end [E] DRI GEE2ZTOEEHRMT S, TS TH%E
H] OFESRU.

o ZAIHNRF I T 1+ DWIRIE, $ADI T AR Np DFFIZE > TERALD. B, Nphead I FHEEKRT
HBdM5, [Np.head (ZXIF % prebreakpenalty Dfi] 10 L AZRINDG. S AN,

a 1= (Ng® DXXFIZHT % postbreakpenalty D).

B Np WHETHoG80E, W7 5 AL DM TOF3ENE (BHRIIZH 2 5 A 2 DFIZ\penalty10000
MBSBEERS) WOEHRIND. TD/H, RFIVT 2 WHIX, BITENS P-allow [PA]
7Y P-normal [PN] DD D IZHNSGND.

JI— Np W7 N—0DgE, RFIV7 1 JLHIE P-normal [PN] % 5.

H—Y Np BSAH—2ThoGE1F, W77 AZOBTOTSENE (BHRIIZHE 2 7 A X DORIZA~S
VT A BB ZGEEERE) FFEINGD. RPN T ¢ I, #%I5E~RS P-suppress [PS] %
fifi.

ZH 5D P-normal [PN], P-allow [PA], P-suppress [PS] D&\, Ng & Np O] (BARTDORI7Z & (a)

DEBS) AZRFIT 4 DFEHE U BDVIGEIZDAGFIET D.

P-allow [PA] Ng & Np OED (a) F3 2 F IV T 1 DK, P-normal [PN] & [/AkkIZ, ZN60D%) — R
WEWTRFINT A% a ZTHEINIES.
@) IR F I T 4 BFIEL TR WIS, LuaTeX-ja 1& Ng & Np ORID{F0E| %2 fRElIc L &S &
95, TDROIZ, LANDHEIZ a 2 E D penalty_node #{E>T [HEH] O (HEUEREEZS Np
D) ERTZHIATD :
o [HZEH] MITIV—TR (H—VMEKEH) THDL X,
o TEZRA] A=V EeLTESBLYERINT VD
P-suppress [PS] Ng & Np DEID (a) TZRF IV T 1 HBdH AL, P-normal [PN] & FRRIZ, TN5DHE) —
RIZBWTRFNT A% a ZITHINIES.
@) TN NRFIVT 1 BFEL TORWES, Ng & Np ORIDOTHENZTE 4 RAlEEDIZ T Z > /DT
H3H, LuaTpX-ja i TNE DO IDOITHEAEIIEL RN, TD2d, [HZEH] 2 glue THNIL,
Z DEH]IZ\penalty10000 & AT 5.

B, THEA] FA—Y, TEEH] ZREED

Ng Np
glyph glue
T | 1 pt

DEIBRMEEZEZD. ZDL X, a, BB [H] D postbreakpenalty NN R5ETH>TE, ZD2 7
5 2 & W BAR I

Ngq Np
glyph kern glue |
< a;) s | —> E% El E— 1 pt ()

LY, affDORFINTAIFHAINLNZ LITHERE L TRUW. postbreakpenalty i& (a I%) FaE DS
MPIREDEEEZ LN, ZOEIRGETIXA) &

Ng Np

—— —_——

glyph penalty kern glue
‘B’ > a > HZEA 1pt

E ORI =R U RN,

“kern—glue 25 1 DDFFHEITRES (THENAED RF VT 112 0) TH B, 72¥ X a=10000 TH>TH, Ng & Np DRITIF
DNEEERIET DI LIFTER .

33

BN — A=V EMXADE Np - Zh— - H—=VDOTNNT, Np BWHIXA TH-o =551,
T ED (Ng & Np DIEFEHIZZ>TWS) HELIFFRAUTHDH, [EEH] PRSABRDZILIZOA

Py ==
.

o TH%EA] IZDOWTIE, BECRA 72 Boundary-A [Oa] 12 & D EEZBEL &5 kA s, Tha skl
LB, TA%EA] EAI AR,

o Ng DSHICTROWDT, [FEZ22H] 3EHI AR,
o BEAIHNRFINT ¢ DML, Ng DFEFIZ L > THEARS. Ng.tail ITEEERRDT,
a := (Np'"® DXFITHT % prebreakpenalty D).
8 Ng PFOEAE, P-allow [PA] 2\ 3.

