
Speare	Code	Editor		
The	Small	PHP	IDE	for		

PHP	Development	
 

	
Copyright	(C)	2020	Sevenuc	Consulting	

Version	1.0	
Update:		4	Mar	2020	

	
	
Free,	Lightweight,	Open	Source,	Extendable	Flexibility	
	
Speare	(http://sevenuc.com/en/Speare.html)	is	an	ultra	lightweight	
code	editor	and	a	small	IDE	that	has	an	efficient	code	navigation	and	
call	routines	tracing	ability,	and	has	integrated	debugging	
environment	for	C,	C++,	PHP	and	all	kinds	of	PHP	web	frameworks.	It	
was	originally	developed	to	providing	a	native	scripting	language	
debugging	environment	that	seamlessly	integrated	with	C	and	C++.	It	
not	only	has	very	concise	user	interface	but	also	has	a	very	flexible	
architecture	to	easily	add	a	new	programming	language	code	runner,	
parser,	syntax	highlighting,	code	formatter	and	debugger	in	it.	
	
For	general	Speare	code	editor	usage,	please	refer	this	document:	
http://sevenuc.com/download/Speare_quick_reference.pdf	
	
	
Debug	Mode	
	
1.	Show	the	debug	toolbar	
	

Click	 	siding	bottom	button.	
	
2.	Debug	toolbar	
	

	
	
From	left	to	right,	Start,	Stop,	Step	Into,	Step	Out,	Run	To,	Step	Over,	
Show	Watches.		
	



The	"Step	Over"	is	equals	to	"Step	next",	and	"Step	To"	is	equals	to	
"Continue"	in	common	debugging	words,	and	the	"Step	To"	is	the	
command	that	tell	the	debugger	run	to	meet	a	breakpoint	or	an	
exception	occurred	or	the	program	meet	exit.		
	
On	the	rightmost	there	are	three	other	function	units,	they	are,	
search	items	in	the	stackview,	siding	stackview,	and	clean	the	debug	
output.		
	
Search	in	the	debug	output	
Click	in	the	output	area	and	use	the	shortcut	key	"Control	+	F"	to	do	
the	searching.	
	
3.	Socket	Port	
You	can	set	the	socket	communication	port	number	both	used	by	
Debug	Server	and	the	Speare	code	editor.	Open	the	Preferences	of	
Speare	and	select	the	"Debug	Settings"	tab	then	input	your	number.	
	
Note:	Please	remember	to	empty	the	port	number	when	you	
switched	to	debugging	with	the	default	builtin	programming	
languages	with	default	port	number.	
	
4.	Watches	
Watches	used	to	evaluate	variable	or	expression	and	their	values	can	
be	realtime	showing	in	stackview	when	debugging	session	paused,	
the	nodes	normally	has	a	green	colour	and	always	placed	on	the	top	
of	stackview.	
	
Caution:		
a.	Please	ensure	all	source	files	have	been	dragged	in	the	left	side	
Treeview	(Workspace	Explorer)	before	start	a	debug	session,	
because	macOS	app	can't	be	allowed	to	access	files	outside	of	its	
sandbox.	
	
b.	When	your	source	code	file	moved	to	another	folder,	you	must	
drag	the	source	code	folder	in	Speare	again	then	the	debugging	can	
correctly	work.	
	
	
	
	
	



C	and	C++	Debugger	
	
The	C	and	C++	debugger	of	Speare	code	editor	implemented	as	a	
script	client	of	LLDB	(http://lldb.llvm.org/),	and	supports	extend	it	by	
yourself.	The	builtin	module	supports	parsing	modern	C++	source	
code	files	including	C++11	and	C++14	syntax,	e.g	namespace,	
anonymous	function,	structure,	union,	class,	enum	etc	and	so	many	
new	features	of	the	C++	programming	language.	You	can	enjoy	
debugging	almost	any	type	of	C	and	C++	applications	under	the	
lightweight	debugging	environment	of	Speare	code	editor.	
	
Start	Debugging	Steps:	
	
1.	Download	Speare	Debug	Server:		
→	http://sevenuc.com/download/c_debugger.tar.gz	(10KB)	
	
The	source	code	of	the	C	and	C++	debugger	can	be	view	online	here:		
https://github.com/chengdu/Speare	or	here:	
https://sourceforge.net/projects/speare	
	
2.	Uncompress	the	tarball:	
Uncompress	it		to	your	local	directory.	e.g	~/Desktop	and	take	a	look	
at	the	readme.txt	in	it.	
	
3.	Start	the	debug	server:		
Please	refer	the	readme.txt	file.	
	
4.	Debug	session	start:		
click	"Start"	button	on	the	debug	toolbar	of	Speare	code	editor.	
Add	breakpoint,	step	in,	step	out,	step	next,	watch	stack	trace	...	
	
