
Speare	Code	Editor		
The	Small		

Ruby,	mruby	and	Rails	IDE		
for	Ruby	Development	

	
	

Copyright	(C)	2020	Sevenuc	Consulting	
Version	1.0	

Update:	4	Mar	2020	
	

	
Speare	(http://sevenuc.com/en/Speare.html)	is	an	ultra	lightweight	
code	editor	and	a	small	IDE	that	has	an	efficient	code	navigation	and	
call	routines	tracing	ability,	and	has	integrated	debugging	
environment	for	C,	C++,	Ruby,	mruby	and	Ruby	on	Rails.	It	was	
originally	developed	to	providing	a	native	scripting	language	
debugging	environment	that	seamlessly	integrated	with	C	and	C++.	It	
not	only	has	very	concise	user	interface	but	also	has	a	very	flexible	
architecture	to	easily	add	a	new	programming	language	code	runner,	
parser,	syntax	highlighting,	code	formatter	and	debugger	in	it.	
	
For	general	Speare	code	editor	usage,	please	refer	this	document:	
http://sevenuc.com/download/Speare_quick_reference.pdf	
	
	
Debug	Mode	
	
1.	Show	the	debug	toolbar	
	

Click	 	siding	bottom	button.	
	
2.	Debug	toolbar	
	

	
	
From	left	to	right,	Start,	Stop,	Step	Into,	Step	Out,	Run	To,	Step	Over,	
Show	Watches.		

	
The	"Step	Over"	is	equals	to	"Step	next",	and	"Step	To"	is	equals	to	
"Continue"	in	common	debugging	words,	and	the	"Step	To"	is	the	
command	that	tell	the	debugger	run	to	meet	a	breakpoint	or	an	
exception	occurred	or	the	program	meet	exit.		
	
On	the	rightmost	there	are	three	other	function	units,	they	are,	
search	items	in	the	stackview,	siding	stackview,	and	clean	the	debug	
output.		
	
Search	in	the	debug	output	
Click	in	the	output	area	and	use	the	shortcut	key	"Control	+	F"	to	do	
the	searching.	
	
3.	Socket	Port	
You	can	set	the	socket	communication	port	number	both	used	by	
Debug	Server	and	the	Speare	code	editor.	Open	the	Preferences	of	
Speare	and	select	the	"Debug	Settings"	tab	then	input	your	number.	
	
Note:	Please	remember	to	empty	the	port	number	when	you	
switched	to	debugging	with	the	default	builtin	programming	
languages	with	default	port	number.	
	
4.	Watches	
Watches	used	to	evaluate	variable	or	expression	and	their	values	can	
be	realtime	showing	in	stackview	when	debugging	session	paused,	
the	nodes	normally	has	a	green	colour	and	always	placed	on	the	top	
of	stackview.	
	
Caution:		
a.	Please	ensure	all	source	files	have	been	dragged	in	the	left	side	
Treeview	(Workspace	Explorer)	before	start	a	debug	session,	
because	macOS	app	can't	be	allowed	to	access	files	outside	of	its	
sandbox.	
	
b.	When	your	source	code	file	moved	to	another	folder,	you	must	
drag	the	source	code	folder	in	Speare	again	then	the	debugging	can	
correctly	work.	
	
	
	
	

	
C	and	C++	Debugger	
	
The	C	and	C++	debugger	of	Speare	code	editor	implemented	as	a	
script	client	of	LLDB	(http://lldb.llvm.org/),	and	supports	extend	it	by	
yourself.	The	builtin	module	supports	parsing	modern	C++	source	
code	files	including	C++11	and	C++14	syntax,	e.g	namespace,	
anonymous	function,	structure,	union,	class,	enum	etc	and	so	many	
new	features	of	the	C++	programming	language.	You	can	enjoy	
debugging	almost	any	type	of	C	and	C++	applications	under	the	
lightweight	debugging	environment	of	Speare	code	editor.	
	
Start	Debugging	Steps:	
	
1.	Download	Speare	Debug	Server:		
→	http://sevenuc.com/download/c_debugger.tar.gz	(10KB)	
	
The	source	code	of	the	C	and	C++	debugger	can	be	view	online	here:		
https://github.com/chengdu/Speare	or	here:	
https://sourceforge.net/projects/speare	
	
2.	Uncompress	the	tarball:	
Uncompress	it		to	your	local	directory.	e.g	~/Desktop	and	take	a	look	
at	the	readme.txt	in	it.	
	
