
Speare	Code	Editor	
Debugger	

Quick	Reference	

	
Copyright	(C)	2020	Sevenuc	Consulting	

Version	1.0	
Update:	Jan	18	2020	

	
	
	
	
Speare	(http://sevenuc.com/en/Speare.html)	is	an	ultra	lightweight	
code	editor	and	a	small	IDE	that	has	an	efficient	code	navigation	and	
call	routines	tracing	ability,	and	has	integrated	debugging	
environment	for	C,	C++,	Ruby,	mruby,	Lua,	Python,	PHP,	Perl	and	Tcl.	
It	was	originally	developed	to	providing	a	native	scripting	language	
debugging	environment	that	seamlessly	integrated	with	C	and	C++.	It	
not	only	has	very	concise	user	interface	but	also	has	a	very	flexible	
architecture	to	easily	add	a	new	programming	language	code	runner,	
parser,	syntax	highlighting,	code	formatter	and	debugger	in	it.	
	
For	general	Speare	code	editor	usage,	please	refer	this	document:	
http://sevenuc.com/download/Speare_quick_reference.pdf	
	
	
Debug	Mode	
	
1.	Show	the	debug	toolbar	
	

Click	 	siding	bottom	button.	
	
2.	Debug	toolbar	
	

	
	
From	left	to	right,	Start,	Stop,	Step	Into,	Step	Out,	Run	To,	Step	Over,	
Show	Watches.		
	

The	"Step	Over"	is	equals	to	"Step	next",	and	"Step	To"	is	equals	to	
"Continue"	in	common	debugging	words,	and	the	"Step	To"	is	the	
command	that	tell	the	debugger	run	to	meet	a	breakpoint	or	an	
exception	occurred	or	the	program	meet	exit.		
	
On	the	rightmost	there	are	three	other	function	units,	they	are,	
search	items	in	the	stackview,	siding	stackview,	and	clean	the	debug	
output.		
	
Search	in	the	debug	output	
Click	in	the	output	area	and	use	the	shortcut	key	"Control	+	F"	to	do	
the	searching.	
	
3.	Socket	Port	
You	can	set	the	socket	communication	port	number	both	used	by	
Debug	Server	and	the	Speare	code	editor.	Open	the	Preferences	of	
Speare	and	select	the	"Debug	Settings"	tab	then	input	your	number.	
	
Note:	Please	remember	to	empty	the	port	number	when	you	
switched	to	debugging	with	the	default	builtin	programming	
languages	with	default	port	number.	
	
4.	Watches	
Watches	used	to	evaluate	variable	or	expression	and	their	values	can	
be	realtime	showing	in	stackview	when	debugging	session	paused,	
the	nodes	normally	has	a	green	colour	and	always	placed	on	the	top	
of	stackview.	
	
Caution:		
a.	Please	ensure	all	source	files	have	been	dragged	in	the	left	side	
Treeview	(Workspace	Explorer)	before	start	a	debug	session,	
because	macOS	app	can't	be	allowed	to	access	files	outside	of	its	
sandbox.	
	
b.	When	your	source	code	file	moved	to	another	folder,	you	must	
drag	the	source	code	folder	in	Speare	again	then	the	debugging	can	
correctly	work.	
	
	
	
	
	

C	and	C++	Debugger	
	
The	C	and	C++	debugger	of	Speare	code	editor	implemented	as	a	
script	client	of	LLDB	(http://lldb.llvm.org/),	and	supports	extend	it	by	
yourself.	The	builtin	module	supports	parsing	modern	C++	source	
code	files	including	C++11	and	C++14	syntax,	e.g	namespace,	
anonymous	function,	structure,	union,	class,	enum	etc	and	so	many	
new	features	of	the	C++	programming	language.	You	can	enjoy	
debugging	almost	any	type	of	C	and	C++	applications	under	the	
lightweight	debugging	environment	of	Speare	code	editor.	
	
Start	Debugging	Steps:	
	
1.	Download	Speare	Debug	Server:		
→	http://sevenuc.com/download/c_debugger.tar.gz	(10KB)	
	
The	source	code	of	the	C	and	C++	debugger	can	be	view	online	here:		
https://github.com/chengdu/Speare	or	here:	
https://sourceforge.net/projects/speare	
	
2.	Uncompress	the	tarball:	
Uncompress	it		to	your	local	directory.	e.g	~/Desktop	and	take	a	look	
at	the	readme.txt	in	it.	
	