JIv— Ng D37)0V —DH4E1%, P-normal [PN] % H\ 5.
H—> Ng »7—>DHE1E, P-suppress [PS] & AW 5.

MX A EMXB DEV KRR ESIZ, MIXBIEAKERY 7 ZADHH D (or KFE) & UTHIHEL
TWDHXXFTHD. VAMNIZERE) — R UTHNTODHIXCT (FIXA) LDENE,

o FIXBIZXUTIE, JFM DX FY T A$REMN S E & %221 JFM-origin [M], Boundary-A [O,], Boundary-B [Og])
Off AMFfThNRw. TEZEA] ORHBIThbhEay. iz,

- FADFISCA, £ K AP B DY 5 A2 D¢, Boundary-A [Oa] & 72 1% Boundary-B [Og]
DA% AA, TN A5 kanjiskip [K] DFFAZ1T5.

- MIXB D220 7 AZDRIZIE, kanjiskip [K] 2HEIKIZAS.

e FIXB YL - IN— - H—VhBELLE X (b 5NFNTEERY), BIZIFM 70— - RV
T4 OFAF—Y LR,

o FIXB LHIXB, /2R3 B & ECCE AW L 72 Ifld, ZRAIH < F)VT ¢ ffi AL P-suppress [PS]
VLN,

o FI3C B DX FIZxd % prebreakpenalty, postbreakpenalty DfEIX b NT, 0 & U TR IND.

RBEMRBITH B -
i d. \inhibitglue A\\ H. A
> \hbox{d. }A\\ H. A
3 H. A H. A

* 1 fTH®D\inhibitglue & Boundary-B [Og] DA D A Z M LT LD DT, EVA RE TA] ORI
xkanjiskip (14437 %) 2AS Z LITHER.

c 2fTHOE VA R & TA] OMIZEWTI, HIENIXB &£745 OKERY 7 ADhmEGDREE LT
FHLUTWSMNG) DT, £HTE Boundary-B [Og] DALELZITHNZR. &> T, xkanjiskip 23 A
52LLRB.

« 3f7HTIE, EVARDETDIIZIARIIHILATHD. ZHilk->T, CUFRE TA] OfIZIE
Boundary-B [Og] H2RD M7 FWAS Z LIZ85.

13 psft

34

14 Patch for the 1istings package

It is well-known that the 1listings package outputs weird results for Japanese input. The listings package
makes most of letters active and assigns output command for each letter [2]. But Japanese characters are not in-
cluded in these activated letters. For pIEX series, there is no method to make Japanese characters active; a patch
jlisting.sty [3] resolves the problem forcibly.

In LuaTgX-ja, the problem is resolved by using process_input_buffer callback. The callback function in-
serts the output command before each letter above U+0080. This method can omits the process to make all Japanese
characters active (most of the activated characters are not used in many cases).

If listings.sty and LuaTgX-ja were loaded, then the patch 11tjp-listings.sty is loaded automatically
at \begin{document}.

Class of characters Roughly speaking, the 1istings package processes input as follows:

1. Collects letters and digits, which can be used for the name of identifiers.

2. When reading an other, outputs the collected character string (with modification, if needed).
3. Collects others.

4. When reading a letter or a digit, outputs the collected character string.

5. Turns back to 1.

By the above process, line breaks inside of an identifier are blocked. A flag \1st@ifletter indicates whether the
previous character can be used for the name of identifiers or not.

For Japanese characters, line breaks are permitted on both sides except for parentheses, dashes, etc. To pro-
cess Japanese characters, The pacth 11t jp-listings. sty introduces a new flag \1st@ifkanji, which indicates
whether the previous character is Japanese character or not. For illustration, we introduce the following classes of
character:

Letter Other Kanji Open Close
\1lst@ifletter T F T F T
\1lst@ifkanji F F T T F
Meaning identifier char other alphabet most of Japanese char open paren close paren

Note that digits in the 1istings package can be Letter or Other according to circumstances.

For example, let us consider the case an Open comes after a Letter. Since an Open represents Japanese open
parenthesis, it is preferred to be permitted to insert line break after the Letter. Therefore, the collected character
string is output in this case.

The following table summarizes 5 X 5 = 25 cases:

Next
Letter Other Kanji Open Close
Letter collects _ outputs_—_ collects
Other outputs collects _ outputs____ collects
Prev Kanji outputs collects
Open collects
Close outputs collects

In the above table,

* “outputs” means to output the collected character string (i.e., line breaking is permitted there).