3.	Start	the	debug	server:		
Please	refer	the	readme.txt	file.	
	
4.	Debug	session	start:		
click	"Start"	button	on	the	debug	toolbar	of	Speare	code	editor.	
Add	breakpoint,	step	in,	step	out,	step	next,	watch	stack	trace	...	
	
5.	Run	extra	commands:	
Right	click	in	the	stackview	(bottom	left	side)	and	then	input	any	lldb	
command	when	the	debugging	session	paused.	Left	click	anywhere	
outside	of	the	input	box	to	close	it	and	the	command	will	be	directly	
send	to	the	debug	server.	
	
a.	Add	function	breakpoints	
.	breakpoint	set	--name	functioname:	add	a	C	function	breakpoint.	

.	breakpoint	set	--name	classname::	functioname:	add	a	C++	function	
breakpoint.	
	
	
	
	
	
b.	Process	operation	
.	process	attach	--name	xxx	--waitfor:	attach	another	process	by	
name.	
.	process	attach	--pid	xxx:	attach	another	process	by	pid	#xxx.	
	
c.	Thread	operation	
.	thread	list:	show	all	thread	of	current	process.	
.	thread	select	2:	select	thread	#2.	
.	thread	backtrace	all:	show	thread	info.	
.	register	read:	read	all	CPU	registers.	
.	thread	step-inst:	step	one	machine	instruction.	
.	thread	step-over-inst:	step	return	one	machine	instruction.	
	
d.	Watchpoint	operation	
.	watch	list	-v:	list	watchpoints.	
.	watchpoint	set	variable	x:	add	a	watchpoint	x.	
	
e.	Frame	operation	
.	frame	list:	print	all	frame	of	the	current	thread.	
.	frame	select	9:	select	frame	#9.	
	
f.	Display	variable	value		
.	frame	variable	x:	print	x	value.	
...	
	
Tips:	Run	to	(run	to	meet	a	breakpoint),	the	source	file	that	you	want	
debugger	stopped	in	it	must	already	opened	and	has	at	least	one	
breakpoint	before	run	the	command.	
	
Modify	the	C	and	C++	debugger	
You	can	directly	modify	the	script	client	of	lldb	to	satisfy	your	
requirements.	
	
	
	

	
	

mruby	Debugger	
	
The	mruby	debugger	of	Speare	code	editor	is	a	patched	version	of	
mruby	(http://mruby.org)	that	support	remote	debugging	mruby	
project,	currently	support	mruby	version	2.0.1	and	2.1.0.	
	
1.	Install	mruby	debugging	server	
	
Download	mruby	remote	debugger:		
→	http://sevenuc.com/download/mruby_debugger.tar.gz	(733KB)	
	
Download	mruby-2.0.1.tar.gz	(518KB)	or	mruby-2.1.0.tar.gz	(585KB)	
from	https://github.com/mruby/mruby	
	
$	cd	mruby-2.0.1	or	mruby-2.1.0	
$	make	
compile	mruby	and	replace	mrdb	under	bin	directory	with	the	
corresponding	version.	
	
$	cd	bin		
$./mrdb	:	start	the	mruby	remote	debugger.	
	
2.	Configuring	Speare	code	editor	
	
Launch	Speare	and	open	the	Preferences	of	Speare	and	select	the	tab	
of	"Debug	Settings"	then	check	on	"Enable	mruby	debugging".	
Please	remember	to	turn	the	option	off	when	you	switched	to	debug	
common	Ruby	applications.	
	
3.	Debug	Session	Start	
	
Click	"Start"	button	on	the	debug	toolbar	of	Speare	code	editor.	
Add	breakpoint,	step	in,	step	out,	step	next,	watch	stack	trace	...	
	
Tips:	Separate	modules	of	your	app	with	mruby	gems	instead	of	
using	require.	
	
	
	

	
	
Ruby	Debugger	
	
The	Ruby	debugger	of	Speare	code	editor	implemented	as	a	client	of	
rdebug-ide,	and	Ruby	interpreter	that	has	a	rdebug-ide	installed	will	
be	running	as	the	debug	server.	
	