3.	Start	the	debug	server:		
Please	refer	the	readme.txt	file.	
	
4.	Debug	session	start:		
click	"Start"	button	on	the	debug	toolbar	of	Speare	code	editor.	
Add	breakpoint,	step	in,	step	out,	step	next,	watch	stack	trace	...	
	
5.	Run	extra	commands:	
Right	click	in	the	stackview	(bottom	left	side)	and	then	input	any	lldb	
command	when	the	debugging	session	paused.	Left	click	anywhere	
outside	of	the	input	box	to	close	it	and	the	command	will	be	directly	
send	to	the	debug	server.	
	
a.	Add	function	breakpoints	
.	breakpoint	set	--name	functioname:	add	a	C	function	breakpoint.	
.	breakpoint	set	--name	classname::	functioname:	add	a	C++	function	
breakpoint.	
	

	
	
	
	
b.	Process	operation	
.	process	attach	--name	xxx	--waitfor:	attach	another	process	by	
name.	
.	process	attach	--pid	xxx:	attach	another	process	by	pid	#xxx.	
	
c.	Thread	operation	
.	thread	list:	show	all	thread	of	current	process.	
.	thread	select	2:	select	thread	#2.	
.	thread	backtrace	all:	show	thread	info.	
.	register	read:	read	all	CPU	registers.	
.	thread	step-inst:	step	one	machine	instruction.	
.	thread	step-over-inst:	step	return	one	machine	instruction.	
	
d.	Watchpoint	operation	
.	watch	list	-v:	list	watchpoints.	
.	watchpoint	set	variable	x:	add	a	watchpoint	x.	
	
e.	Frame	operation	
.	frame	list:	print	all	frame	of	the	current	thread.	
.	frame	select	9:	select	frame	#9.	
	
f.	Display	variable	value		
.	frame	variable	x:	print	x	value.	
...	
	
Tips:	Run	to	(run	to	meet	a	breakpoint),	the	source	file	that	you	want	
debugger	stopped	in	it	must	already	opened	and	has	at	least	one	
breakpoint	before	run	the	command.	
	
Modify	the	C	and	C++	debugger	
You	can	directly	modify	the	script	client	of	lldb	to	satisfy	your	
requirements.	
	
	
	
	
	

mruby	Debugger	
	
The	mruby	debugger	of	Speare	code	editor	is	a	patched	version	of	
mruby	(http://mruby.org)	that	support	remote	debugging	mruby	
project,	currently	support	mruby	version	2.0.1	and	2.1.0.	
	
1.	Install	mruby	debugging	server	
	
Download	mruby	remote	debugger:		
→	http://sevenuc.com/download/mruby_debugger.tar.gz	(733KB)	
	
Download	mruby-2.0.1.tar.gz	(518KB)	or	mruby-2.1.0.tar.gz	(585KB)	
from	https://github.com/mruby/mruby	
	
$	cd	mruby-2.0.1	or	mruby-2.1.0	
$	make	
compile	mruby	and	replace	mrdb	under	bin	directory	with	the	
corresponding	version.	
	
$	cd	bin		
$./mrdb	:	start	the	mruby	remote	debugger.	
	
2.	Configuring	Speare	code	editor	
	
Launch	Speare	and	open	the	Preferences	of	Speare	and	select	the	tab	
of	"Debug	Settings"	then	check	on	"Enable	mruby	debugging".	
Please	remember	to	turn	the	option	off	when	you	switched	to	debug	
common	Ruby	applications.	
	
3.	Debug	Session	Start	
	
Click	"Start"	button	on	the	debug	toolbar	of	Speare	code	editor.	
Add	breakpoint,	step	in,	step	out,	step	next,	watch	stack	trace	...	
	
Tips:	Separate	modules	of	your	app	with	mruby	gems	instead	of	
using	require.	
	
	
	
	
	

Ruby	Debugger	
	
The	Ruby	debugger	of	Speare	code	editor	implemented	as	a	client	of	
rdebug-ide,	and	Ruby	interpreter	that	has	a	rdebug-ide	installed	will	
be	running	as	the	debug	server.	
	
Ruby	debugging	environment	support	all	kinds	of	Ruby	interpreters,	
the	version	includes:	1.8.x,	1.9.x,	2.x,	and	JRuby.	
	