5.	Run	extra	commands:	
Right	click	in	the	stackview	(bottom	left	side)	and	then	input	any	lldb	
command	when	the	debugging	session	paused.	Left	click	anywhere	
outside	of	the	input	box	to	close	it	and	the	command	will	be	directly	
send	to	the	debug	server.	
	
a.	Add	function	breakpoints	
.	breakpoint	set	--name	functioname:	add	a	C	function	breakpoint.	
.	breakpoint	set	--name	classname::	functioname:	add	a	C++	function	
breakpoint.	
	



	
	
	
	
b.	Process	operation	
.	process	attach	--name	xxx	--waitfor:	attach	another	process	by	
name.	
.	process	attach	--pid	xxx:	attach	another	process	by	pid	#xxx.	
	
c.	Thread	operation	
.	thread	list:	show	all	thread	of	current	process.	
.	thread	select	2:	select	thread	#2.	
.	thread	backtrace	all:	show	thread	info.	
.	register	read:	read	all	CPU	registers.	
.	thread	step-inst:	step	one	machine	instruction.	
.	thread	step-over-inst:	step	return	one	machine	instruction.	
	
d.	Watchpoint	operation	
.	watch	list	-v:	list	watchpoints.	
.	watchpoint	set	variable	x:	add	a	watchpoint	x.	
	
e.	Frame	operation	
.	frame	list:	print	all	frame	of	the	current	thread.	
.	frame	select	9:	select	frame	#9.	
	
f.	Display	variable	value		
.	frame	variable	x:	print	x	value.	
...	
	
Tips:	Run	to	(run	to	meet	a	breakpoint),	the	source	file	that	you	want	
debugger	stopped	in	it	must	already	opened	and	has	at	least	one	
breakpoint	before	run	the	command.	
	
Modify	the	C	and	C++	debugger	
You	can	directly	modify	the	script	client	of	lldb	to	satisfy	your	
requirements.	
	
	
	
	
	
	



PHP	Debugger	
	
The	PHP	debugger	of	Speare	code	editor	supports	all	kinds	
debugging	of	PHP	applications	and	any	version	of	PHP	interpreter	
that	has	Xdebug	support	from	PHP	5.x	to	PHP	7.x.	Different	with	Lua,	
Ruby	and	Python	debugging,	this	time	Speare	acts	as	debug	server	
and	Xdebug	as	the	client.	
	
Setting	up	Xdebug	for	PHP	Debugging:	
	
1.	Download	Xdebug:	
https://xdebug.org/files/xdebug-2.6.0.tgz	
	
2.	Compile	and	install	Xdebug:	
	
$	rm	configure.in	(optional)	
$	rm	configure.ac	(optional)	
$	phpize	&&	./configure	--enable-xdebug	&&	make	clean	&&	make	all	
$	sudo	make	install	
	
At	this	step	Terminal	will	report:		
/usr/lib/php/extensions	Operation	not	permitted.		
	
This	is	because	SIP	default	set	to	be	enabled	by	macOS,	even	you	
execute	sudo	operation,	the	system	protected	directories	still	can't	be	
writable.	
	
WARNING:	THE	FOLLOWING	OPERATION	IS	VERY	DANGERS.	
	
Assuming	that	you	know	what	you’re	doing,	here	is	how	to	change	
SIP	(System	Integrity	Protection)	settings	on	your	Mac.	Turn	off	your	
Mac	(Apple	→	Shut	Down...),	hold	down	Command-R	and	press	the	
Power	button.	Keep	holding	Command-R	until	the	Apple	logo	
appears	and	wait	for	OS	X	to	boot	into	the	"OS	X	Utility"	window	and	
then	choose	Utilities	→	Terminal.	
	
Turn	off	SIP:	
$	csrutil	disable	
$	csrutil	status	
$	reboot	
	
	



Turn	on	SIP:	
$	csrutil	enable	
$	csrutil	status	
$	reboot	
	
After	you	turn	off	SIP	and	execute	"$	sudo	make	install"	again,	
Xdebug	should	be	successfully	installed	on	you	system,	you	can	check	
it	by	this	command:	
	
$	php	–v	
	
It	should	print	something	like	the	following:	
	
PHP	7.1.23	(cli)	(built:	Nov	27	2018	16:59:25)	(	NTS	)	
Copyright	(c)	1997-2018	The	PHP	Group	
Zend	Engine	v3.1.0,	Copyright	(c)	1998-2018	Zend	Technologies	
with	Xdebug	v2.6.0,	Copyright	(c)	2002-2018,	by	Derick	Rethans	
	
3.	Configuring	web	server:	
$	cp	/etc/apache2/httpd.conf	~/Desktop/	
	
LoadModule	userdir_module	libexec/apache2/mod_userdir.so	
LoadModule	alias_module	libexec/apache2/mod_alias.so	
LoadModule	rewrite_module	libexec/apache2/mod_rewrite.so	
LoadModule	php7_module	libexec/apache2/libphp7.so	
Include	/private/etc/apache2/other/*.conf	
	
Edit	file	http.conf	and	ensure	the	above	lines	not	be	commented.	
	