* “collects” means to append the next character to the collected character string (i.e., line breaking is prohibited
there).

35

Classification of characters Characters are classified according to jacharrange parameter (see Section 4.1):

¢ ALchars above U+0080 are Letter.
¢ JAchars are classified in the order as follows:

1. Characters whose prebreakpenalty is greater than or equal to 0 are Open.
2. Characters whose postbreakpenalty is greater than or equal to 0 are Close.

3. Characters that don’t satisfy the above two conditions are Kanji.

The width of halfwidth kana (U+FF61-U+FF9F) is same as the width of ALchar; the width of the other JAchars
is double the width of ALchar.

The classification process is executed every time a character appears in listing environments.

15 Advanced line-adjustment for Japanese characters

References

[1] Victor Eijkhout, TgX by Topic, A TgXnician’s Reference, Addison-Wesley, 1992.
[2] C. Heinz, B. Moses. The Listings Package.
[3] Thor Watanabe. Listings - MyTeXpert. http://mytexpert.sourceforge.jp/index.php?Listings

[4] ZEBEkE, minl0 7 4 > MIDWT. http://argent.shinshu-u.ac.jp/~otobe/tex/files/min10.
pdf

[5] W3C Japanese Layout Task Force (ed), Requirements for Japanese Text Layout (W3C Working Group Note),
2011, 2012. http://www.w3.org/TR/jlreq/

(6] HAR T 2##% (Japanese Industrial Standard) JIS X 4051, HAZE X E DHMIK 5% (Formatting rules for
Japanese documents), 1993, 1995, 2004.

36

http://mytexpert.sourceforge.jp/index.php?Listings
http://argent.shinshu-u.ac.jp/~otobe/tex/files/min10.pdf
http://argent.shinshu-u.ac.jp/~otobe/tex/files/min10.pdf
http://www.w3.org/TR/jlreq/

A The category code of non-kanji characters defined in JIS X 0213

In these tables, the default catcode (LuaTX-ja) and kcatcode ((u)pIEX) of non-kanji characters defined in JIS X 0213
from row 1 to row 13 is summarized. Each character is printed as follows:

LUP

The tables are generated by using \ jis command for characters included in JIS X 0208. Each character in the tables
means:

* The background of a character regarded as ALchar in LuaTgX-ja is colored light blue.

* The first letter L means that the character is available for the name of a control sequence in XHIEX and
LuaTgX-ja (its catcode is 11).

* The second letter U means that the character is available for the name of a control sequence in uplEX (its
kcatcode is 16 or 17). upligX regards these characters as Japanese character.

* The third letter P means that the character is available for the name of a control sequence in pIEX (its kcatcode
is 16 or 17).

* If the third letter is — (or the character is printed in red), the character is not included in JIS X 0208. Therefore,
you can consider the character is not available in pIEX.

¢ The kana for bidakuon in row 4 and 5 are omitted.

Row 1
"o "L "2 "3 M4 w5 mg M7 Mg Mg wp WB NG) WE NF

"2x Cle L0 L0 L0] [Jol] [L] Bwldol] [l [f]

vax e [e Do [NMow Blw Sw 7o [Bfw [#]e [¢]e Ok [Hw =] [] [

v N S [0 [[[[P [[

"sx [{ L] [+]

vex =] [=]e <k Bk L] L]]

"7x [$] [#e [&) [*) [@] [§] O] [e] O]
Row 2

"o " "2 w3 w4 w5 g w7 wg mg wp WwB wC WD WE OF
"2x o [Of m [a] [a] [¥] [[[Tl = [e-
"?»c[]L—E]L—IL-ﬂL-/L-IL—IL—IL—Ww—Iw—
ax Ul [O] o] -p] -] -R] -] -] -] - e B [E
sx (3] [o] -] -] -[1 -K] -[d -D] -[¢ E] 0] - El
"6x@E]E]I§]E—E]—E]—E]——
xR -] - [AlL [%) [b] 0 k] -] -] -[] -]