Ruby	debugging	environment	support	all	kinds	of	Ruby	interpreters,	
the	version	includes:	1.8.x,	1.9.x,	2.x,	and	JRuby.	
	
Steps	of	start	debugging	session:	
	
1.	Download	and	install	debug	gems	
	
For	Ruby	1.8.x:	download:	ruby-debug-base	(0.10.4)	
$	gem	install	--force	--local	ruby-debug-base-0.10.4.gem	
$	gem	install	ruby-debug-ide	
	
For	Ruby	1.9.x:	download:	ruby-debug-base19	(0.11.25)	
$	gem	install	--force	--local	ruby-debug-base19x-0.11.32.gem	
$	gem	install	ruby-debug-ide	
	
For	Ruby	2.x:	
$	gem	install	debase	
$	gem	install	ruby-debug-ide	
	
	
2.	Start	the	debug	server	
	
$	rdebug-ide	--host	127.0.0.1	--port	1234	--dispatcher-port	1234	--	
main.rb	
(Note:	Please	replace	the	main.rb	file	with	your	script	file.)	
	
For	Ruby	on	Rails:	
$	rdebug-ide	--host	0.0.0.0	--port	1234	--dispatcher-port	1234	--	
bin/rails	s	
	
3.	Debug	session	start	
Click	"Start"	button	on	the	debug	toolbar	of	Speare	code	editor.	
Add	breakpoint,	step	in,	step	out,	step	next,	watch	stack	trace	...	
	

	
4.	Add	condition	breakpoint	
Right	click	on	the	breakpoint,	on	the	prompt	menu,	→	select	
"Condition"	and	then	input	expression	or	use	empty	string	to	remove	
the	condition,	left	click	outside	of	the	input	box	to	close	it	and	execute	
the	command.	e.g.	x>5	means:	Pause	on	the	breakpoint	only	if	x>5	is	
true.	
	
5.	Run	Extra	Commands	
Right	click	in	the	stackview	(bottom	left	side)	and	then	input	extra	
command	when	the	debugging	session	paused.	Left	click	anywhere	
outside	of	the	input	box	to	close	it	and	the	command	will	be	directly	
send	to	the	debug	server.	
	
a.	Variables	
.	var	const	object:	show	constants	of	object.	
.	var	instance	object:	show	instance	variables	of	object,	object	can	be	
given	by	its	id	or	an	expression.	
.	var	inspect:	reference	inspection	results	in	order	to	save	them	from	
the	GC.	
	
b.	Expression	
.	p	expression:	evaluate	expression	and	print	its	value.	
.	pp	expression:	evaluate	expression	and	print	its	value.	
.	eval	expression:	evaluate	expression	and	print	its	value,	alias	for	p.	
.	expression_info	expression:	returns	parser-related	information	for	
the	expression	given	'incomplete'=true	|	false	indicates	whether	
expression	is	a	complete	ruby	expression	and	can	be	evaluated	
without	getting	syntax	errors.	
	
c.	Backtrace	
.	where:	display	frames.	
.	bt	|	backtrace:	alias	for	where.	
.	up	|	down	[count]:	move	to	higher	or	lower	frame.	
.	frame	[frame-number]:	Move	the	current	frame	to	the	specified	
frame	number.	(A	negative	number	indicates	position	from	the	other	
end.	So	'frame	-1'	moves	to	the	oldest	frame,	and	'frame	0'	moves	to	
the	newest	frame.)	
	
	
	
	

	
d.	Jump	
Change	the	next	line	of	code	to	be	executed.	
.	jump	line:	jump	to	line	number	(absolute).	
.	jump	-line:	jump	back	to	line	(relative).	
.	jump	+line:	jump	ahead	to	line	(relative).	
	
e.	Thread	
.	thread	list:	list	all	threads.	
.	thread	current:	show	current	thread.	
.	thread	switch	<nnn>:	switch	thread	context	to	nnn.	
.	thread	inspect	<nnn>:	switch	thread	context	to	nnn	but	don't	
resume	any	threads.	
.	thread	resume	<nnn>:	resume	thread	nnn.	
.	thread	stop	<nnn>:	stop	thread	nnn.	
	
f.	Type	Set	
.	set_type	<var>	<type>:	Change	the	type	of	<var>	to	<type>.	
	
g.	File	Operation	
.	load	file:	read	and	parse	file	every	time	instead	of	require.	
.	file-filter	on	|	off:	enable	or	disable	file	filtering.	
.	include	file	|	dir:	adds	file	or	dir	to	file	filter	(either	remove	already	
excluded	or	add	as	included).	
.	exclude	file	|	dir:	exclude	file	or	dir	from	file	filter	(either	remove	
already	included	or	add	as	exclude).	
	