Steps	of	start	debugging	session:	
	
1.	Download	and	install	debug	gems	
	
For	Ruby	1.8.x:	download:	ruby-debug-base	(0.10.4)	
$	gem	install	--force	--local	ruby-debug-base-0.10.4.gem	
$	gem	install	ruby-debug-ide	
	
For	Ruby	1.9.x:	download:	ruby-debug-base19	(0.11.25)	
$	gem	install	--force	--local	ruby-debug-base19x-0.11.32.gem	
$	gem	install	ruby-debug-ide	
	
For	Ruby	2.x:	
$	gem	install	debase	
$	gem	install	ruby-debug-ide	
	
	
2.	Start	the	debug	server	
	
$	rdebug-ide	--host	127.0.0.1	--port	1234	--dispatcher-port	1234	--	
main.rb	
(Note:	Please	replace	the	main.rb	file	with	your	script	file.)	
	
For	Ruby	on	Rails:	
$	rdebug-ide	--host	0.0.0.0	--port	1234	--dispatcher-port	1234	--	
bin/rails	s	
	
3.	Debug	session	start	
Click	"Start"	button	on	the	debug	toolbar	of	Speare	code	editor.	
Add	breakpoint,	step	in,	step	out,	step	next,	watch	stack	trace	...	
	
	

4.	Add	condition	breakpoint	
Right	click	on	the	breakpoint,	on	the	prompt	menu,	→	select	
"Condition"	and	then	input	expression	or	use	empty	string	to	remove	
the	condition,	left	click	outside	of	the	input	box	to	close	it	and	execute	
the	command.	e.g.	x>5	means:	Pause	on	the	breakpoint	only	if	x>5	is	
true.	
	
5.	Run	Extra	Commands	
Right	click	in	the	stackview	(bottom	left	side)	and	then	input	extra	
command	when	the	debugging	session	paused.	Left	click	anywhere	
outside	of	the	input	box	to	close	it	and	the	command	will	be	directly	
send	to	the	debug	server.	
	
a.	Variables	
.	var	const	object:	show	constants	of	object.	
.	var	instance	object:	show	instance	variables	of	object,	object	can	be	
given	by	its	id	or	an	expression.	
.	var	inspect:	reference	inspection	results	in	order	to	save	them	from	
the	GC.	
	
b.	Expression	
.	p	expression:	evaluate	expression	and	print	its	value.	
.	pp	expression:	evaluate	expression	and	print	its	value.	
.	eval	expression:	evaluate	expression	and	print	its	value,	alias	for	p.	
.	expression_info	expression:	returns	parser-related	information	for	
the	expression	given	'incomplete'=true	|	false	indicates	whether	
expression	is	a	complete	ruby	expression	and	can	be	evaluated	
without	getting	syntax	errors.	
	
c.	Backtrace	
.	where:	display	frames.	
.	bt	|	backtrace:	alias	for	where.	
.	up	|	down	[count]:	move	to	higher	or	lower	frame.	
.	frame	[frame-number]:	Move	the	current	frame	to	the	specified	
frame	number.	(A	negative	number	indicates	position	from	the	other	
end.	So	'frame	-1'	moves	to	the	oldest	frame,	and	'frame	0'	moves	to	
the	newest	frame.)	
	
	
	
	
	

d.	Jump	
Change	the	next	line	of	code	to	be	executed.	
.	jump	line:	jump	to	line	number	(absolute).	
.	jump	-line:	jump	back	to	line	(relative).	
.	jump	+line:	jump	ahead	to	line	(relative).	
	
e.	Thread	
.	thread	list:	list	all	threads.	
.	thread	current:	show	current	thread.	
.	thread	switch	<nnn>:	switch	thread	context	to	nnn.	
.	thread	inspect	<nnn>:	switch	thread	context	to	nnn	but	don't	
resume	any	threads.	
.	thread	resume	<nnn>:	resume	thread	nnn.	
.	thread	stop	<nnn>:	stop	thread	nnn.	
	
f.	Type	Set	
.	set_type	<var>	<type>:	Change	the	type	of	<var>	to	<type>.	
	
g.	File	Operation	
.	load	file:	read	and	parse	file	every	time	instead	of	require.	
.	file-filter	on	|	off:	enable	or	disable	file	filtering.	
.	include	file	|	dir:	adds	file	or	dir	to	file	filter	(either	remove	already	
excluded	or	add	as	included).	
.	exclude	file	|	dir:	exclude	file	or	dir	from	file	filter	(either	remove	
already	included	or	add	as	exclude).	
	