37

Row 3

"0 " "o "3 "4 "g "g Lvd ng "ng "A "B ne "D "E "p

"2x e o e e R e e O e o e 2 e e o e e e A e A e e

"3x @LU‘P LUP LUP LUP LUP LUP @LUP LUP LUP @LUP - - L - L - L - E] -

"4x [+ | - [A]we [B]rwe [Clroe [D]rue [E]wve [Flroe [Groe [H]wwe [1]rve [J]roe [K]woe [L]rve [M]rop [N]oe [O]rue

"bx E]LUP @LUP IE]LUP [S]we .LUP mLUP MLUP [W]Lop .LUP ELUP (Z]rop ﬂ - .L -] - .L - @L -

wex [0] - [a]we [b]wwe [c]roe [d]roe [e]iwe [f]roe [g]roe [h]wwe [Jroe []rop [k]woe [1]tve [m]roe [n]roe [o]ue

"T7x E]LUP @LUP LUP LUP LUP LUP LUP LUP LUP LUP LUP E] U- E] - - E]

Row 4

"0 " " "3 "4 "g "g nwy "ng "ng "A "B "e "D "E "F

"2x [#]wwe [®]roe [w]roe [Wwoe [5]woe [S]eoe [a]woe [Z]wve [8]toe [&]roe [BYuoe [A%roe [E]roe [E]woe [<]rve

3]
"3x [<eoe [iF]woe [F]wve [Z]roe [T]eoe [F]woe [F]roe [Lleoe [Cluve [$]eoe [$eoe [#]woe [€]eve [Z]roe [F]roe [72]iue

"ax [Kroe [Bluwe [Bluwe [2]toe [2]roe [B]uwe [Troe [Tlroe [E]we [E]woe [£2]roe [1IC]woe [5]wve [13]roe [@]roe [1E]Lue

"bx LUP [1E]rop [O]rop LUP (e [&|rop [&]eoe [&R]woe LUP LUP LUP LUP LUP LUP LUP Ee:

"6x LUP LUP %]Loe LUP [®]Loe LUP [6]Lup LUP [&]rop [5]rop LUP LUP LUP Bl LUP [B]ro

"Tx LUP LUP LUP LUP LU— LU— LU—

Row 5

"0 " "o "3 "4 "g "g Lrd ng "ng "A "B ne "D "E "

"2x [7]wwe [Z]roe [« Jroe []uoe [%]eoe [2]eoe [z]woe [T]wve [|roe [#]roe [A]woe [H]ioe [F]roe [F]woe [2]iwe

"3x [¥]Lop LUP 5| Loe LUP LUP LUP [HFleoe [~]roe [Prve [R]Loe LUP LUP []eoe [V]rop LUP (%] rop

"ax [#]rop LUP [F]eoe [v]eoe [V]eoe [V]woe LUP LUP LUP LUP [F|rop E]LUP [R]rop [X|roe [/]woe [/N]Loe

"5x [/X]Lop LUP LUP LUP [E]eoe [Z]rop [Frve [Fve LUP LUP LUP 7] rop [R]eoe [R]woe [<]Loe LU'P

"6x LUP [X]rop [E]rop LUP [¥]eoe [2]eop [2]eoe [2]wve [3]ive [5]ror LUP LUP [L]rop @LUP [7]wop [7]rop

"Tx LUP LUP LUP LUP LUP LUP LUP

Row 6

" O " 1 "2 "3 "4 "5 I|6 Il7 Il8 "9 IIA IIB IIC IID IIE IIF
"2x LPLPLP@LPLPLPLPLPE]LPLPLPLPLPE]LP@LP
"3XLPE]LPLPLPLPLPLPLPLPE] —E] —@ —[] —E] —E] — -
"4xE] —@LP@LPLP@LPLPLPLPLPLPLPLPLPLPLPE]LP