	
Switch	Ruby	Interpreter	
You	can	directly	switch	between	any	Ruby	interpreter	or	your	own	
version	of	Ruby	and	then	config	it	to	support	rdebug-ide.	
	
	
	
	
	
	
	
	
	
	
	

	
Appendix:	
Make	a	fresh	Ruby	debugging	environment.	
	
Step	1.	build	an	openssl	library	
	
$	download	https://www.openssl.org/source/openssl-1.0.2t.tar.gz	
$	tar	-zxvf	openssl-1.0.2t.tar.gz	
$	cd	openssl-1.0.2t	
$	export	KERNEL_BITS=64	
$./config	no-ssl2	no-ssl3	no-shared	enable-ec_nistp_64_gcc_128	\	
		--prefix=/Users/yeung/Public/Rdebug/openssl	\	
		--openssldir=/Users/yeung/Public/Rdebug/openssl	
$	make	&&	make	install	
	
Step	2.	build	a	ruby	interpreter	
	
$	download	https://cache.ruby-lang.org/pub/ruby/2.1/ruby-
2.1.2.tar.bz2	
$	tar	-jxvf	ruby-2.1.2.tar.bz2	
$	export	LDFLAGS=-L/Users/yeung/Public/Rdebug/openssl/lib	-
lcrypto	-lssl	
$	export	CFLAGS=-I/Users/yeung/Public/Rdebug/openssl/include	
$	export	
PKG_CONFIG_PATH=/Users/yeung/Public/Rdebug/openssl/pkgconf
ig	
$	cd	ruby-2.1.2	
$./configure	--prefix=/Users/yeung/Public/Rdebug/2.x/ruby2	\	
		--with-openssl-dir=/Users/yeung/Public/Rdebug/openssl	
	
Alternative:	directly	modify	Makefile	to	add	openssl	library	link	
options	
LDFLAGS	=		$(CFLAGS)	-L.	-fstack-protector	-L/usr/local/lib	-
L/Users/yeung/Public/Rdebug/openssl	-lcrypto	–lssl	
	
$	make	&&	make	install	
	
	
	
	
	
	

	
Step	3.	install	debug	gems	
	
$	download	https://rubygems.org/downloads/debase-
ruby_core_source-0.10.5.gem	
$	download	https://rubygems.org/downloads/debase-
0.2.5.beta1.gem	
$	download	https://rubygems.org/downloads/ruby-debug-ide-
0.7.0.gem	
$	export	PATH=/Users/yeung/Public/Rdebug/2.x/ruby2/bin:$PATH	
$	gem	install	--force	--local	debase-ruby_core_source-0.10.5.gem	
$	gem	install	--force	--local	debase-0.2.5.beta1.gem	
$	gem	install	--force	--local	ruby-debug-ide-0.7.0.gem	
	
Step	4.	start	debugging	session	
	
$	rdebug-ide	--host	127.0.0.1	--port	1234	--dispatcher-port	1234	--	
xxx/xxx/xxx/main.rb	
	
Add	breakpoints	in	Speare	code	editor.	
	
Click	"Start"	button	on	the	debug	toolbar	of	Speare	code	editor.	
step	in,	step	out,	step	next	...	
	
	
Extend	Speare	Code	Editor		for	Ruby,	mruby	and	
Ruby	on	Rails	Debugging	
	
To	add	some	customised	scripts	to	support	better	Ruby	debugging,	
please	download	the	guide	from	here:	
http://sevenuc.com/download/language_extension_protocol.pdf,	
and	following	the	description	in	it.		
	
	
	
	
	
	
	

©	2020	Sevenuc	Consulting		
All	rights	reserved	