	
Switch	Ruby	Interpreter	
You	can	directly	switch	between	any	Ruby	interpreter	or	your	own	
version	of	Ruby	and	then	config	it	to	support	rdebug-ide.	
	
	
	
	
	
	
	
	
	
	
	
	

Appendix:	
Make	a	fresh	Ruby	debugging	environment.	
	
Step	1.	build	an	openssl	library	
	
$	download	https://www.openssl.org/source/openssl-1.0.2t.tar.gz	
$	tar	-zxvf	openssl-1.0.2t.tar.gz	
$	cd	openssl-1.0.2t	
$	export	KERNEL_BITS=64	
$./config	no-ssl2	no-ssl3	no-shared	enable-ec_nistp_64_gcc_128	\	
		--prefix=/Users/yeung/Public/Rdebug/openssl	\	
		--openssldir=/Users/yeung/Public/Rdebug/openssl	
$	make	&&	make	install	
	
Step	2.	build	a	ruby	interpreter	
	
$	download	https://cache.ruby-lang.org/pub/ruby/2.1/ruby-
2.1.2.tar.bz2	
$	tar	-jxvf	ruby-2.1.2.tar.bz2	
$	export	LDFLAGS=-L/Users/yeung/Public/Rdebug/openssl/lib	-
lcrypto	-lssl	
$	export	CFLAGS=-I/Users/yeung/Public/Rdebug/openssl/include	
$	export	
PKG_CONFIG_PATH=/Users/yeung/Public/Rdebug/openssl/pkgconf
ig	
$	cd	ruby-2.1.2	
$./configure	--prefix=/Users/yeung/Public/Rdebug/2.x/ruby2	\	
		--with-openssl-dir=/Users/yeung/Public/Rdebug/openssl	
	
Alternative:	directly	modify	Makefile	to	add	openssl	library	link	
options	
LDFLAGS	=		$(CFLAGS)	-L.	-fstack-protector	-L/usr/local/lib	-
L/Users/yeung/Public/Rdebug/openssl	-lcrypto	–lssl	
	
$	make	&&	make	install	
	
	
	
	
	
	
	

Step	3.	install	debug	gems	
	
$	download	https://rubygems.org/downloads/debase-
ruby_core_source-0.10.5.gem	
$	download	https://rubygems.org/downloads/debase-
0.2.5.beta1.gem	
$	download	https://rubygems.org/downloads/ruby-debug-ide-
0.7.0.gem	
$	export	PATH=/Users/yeung/Public/Rdebug/2.x/ruby2/bin:$PATH	
$	gem	install	--force	--local	debase-ruby_core_source-0.10.5.gem	
$	gem	install	--force	--local	debase-0.2.5.beta1.gem	
$	gem	install	--force	--local	ruby-debug-ide-0.7.0.gem	
	
Step	4.	start	debugging	session	
	
$	rdebug-ide	--host	127.0.0.1	--port	1234	--dispatcher-port	1234	--	
xxx/xxx/xxx/main.rb	
	
Add	breakpoints	in	Speare	code	editor.	
	
Click	"Start"	button	on	the	debug	toolbar	of	Speare	code	editor.	
step	in,	step	out,	step	next	...	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Lua	Debugger	
	
The	Lua	debugger	of	Speare	code	editor	implemented	as	a	module	of	
Lua	(https://www.lua.org),	and	support	all	common	versions	of	Lua.	
You	can	conveniently	enjoy	debugging	with	any	kinds	of	customised	
Lua	interpreter	and	LuaJIT.	
	
Tested	Lua	version	includes:	5.1.4,	5.1.5,	5.2.4,	5.3.5	5.4.0-alpha	
	
Start	Debugging	Steps:	
	
1.	Download	Speare	Debug	Server:		
→	http://sevenuc.com/download/lua_debugger.tar.gz	(518KB)	
	
	
2.	Uncompress	the	tarball	
Uncompress	it	to	your	local	directory.	e.g	~/Desktop	and	take	a	look	
at	the	readme.txt	in	it.	
	
3.	Start	the	debug	server	
	
$	cd	~/Desktop/debugger/5.1	
$./lua_514	server.lua	
	
4.	Debug	session	start	
Click	"Start"	button	on	the	debug	toolbar	of	Speare	code	editor.	
Add	breakpoint,	step	in,	step	out,	step	next,	watch	stack	trace	...	
	
	
Replace	Lua	interpreter	
You	can	directly	replace	the	Lua	interpreter	with	your	own	
customised	version	under	the	debugger	directory.	
	