"5XLP@LP@LPLPLPLPLPLPLPL— — — — — —

'6x [@] -[@] - [0 -] -[&] -[=]-[3] -[+] -[a] -[7] -[5] -[8] -] - [2]w [

"Tx LU— LU— LU— LU— LU— LU— LU— LU— LU— LU— LU— LU— LU— LU— E]LU—

38

Row 7

"o "1 "2 "3 "4 "5 "6 "7 " "9 "A "B "C "D "E "F
"2x (Al [B]e [Bl [Flv [A]e [El [Elr [xe [S| [Wp Me [Kl [2)e [M]e [H]
'3x [0 [Mlv [Pl [Clv [T]e ¥ [oft [X]Jo [uf [dfr [w]e [Wp [Ble [ble [bl [9k
rax O (Al [-[0 -[¢] -[0 - (9] -[4] -4 -4 -1 -F - -0 -0 -0 -
vsx [[] -[ale [6]u [efe [r]r [afr [elr [e]v [xfo [sfv [u]e [[kfr [a]c [w]r [W]
vex [o]u [nv [pfr [ofr [r]r [y [éfr [xJo [up [ufe [w]e [wf [ele [ofr [or [oh
'7x [ofu [ale [Thw- [Fw- [Zho- Flo-E] -] -E] -B] -] -4 -# -] -] -

Row §

"0 " " "3 "4 "g "g Lvd "ng "ng "A "B e} "D "E "

"2x I e O e e o 1 O e O = O e A A == AN W A Y= =Y

a2l ol e 1 = I = = I e O = = A = O 1 Y e O = O = O ' A = A

"4x L—@]L—L—L—@]L—L—@]L—L—L—L—L—L—L—L—L—

"5XL—L—L—L—L—L—L—L—L—L—L—L—L—L—L—

o B -F] - -0 - -1 -] -

"7xL—E|L—|EL—EL—IEL—EL—L—L—L—L—L—L—@L—

Row 9

"o "y "o "3 "4 "g "g ny ng ng "p "g ne "p "R ng

"2x e] -0 -] -FJ - -] -Fl-fd -F] -] -F1 -F] -F1 -] -L] -

vax 0] -Flu-Dp -] -[6] -] -] -Ade-[Ade - A0 - Ade - Ko - Ae - [E]e - 0] - [E]x -

"4XL—L—L—EL—EL—EL—EL—EL—I@L—L—L—L—L—L—L—L—

"5XL—L—L—L—EL—I@L—L—L—L—L—L—L—L—L—L—L—

"6XL-L-DL-BL—BL-EL—@L-EL—L—L—L—L—L-L-L-L-

"7XE|L—L—L—EL—L—L—IEL—L—L—L—L—EL—EL—L—L—

Row 10

"o "y "o "3 "4 ng "g ny ng ng "A "B ne "p "gE "

"2x Al -0 e - - B - - -0 - 20 - e - fade -] - []e - [T -

"3xL—E|L—L—L—L—L—|j —L—L—L-L-L—L—L—L—L—

"4xL—@L—mL—L—L—L—L—L—L—L-DL—L—L—EL—L—L—

"SXEL—L—L—L—L—L—EL—L—D -L-L—EL—L—L—L—L—

"6XL—L—L—L—EL—ML—L—L—L-L-L-IE‘L—L—L—L—L—

"7XL—L—L—L—L—L—L—L—L-EL-L-IEL—IZ‘L—L—L—

39

Row 11

IIO |I1 II2 ll3 Il4 Il5 Il6 Il7 I|8 Il9 IIA IIB IIC IID IIE lIF
"2x L—L—L—L—EL—EL—L—L—L—L—EL—L—EL—EL—L
"SXEL—L—EL—EL—@L—L—L—L—L—@L—IE]L—IEL—L—L—L—EL
"4xL—L—L—L—L—L—L—L—L—L—L—L—EL—BL—L—L

"5x L - DL

[

L -

- O- O

- -[e

- - e

"6x -

-0 -0

- e - e - e

L -

-0 - e

"Tx I:IL - DL

-

L-Ll-L

Ll-[l-[l--

Row 12

"0

[y

w
~

7

o
o
@
©

"ox

"3x

"4x

"5X

I

I

I

I

I

I
=

@]el|@l|el|e]

e\ @l|[-]|el
©€l|el|[=]|el
@l@|el|[=]|e]
@@l|el|=]]el
<l|€lel<]|e]
©l@l|el|=]]el

@9l

0|[@l@l|@|e|©)
ElSielE|l~

8l@|@|e]|@]

ex @B - @B - @ - B - [OL - @) - Ot - Qe - [®L - [t - [B - [@)e @)L
"7XL— L - L - L - ‘ -
Row 13

n 0 " 1 ||2 ||3 ||4 |l5 Il6 ||7 ||8 n 9 I|A ||B IIC IID lIE lIF

"3x —

-[@ -[1]

- [IX]