$	sudo	cp	~/Desktop/httpd.conf	/etc/apache2/	
Save	back	the	settings	file.	
	
$	apachectl	configtest	
Check	there	syntax	is	legal	(optional).	
	
	
	
	
	
	
	
	



4.	Configuring	PHP	interpreter:	
$	cp	/etc/php.ini.default	~/Desktop/	
	
enable_dl	=	On	
[xdebug]	
zend_extension	=	/usr/lib/php/extensions/no-debug-non-zts-
20160303/xdebug.so	
xdebug.remote_enable	=	1	
xdebug.remote_host	=	"127.0.0.1"	
xdebug.remote_port	=	9000	
xdebug.remote_handler	=	"dbgp"	
xdebug.remote_mode	=	req	
xdebug.remote_connect_back	=	1	
xdebug.remote_autostart=1	
	
Edit	file	php.ini.default	and	carefully	check	the	above	content	have	
been	written	in	it.	
	
Note:	xdebug.remote_autostart=1	should	be	removed	at	product	
environment.	
	
$	sudo	cp	~/Desktop/php.ini.default	/etc/	
Save	back	the	settings	file.	
	
$	sudo	mv	/etc/php.ini.default	/etc/php.ini	
Rename	the	settings	file	to	take	effect.	
	
	
5.	Run	PHP	test	with	Xdebug:	
	
<?php	
echo	phpinfo();	
?>	
	
Save	the	above	content	in	a	file	named	test.php	and	put	it	under	
/Library/WebServer/Documents/	
	
	
	
	
	
	



$	sudo	launchctl	unload	-w	
/System/Library/LaunchDaemons/org.apache.httpd.plist	
$	sudo	launchctl	load	-w	
/System/Library/LaunchDaemons/org.apache.httpd.plist	
	
Restart	apache,	launch	Safari	and	request:	http://127.0.0.1/test.php.	
There're	some	text	in	zend	engine	section	should	be	as	same	as	
printed	by	execute	the	command	"$	php	-v"	on	command	line.	
	
Steps	of	PHP	Debugging	in	Speare	code	editor:	
	
1.	Launch	Speare	and	dragging	the	PHP	source	code	folder	into	the	
"Workspace	Explorer".	
	
2.	Select	the	startup	php	script	and	click	siding	bottom	button	to	
show	the	debug	toolbar	and	then	click	"Start"	button.	
	
3.	Launch	Safari	and	request:	http://127.0.0.1/xxx/xxx/index.php	
	
Note:	Don't	use	localhost	but	should	use	127.0.0.1	instead.	
	
4.	After	Speare	paused	and	highlighting	at	a	special	line	of	your	
startup	PHP	script	there	that	means	the	debugging	session	started,	
you	can	execute	the	common	debugging	command	now:	
	
Add	breakpoint,	step	in,	step	out,	step	next,	watch	stack	trace	...	
	
	
Switch	PHP	interpreter	
You	can	switch	any	version	of	PHP	interpreter	directly;	it	does	not	
affect	the	server	side	Speare	code	editor.	PHP	is	an	excellent	
programming	language	to	develop	Web	Applications	based	on	
frameworks	such	as	Drupal,	Zend	Framework,	CodeIgniter,	Symfony	
and	Yii	framework	etc,	but	not	limited	that,	in	fact	PHP	is	also	very	
suitable	to	develop	command	line	applications.	
	
	
	
	
	
	
	



Extend	Speare	Code	Editor	for	PHP	development	
	
Speare	Code	Editor	can	be	easily	extended	to	support	any	type	of	
PHP	development	including	web	applications	that	based	on	
frameworks	such	as	Drupal,	Zend	Framework,	CodeIgniter,	Symfony	
and	Yii	framework	and	all	kinds	of	command	line	applications.	
	
To	add	scripts	to	better	support	debugging	PHP	in	Speare	code	
editor,	please	download	the	guide	from	here:	
http://sevenuc.com/download/language_extension_protocol.pdf,	
and	following	the	description	in	it.		
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

©	2020	Sevenuc	Consulting		
All	rights	reserved	