	
	
	
	
	
	
	
	

Python	Debugger	
	
The	Python	debugger	of	Speare	code	editor	supports	Python	version	
2.5,	2.6,	2.7	and	3.x,	and	MicroPython.	You	can	enjoy	debugging	
Python	scripts	as	same	as	debugging	web	applications	that	based	on	
web	frameworks	such	as	Flask	and	Django	under	the	lightweight	
environment	of	Speare	code	editor.		
	
Steps	of	Start	Debugging	Session:	
	
1.	Download	Speare	Debug	Server:		
→	http://sevenuc.com/download/python_debugger.tar.gz	(30KB)	
	
The	source	code	of	the	Python	debugger	can	be	view	online	here:		
https://github.com/chengdu/Speare	or	here:	
https://sourceforge.net/projects/speare	
	
2.	Uncompress	the	tarball	
Uncompress	it	to	your	local	directory.	e.g	~/Desktop	and	take	a	look	
at	the	readme.txt	in	it.	
	
3.	Start	the	debug	server	
	
$	cd	~/Desktop/debugger/2.x	
$	python	server.py	
	
4.	Debug	session	start	
Click	"Start"	button	on	the	debug	toolbar	of	Speare	code	editor.	
Add	breakpoint,	step	in,	step	out,	step	next,	watch	stack	trace	...	
	
5.	Add	condition	breakpoint	
Described	in	the	Ruby	debug	section	of	this	page.	
	
6.	Run	Extra	Commands	
Right	click	in	the	stackview	(bottom	left	side)	and	then	input	extra	
command	when	the	debugging	session	paused.	Left	click	anywhere	
outside	of	the	input	box	to	close	it	and	the	command	will	be	directly	
send	to	the	debug	server.	
	
a.	Remove	all	breakpoints	
.	clear:	clear	all	breakpoints	of	current	file.	
	

b.	Stack	trace	and	frame	operation	
.	where:	Print	stack	trace,	an	arrow	indicates	the	"current	frame".	
.	up	[count]:	Move	stack	trace	to	older	frame.	
.	down	[count]:	Move	stack	trace	to	newer	frame.	
	
c.	Display	argument	list	
.	args:	Print	the	argument	list	of	the	current	function.	
	
d.	Display	return	value		
.	retval:	Print	the	return	value	for	the	last	return	of	a	function.	
	
e.	Display	value	of	expression	
.	p	expression:	Print	the	value	of	the	expression.	
.	pp	expression:	Pretty-print	the	value	of	the	expression.	
.	display	expression:	Display	the	value	of	the	expression,	Python	3.x	
only.	
.	undisplay:	Clear	all	display	expressions	for	the	current	frame,	
Python	3.x	only.	
.	undisplay	expression:	Do	not	display	the	expression	any	more	in	the	
current	frame,	Python	3.x	only.	
	
f.	Display	argument	type		
.	whatis	argument:	Print	the	type	of	the	argument.	
	
g.	Display	source	code	of	object	
.	source	expression:	Python	3.x	only.	
	
h.	Continue	execution	
.	until:	continue	execution	until	the	line	number	greater	than	the	
current	is	reached.	
.	until	[lineno]:	continue	execution	until	line	number	greater	or	equal	
to	the	lineno	is	reached.	
	
i.	Add	module	search	path	
.	basedir	directory:	insert	a	directory	in	sys.path.	
	
Switch	Python	interpreter	
You	can	directly	switch	CPython	interpreter	to	MicroPython	or	your	
own	self-compiled	version	of	Python,	or	others	such	as	PyPy,	Jython	
and	IronPython.	
	
	

PHP	Debugger	
	
The	PHP	debugger	of	Speare	code	editor	supports	all	kinds	
debugging	of	PHP	applications	and	any	version	of	PHP	interpreter	
that	has	Xdebug	support	from	PHP	5.x	to	PHP	7.x.	Different	with	Lua,	
Ruby	and	Python	debugging,	this	time	Speare	acts	as	debug	server	
and	Xdebug	as	the	client.	
	
Setting	up	Xdebug	for	PHP	Debugging:	
	
1.	Download	Xdebug:	
https://xdebug.org/files/xdebug-2.6.0.tgz	
	
2.	Compile	and	install	Xdebug:	
	
$	rm	configure.in	(optional)	
$	rm	configure.ac	(optional)	
$	phpize	&&	./configure	--enable-xdebug	&&	make	clean	&&	make	all	
$	sudo	make	install	
	
At	this	step	Terminal	will	report:		
/usr/lib/php/extensions	Operation	not	permitted.		
	