"4XL—L—L—L—L—L—)|, L—L—L—L—L—L—F’L—L
"SX@L—L—L—L—L—L—L— Xl -
vex [-] -] -[Kke-[E] - [@L-[@L- @ - [@L - [@L - @ - @] - [@®] - Bl - X - @]

"rx

-

L] -[4] -

® [-

B Package versions used in this document

This document was typeset using the following packages:

geometry.sty
keyval.sty
ifpdf.sty
ifvtex.sty
ifxetex.sty
luatexja-adjust.sty
luatexja.sty
luatexja-core.sty
luaotfload.sty
luatexbase.sty
ifluatex.sty
luatexbase-compat.sty

luatexbase-loader.sty

2010/09/12
1999/03/16
2011/01/30
2010/03/01
2010/09/12
2012/10/01
2012/04/20
2012/04/20
2012/05/28
2010/10/06
2010/03/01
2010/10/10
2010/10/10

v5
vl

v2.
vi.
vO0.
vO.
vO0.
vO.
vi.
vO.
vi.
vO.
vO.

.6 Page Geometry

.13 key=value parser (DPC)

3 Provides the ifpdf switch (HO)

5 Detect VTeX and its facilities (HO)
6 Provides ifxetex conditional

1

2

2

27 OpenType layout system

3 Module utilities for LuaTeX

3 Provides the ifluatex switch (HO)
3 Compatibility tools for LuaTeX

3 Lua module loader for LuaTeX

40

luatexbase-regs.sty 2010/10/10 v0.3 Registers allocation for LuaTeX

etex.sty 1998/03/26 v2.0 eTeX basic definition package (PEB)
luatexbase-attr.sty 2011/05/21 v0.31 Attributes allocation for LuaTeX
luatexbase-cctb.sty 2010/10/10 v0.3 Catcodetable allocation for LuaTeX
luatexbase-mcb.sty 2010/10/10 v0.3 Callback management for LuaTeX
luatexbase-modutils.sty 2010/10/10 v0.3 Module utilities for LuaTeX
infwarerr.sty 2010/04/08 v1.3 Providing info/warning/error messages (HO)
ltxcmds.sty 2011/11/09 v1.22 LaTeX kernel commands for general use (HO)
pdftexcmds.sty 2011/11/29 v0.20 Utility functions of pdfTeX for LuaTeX (HO)
luatex-loader.sty 2010/03/09 v0.4 Lua module loader (HO)

xkeyval.sty 2012/10/14 v2.6b package option processing (HA)
ltj-cctbreg.sty 2012/04/21 v0.2

luatex.sty 2010/03/09 v0.4 LuaTeX basic definition package (HO)
1ltj-base.sty 2012/04/21 v0.2

ltj-latex.sty 2012/04/21 LualaTeX-ja

11tjfont.sty 2013/01/01 Patch to NFSS2 for LualaTeX-ja
1ltjdefs.sty 2011/11/22 Default font settings for LualLaTeX-ja
1ltjcore.sty 2011/11/22 Patch to LaTeX2e Kernel for LualLaTeX-ja
luatexja-compat.sty 2011/04/01 v0.1

expl3.sty 2012/12/21 v4390 L3 Experimental code bundle wrapper
13names.sty 2012/12/07 v4346 L3 Namespace for primitives
13bootstrap.sty 2012/07/16 v3991 L3 Experimental bootstrap code
13basics.sty 2012/11/24 v4339 L3 Basic definitions

13expan.sty 2012/08/28 v4149 L3 Argument expansion

13tl.sty 2012/11/24 v4339 L3 Token lists

13seq.sty 2012/11/24 v4339 L3 Sequences and stacks

13int.sty 2012/09/26 v4237 L3 Integers

13quark.sty 2012/11/04 v4268 L3 Quarks

13prg.sty 2012/11/24 v4339 L3 Control structures

13clist.sty 2012/11/24 v4339 L3 Comma separated lists

13token.sty 2012/12/20 v4384 L3 Experimental token manipulation
13prop.sty 2012/09/09 v4212 L3 Property lists

13msg.sty 2012/09/09 v4212 L3 Messages

13file.sty 2012/12/20 v4377 L3 File and I/0 operations
13skip.sty 2012/11/04 v4260 L3 Dimensions and skips

13keys.sty 2012/11/02 v4256 L3 Experimental key-value interfaces
13fp.sty 2012/11/10 v4305 L3 Floating points