This	is	because	SIP	default	set	to	be	enabled	by	macOS,	even	you	
execute	sudo	operation,	the	system	protected	directories	still	can't	be	
writable.	
	
WARNING:	THE	FOLLOWING	OPERATION	IS	VERY	DANGERS.	
	
Assuming	that	you	know	what	you’re	doing,	here	is	how	to	change	
SIP	(System	Integrity	Protection)	settings	on	your	Mac.	Turn	off	your	
Mac	(Apple	→	Shut	Down...),	hold	down	Command-R	and	press	the	
Power	button.	Keep	holding	Command-R	until	the	Apple	logo	
appears	and	wait	for	OS	X	to	boot	into	the	"OS	X	Utility"	window	and	
then	choose	Utilities	→	Terminal.	
	
Turn	off	SIP:	
$	csrutil	disable	
$	csrutil	status	
$	reboot	
	
	

Turn	on	SIP:	
$	csrutil	enable	
$	csrutil	status	
$	reboot	
	
After	you	turn	off	SIP	and	execute	"$	sudo	make	install"	again,	
Xdebug	should	be	successfully	installed	on	you	system,	you	can	check	
it	by	this	command:	
	
$	php	–v	
	
It	should	print	something	like	the	following:	
	
PHP	7.1.23	(cli)	(built:	Nov	27	2018	16:59:25)	(NTS)	
Copyright	(c)	1997-2018	The	PHP	Group	
Zend	Engine	v3.1.0,	Copyright	(c)	1998-2018	Zend	Technologies	
with	Xdebug	v2.6.0,	Copyright	(c)	2002-2018,	by	Derick	Rethans	
	
3.	Configuring	web	server:	
$	cp	/etc/apache2/httpd.conf	~/Desktop/	
	
LoadModule	userdir_module	libexec/apache2/mod_userdir.so	
LoadModule	alias_module	libexec/apache2/mod_alias.so	
LoadModule	rewrite_module	libexec/apache2/mod_rewrite.so	
LoadModule	php7_module	libexec/apache2/libphp7.so	
Include	/private/etc/apache2/other/*.conf	
	
Edit	file	http.conf	and	ensure	the	above	lines	not	be	commented.	
	
$	sudo	cp	~/Desktop/httpd.conf	/etc/apache2/	
Save	back	the	settings	file.	
	
$	apachectl	configtest	
Check	there	syntax	is	legal	(optional).	
	
	
	
	
	
	
	
	

4.	Configuring	PHP	interpreter:	
$	cp	/etc/php.ini.default	~/Desktop/	
	
enable_dl	=	On	
[xdebug]	
zend_extension	=	/usr/lib/php/extensions/no-debug-non-zts-
20160303/xdebug.so	
xdebug.remote_enable	=	1	
xdebug.remote_host	=	"127.0.0.1"	
xdebug.remote_port	=	9000	
xdebug.remote_handler	=	"dbgp"	
xdebug.remote_mode	=	req	
xdebug.remote_connect_back	=	1	
xdebug.remote_autostart=1	
	
Edit	file	php.ini.default	and	carefully	check	the	above	content	have	
been	written	in	it.	
	
Note:	xdebug.remote_autostart=1	should	be	removed	at	product	
environment.	
	
$	sudo	cp	~/Desktop/php.ini.default	/etc/	
Save	back	the	settings	file.	
	
$	sudo	mv	/etc/php.ini.default	/etc/php.ini	
Rename	the	settings	file	to	take	effect.	
	
	
5.	Run	PHP	test	with	Xdebug:	
	
<?php	
echo	phpinfo();	
?>	
	
Save	the	above	content	in	a	file	named	test.php	and	put	it	under	
/Library/WebServer/Documents/	
	
	
	
	
	
	

$	sudo	launchctl	unload	-w	
/System/Library/LaunchDaemons/org.apache.httpd.plist	
$	sudo	launchctl	load	-w	
/System/Library/LaunchDaemons/org.apache.httpd.plist	
	
Restart	apache,	launch	Safari	and	request:	http://127.0.0.1/test.php.	
There're	some	text	in	zend	engine	section	should	be	as	same	as	
printed	by	execute	the	command	"$	php	-v"	on	command	line.	
	
Steps	of	PHP	Debugging	in	Speare	code	editor:	
	
1.	Launch	Speare	and	dragging	the	PHP	source	code	folder	into	the	
"Workspace	Explorer".	
	
2.	Select	the	startup	php	script	and	click	siding	bottom	button	to	
show	the	debug	toolbar	and	then	click	"Start"	button.	
	
3.	Launch	Safari	and	request:	http://127.0.0.1/xxx/xxx/index.php	
	
Note:	Don't	use	localhost	but	should	use	127.0.0.1	instead.	
	
4.	After	Speare	paused	and	highlighting	at	a	special	line	of	your	
startup	PHP	script	there	that	means	the	debugging	session	started,	
you	can	execute	the	common	debugging	command	now:	
	
Add	breakpoint,	step	in,	step	out,	step	next,	watch	stack	trace	...	
	
	
Switch	PHP	interpreter	
You	can	switch	any	version	of	PHP	interpreter	directly;	it	does	not	
affect	the	server	side	Speare	code	editor.	PHP	is	an	excellent	
programming	language	to	develop	Web	Applications	based	on	
frameworks	such	as	Drupal,	Zend	Framework,	CodeIgniter,	Symfony	
and	Yii	framework	etc,	but	not	limited	that,	in	fact	PHP	is	also	very	
suitable	to	develop	command	line	applications.	
	
	
	
	
	
	
	

Perl	Debugger	
	
The	Perl	debugger	of	Speare	code	editor	implemented	as	a	patched	
version	of	perl5db.pl,	and	support	extend	it	by	yourself.	The	
debugger	was	based	on	the	builtin	debugger	of	Perl,	so	it	can	work	
with	all	versions	of	Perl	interpreter	that	perl5db.pl	supported.		
	
Start	Debugging	Steps:	
	
1.	Download	Speare	Debug	Server
→	http://sevenuc.com/download/perl_debugger.tar.gz	(104KB)	
	
The	source	code	of	the	Perl	debugger	can	be	view	online	here:		
https://github.com/chengdu/Speare	or	here:	
https://sourceforge.net/projects/speare	
	
2.	Uncompress	the	tarball		
Uncompress	it	to	your	local	directory.	e.g	~/Desktop	and	take	a	look	
at	the	readme.txt	in	it.	
	
3.	Start	the	debug	server	
	
$	cd	~/Desktop/debugger	
$	perl	-I	~/Desktop/debugger/Speare	-d:Debugger	fullpath.pl	
*	Warning:	fullpath.pl	the	file	must	input	with	full	path.	
	
4.	Debug	session	start	
Click	"Start"	button	on	the	debug	toolbar	of	Speare	code	editor.	
Add	breakpoint,	step	in,	step	out,	step	next,	watch	stack	trace	...	
	
5.	Run	extra	commands:	
Right	click	in	the	stackview	(bottom	left	side)	and	then	input	any	Perl	
debug	command	when	the	debugging	session	paused.	Left	click	
anywhere	outside	of	the	input	box	to	close	it	and	the	command	will	
be	directly	send	to	the	debug	server.	
	
a.	Add	function	breakpoints	
.	b	functionname:	add	a	function	breakpoint.	
	
	
	
	

b.	Add	condition	breakpoints	
.	via	breakpoint	marker:	Right	click	on	the	breakpoint,	on	the	prompt	
menu,	→	select	"Condition"	and	then	input	expression	or	use	empty	
string	to	remove	the	condition,	left	click	outside	of	the	input	box	to	
close	it	and	execute	the	command.	e.g.	x	>	5	means:	Pause	on	the	
breakpoint	only	if	x	>	5	is	true.	
	
.	b	fullpath.pl	condition:	e.g.	b	/xxx/xxx/code.pl	6	$x	>	5.	
/xxx/xxx/code.pl:	fullpath	of	the	script	file.	(do	the	same	thing,	
optional)	
	
c.	Watchpoint	operation	
.	w	expr:	add	a	watchpoint	expr.	
.	W	expr:	delete	watchpoint	expr.	
.	W	*:	delete	all	watchpoints.	
	
d.	Evaluate	express	
.	e	expr:	e.g.	"e	$x+$y".	
	
e.	Display	variable	value		
.	p	$x:	print	value	of	variable	x.	
.	p	expr:	print	value	of	expression	expr.	
...	
	