13box.sty 2012/12/08 v4347 L3 Experimental boxes

13coffins.sty 2012/09/09 v4212 L3 Coffin code layer

13color.sty 2012/08/29 v4156 L3 Experimental color support
13luatex.sty 2012/08/03 v4049 L3 Experimental LuaTeX-specific functions
13candidates.sty 2012/12/20 v4383 L3 Experimental additions to 13kernel
amsmath.sty 2000/07/18 v2.13 AMS math features

amstext.sty 2000/06/29 v2.01

amsgen.sty 1999/11/30 v2.0

amsbsy.sty 1999/11/29 vi.2d

amsopn.sty 1999/12/14 v2.01 operator names

tikz.sty 2010/10/13 v2.10 (rcs-revision 1.76)

pgf.sty 2008/01/15 v2.10 (rcs-revision 1.12)

pgfrecs.sty 2010/10/25 v2.10 (rcs-revision 1.24)

everyshi.sty 2001/05/15 v3.00 EveryShipout Package (MS)
pgfcore.sty 2010/04/11 v2.10 (rcs-revision 1.7)

graphicx.sty 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR)
graphics.sty 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR)
trig.sty 1999/03/16 v1.09 sin cos tan (DPC)

pgfsys.sty 2010/06/30 v2.10 (rcs-revision 1.37)

xcolor.sty 2007/01/21 v2.11 LaTeX color extensions (UK)

41

pgfcomp-version-0-65.sty 2007/07/03 v2.10 (rcs-revision 1.7)
pgfcomp-version-1-18.sty 2007/07/23 v2.10 (rcs-revision 1.1)

pgffor.sty 2010/03/23 v2.10 (rcs-revision 1.18)

pgfkeys.sty

pict2e.sty 2011/04/05 v0.2y Improved picture commands (HjG,RN,JT)

multienum.sty

float.sty 2001/11/08 v1.3d Float enhancements (AL)

booktabs.sty 2005/04/14 v1.61803 publication quality tables

multicol.sty 2011/06/27 v1.7a multicolumn formatting (FMi)

listings.sty 2007/02/22 1.4 (Carsten Heinz)

lstmisc.sty 2007/02/22 1.4 (Carsten Heinz)

showexpl.sty 2012/09/22 v0.3j Typesetting example code (RN)

calc.sty 2007/08/22 v4.3 Infix arithmetic (KKT,FJ)

ifthen.sty 2001/05/26 vi.1c Standard LaTeX ifthen package (DPC)

varwidth.sty 2009/03/30 ver 0.92; Variable-width minipages

hyperref.sty 2012/11/06 v6.83m Hypertext links for LaTeX

hobsub-hyperref.sty 2012/05/28 v1.13 Bundle oberdiek, subset hyperref (HO)

hobsub-generic.sty 2012/05/28 v1.13 Bundle oberdiek, subset generic (HO)

hobsub.sty 2012/05/28 v1.13 Construct package bundles (HO)

intcalc.sty 2007/09/27 v1.1 Expandable calculations with integers (HO)

etexcmds.sty 2011/02/16 v1.5 Avoid name clashes with e-TeX commands (HO)

kvsetkeys.sty 2012/04/25 v1.16 Key value parser (HO)

kvdefinekeys.sty 2011/04/07 v1.3 Define keys (HO)

pdfescape.sty 2011/11/25 v1.13 Implements pdfTeX's escape features (HO)

bigintcalc.sty 2012/04/08 v1.3 Expandable calculations on big integers (HO)

bitset.sty 2011/01/30 v1.1 Handle bit-vector datatype (HO)

uniquecounter.sty 2011/01/30 v1.2 Provide unlimited unique counter (HO)

letltxmacro.sty 2010/09/02 v1.4 Let assignment for LaTeX macros (HO)

hopatch.sty 2012/05/28 v1.2 Wrapper for package hooks (HO)

xcolor-patch.sty 2011/01/30 xcolor patch

atveryend.sty 2011/06/30 v1.8 Hooks at the very end of document (HO)

atbegshi.sty 2011/10/05 v1.16 At begin shipout hook (HO)

refcount.sty 2011/10/16 v3.4 Data extraction from label references (HO)

hycolor.sty 2011/01/30 v1.7 Color options for hyperref/bookmark (HO)

auxhook.sty 2011/03/04 v1.3 Hooks for auxiliary files (HO)

kvoptions.sty 2011/06/30 v3.11 Key value format for package options (HO)

url.sty 2006/04/12 ver 3.3 Verb mode for urls, etc.