	
Switch	Perl	Interpreter	
You	can	directly	switch	the	Perl	interpreter	on	the	command	line	or	
debugging	with	your	own	self-compiled	version	of	Perl.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Tcl	Debugger	
	
The	Tcl	debugger	of	Speare	code	editor	implemented	with	Tcl	scripts	
and	an	extension	written	with	C	to	parse	Tcl	source	code,	and	
support	extend	it	by	yourself.	You	can	enjoy	debugging	almost	all	
kinds	of	Tcl	applications	under	the	lightweight	debugging	
environment	of	Speare	code	editor.	
	
Start	Debugging	Steps:	
	
1.	Download	Speare	Debug	Server	
→	http://sevenuc.com/download/tcl_debugger.tar.gz	(223KB)	
	
The	source	code	of	the	Tcl	debugger	can	be	view	online	here:		
https://github.com/chengdu/Speare	or	here:	
https://sourceforge.net/projects/speare	
	
2.	Uncompress	the	tarball		
Uncompress	it	to	your	local	directory.	e.g	~/Desktop	and	take	a	look	
at	the	readme.txt	in	it.	
	
3.	Start	the	debug	server:		
Please	refer	the	readme.txt	file.	
	
4.	Debug	session	start:		
Click	"Start"	button	on	the	debug	toolbar	of	Speare	code	editor.	
Add	breakpoint,	step	in,	step	out,	step	next,	watch	stack	trace	...	
	
Modify	the	Tcl	debugger	
You	can	directly	modify	the	source	code	of	the	Tcl	Debugger	to	satisfy	
your	requirements.	
	
	
Switch	Tcl	interpreter	
You	can	directly	switch	the	Tcl	interpreter	on	the	command	line	or	
debugging	with	your	own	self-compiled	version	of	Tcl.	
	
	
	
	
	

Programming	Languages	and	Document	Types	
	
AMPL	ASM	ASP	AWK	Ada	ActionScript	Active4D	AnsiblePlaybook	Ant	
Apache	Applescript	Asciidoc	AutoIt	Autoconf	Automake	Basic	Batch	
Beta	Bibtex	C	C#	C++	CMake	CPrePro	CSS	Scss	CUDA	Clojure	Cobol	
CoffeeScript	ColdFusion	Csound	Ctags	D	DTS	DbusIntrospect	Diff	
DosBatch	PowerShell	Dtd	Dylan	Eiffel	Elixir	Elm	Erlang	eZ	Publish	F-
Script	Falcon	Flex	Forth	Fortran	FreeFem++	Fypp	GEDCOM	Gdbinit	
Glade	Go	Gradle	GraphViz	Groovy	Haskell	HTML	Haxe	Header	IDL	
ITcl	Iniconf	Inko	JSP	Java	JavaFX	JavaProperties	JavaScript	JSON	Julia	
Kotlin	Kuin	LSL	LaTeX	LdScript	Lilypond	Lisp	Logtalk	Lua	M4	MEL	
Makefile	Man	Markdown	MATLAB	Maven2	MetaPost	Metaslang	
Moose	MySQL	Myrddin	NASL	NEURON	Nemerle	Objective-C	Octave	
Ocaml	Ox	PDF	PHP	Parrot	Pascal	Passwd	Perl	Perl6	Pig	Plist	Pod	
PostScript	Prolog	Processing	Protobuf	Puppet	PuppetManifest	
Python	PythonLoggingConfig	QemuHX	QtMoc	R	R/S-PLUS	RHTML	
RSpec	RelaxNG	Rexx	Robot	Racket	RpmSpec	Rst	Ruby	mruby	Rust	
SGML	SML	SQL	Scala	Scheme	Sedona	Shell	Slang	Smalltalk	Snippets	
Stata	SuperCollider	SVG	Swift	SystemTap	SystemdUnit	TTCN	Tcl	
Tcl/Tk	Tex	TorqueScript	TypeScript	Udo	VB	VB.NET	VHDL	Vera	
Verilog	SystemVerilog	Vim	WSDL	WindRes	XML	XSD	Xquery	Xslt	
Yacc	YAML	YumRepo	Zephir	
	
To	add	a	new	programming	language	code	runner,	parser,	syntax	
highlighting,	code	formatter	and	debugger	in	Speare	code	editor,	
please	download	the	guide	from	here:	
http://sevenuc.com/download/language_extension_protocol.pdf,	
and	following	the	description	in	it.		
	
	
	
	
	
	
	
	
	
	
	
	
	
©	2020	Sevenuc	Consulting	All	rights	reserved.	