rerunfilecheck.sty 2011/04/15 v1.7 Rerun checks for auxiliary files (HO)

amsthm.sty 2004/08/06 v2.20

luatexja-otf.sty 2012/04/20 v0.2

luatexja-ajmacros.sty 2012/05/08 v0.1a

luatexja-preset.sty 2012/09/17 v0.1

luatexja-fontspec.sty 2012/09/17 v0.2a

fontspec.sty 2013/02/25 v2.3 Font selection for XeLaTeX and LuaLaTeX

xparse.sty 2012/12/21 v4390 L3 Experimental document command parser

fontspec-patches.sty 2013/02/25 v2.3 Font selection for XeLaTeX and LuaLaTeX

fixltx2e.sty 2006/09/13 v1.1m fixes to LaTeX

fontspec-luatex.sty 2013/02/25 v2.3 Font selection for XeLaTeX and LuaLaTeX

fontenc.sty

xunicode.sty 2011/09/09 v0.981 provides access to latin accents and many other characters in Unicode
lower plane

unicode-math.sty 2013/02/25 v0.7c Unicode maths in XeLaTeX and LualLaTeX

13keys2e.sty 2012/12/21 v4390 LaTeX2e option processing using LaTeX3 keys

catchfile.sty 2011/03/01 v1.6 Catch the contents of a file (HO)

fix-cm.sty 2006/09/13 v1.1m fixes to LaTeX

filehook.sty 2011/10/12 v0.5d Hooks for input files

unicode-math-luatex.sty

42

lualatex-math.sty
etoolbox.sty
metalogo.sty
1ltjp-xunicode.sty
1lltjp-unicode-math.sty
11tjp-listings.sty
epstopdf-base.sty
grfext.sty
nameref.sty

gettitlestring.sty

2012/10/13
2011/01/03
2010/05/29
2012/04/18
2011/11/22
2012/09/22
2010/02/09
2010/08/19
2012/10/27
2010/12/03

vl.1 Patches for mathematics typesetting with LualLaTeX
v2.1 e-TeX tools for LaTeX

v0.12 Extended TeX logo macros

Patch to xunicode for LualLaTeX-ja

Patch to unicode-math for LualLaTeX-ja

0.6

v2.5 Base part for package epstopdf

vl.1 Manage graphics extensions (HO)

v2.43 Cross-referencing by name of section

v1.4 Cleanup title references (HO)

43

	I User's manual
	Introduction
	Backgrounds
	Major Changes from pTeX
	Notations
	About the project

	Getting Started
	Installation
	Cautions
	Using in plain TeX
	Using in LaTeX

	Changing Fonts
	plain TeX and LaTeX2ε
	fontspec
	Preset
	92 CID, 92 UTF and macros in otf package

	Changing Parameters
	Editing the range of JAchars
	kanjiskip and xkanjiskip
	Insertion Setting of xkanjiskip
	Shifting Baseline

	II Reference
	Font Metric and Japanese Font
	92jfont
	Prefix psft
	Structure of JFM file
	Math Font Family
	Callbacks

	Parameters
	92 ltjsetparameter
	List of Parameters

	Other Control Sequences
	Control Sequences for Compatibility
	92 inhibitglue

	Control Sequences for LaTeX2ε
	Patch for NFSS2

	Extensions
	luatexja-fontspec.sty
	luatexja-otf.sty
	luatexja-adjust.sty

	III Implementations
	Storing Parameters
	Used Dimensions, Attributes and whatsit nodes
	Stack System of LuaTeX-ja

	Linebreak after Japanese Character
	Reference: Behavior in pTeX
	Behavior in LuaTeX-ja

	Insertion of JFM glues, kanjiskip and xkanjiskip
	Overview
	definition of a `cluster'
	段落／水平ボックスの先頭や末尾
	概観と典型例：2つの「和文A《の場合
	その他の場合

	psft
	Patch for the listings package
	Advanced line-adjustment for Japanese characters
	References
	The category code of non-kanji characters defined in JIS X 0213
	Package versions used in this document

